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Other Research Activities
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Why Contacts? 3};
R

« The success of future nanoscale devices is critically dependent on gaining an
atom-level understanding of contact formation

— How are electronic properties of the molecule/nanomaterial affected by contact?
— How does the molecule/material respond when contact is established?
— What role is played by the contact metal?
— Can we predict the conductance of nanoscale systems?
« How can one go about answering these types of questions?

— Approach: develop new methodologies based on cryogenic STM
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Scanning Tunneling Microscopy

Overlap of tip and sample wavefunctions

Applied bias defines the energy window
sampled

Study HOMO and LUMO levels
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DOS, Molecular Vibrations, and Barrier-height
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In principle STM can provide significant insights

Not delivered in practice, poor correlation of properties with

contact formation, no ability to account for forces involved
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Strategy

» Separate the electronic and mechanical effects:

— Record detailed changes in the electronic and vibrational
properties of molecule as probe approaches to contact

— Measure forces experienced during contact

(new technique, refer to as relaxation spectroscopy)

— Study contacts with molecules and nanomaterials
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Scanning Tunnelling Spectroscopy (STS)

Conventional STS
measurements
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Integrated Substrate* for probe preparation

Metal-inking: drawing
material from the surface
onto the probe apex

Substrate developed by

Degenerately doped CRANN and Intel

Si substrate
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Integrated Substrate for probe preparation

Probe sharpening on Pd surface

sample bias +28 mV
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Top view

o Characterize sharpened probe by STS and barrier height
f measurements on known samples
STl




Example A: Si(100) Substrate and Molecule

9,
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Bare surface H passivated

5 K STM image of Si(100)

1,3-cyclohexadiene
(1,3-CHD)

After reaction one C=C double
bond remains and corresponds
to the topographic maximum
visible in STM (5 different
possible configurations)
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1,3-CHD on bare Si(100) surface

[4+2] Products [2+2] Products

dangling
bond

Color Key: C C=C H Si-C
Product identification based on location of single remaining C=C
Always some noisy sites on surface

© Empty state images: tunnelling into T* level of C=C? ﬁ
sfi S



Can’t explain origin of STM contrast

« DFT reveals broadened =* state at +3.5eV
« Broadened n* does not extend appreciably below +2 eV

Bias +1.0eV
o Ao, A4
ST Energy window 2-3eVv Energy window 3-4.5eV CRANNS
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1,3-CHD reacted Si(100) surface at 5K

Pt(111) 63.5x63.5nm 0.1nA 450mV

I

P

50x50 nm 100pA 700mV 5K

Si(100) 13x12.6nm 0.1nA 700mV

_— @imer flipping at 5 K, especially under high bias/current conditions
ST

ireland




Contacts: Single Molecule on Si(100) +

Electronic density of states

C-H bending mode

C=C stretch
C-H stretch

(@A)

1,3-cyclohexadiene |
(1,3-CHD)
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Sample Bias [mV]

200 300 400
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e Large LDOS feature grows in at 350meV (completely reversible) and
anticorrelated with disappearance of C=C vibrations

* Bias window 0 — 200meV LDOS independent of separation (basis
for subsequent relaxation and force measurements)
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Current during approach to contact

Pt(111) 63.5x63.5nm
0.1nA 450mV

13CHD/SI(100) 13x12.6nm
0.1nA  70OmY

o What is the origin of these deviations from Eq. (1) ?
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Jump to contact & neck formation

Contact with 1,3-CHD molecule

Current not globally described
by Eq. (1)

Deviations seen in harmonics

Shaded region: no hystersis
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Origin of Relaxation Interaction
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Qualitative Analysis of Current Hysteresis

Shaded hysteresis-free regions
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Quantitative Analysis
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Quantitative Analysis: Interaction Potentials

Invert current and barrier height data to determine forces & potentials
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Description of the ¢ data requires a barrier term

o Questions:
S fl 1. Is the well depth meaningful?
2. What is the origin of this barrier?

} Use DFT



Emergence of LDOS feature
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DOS in the presence of the
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Sfl Interaction of probe with C=C bond upon
contact yields interface state in 0 — 1eV
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Origin of Interface State

15A 4A 15A
separation separation separation

Bonding interaction associated with prt—dn
charge transfer from C=C to Pt apex atom

Molecule conductance dominated by interface
state which is responsible for STM image




Origin of Interface State
15A 4A 15A
separation separation separation

DFT also observes barrier - due to

deformation and rehybridisation of
the molecule C=C bond
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Comprehensive picture of contact bond formation %

1,3-C4H, Si(100) dimer
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Interaction Potential

Track dynamics of contact formation Precise overlay
of potential, electronic and vibrational properties

—° 9/’
" 5f)  NANOLETTERS 6(9) 2006; PRL 97, 098304, 2006.
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Conclusions: Molecular Contacts

» Three types of current-approach
curves

— Smooth exponential increase

d°l/dZ*
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(tunnelling) . 2
— Sharps jumps (local atomic
motion) PN il
— i i 5 o 5 10 15 20 M 55
Slow, reproducible change in X [A]

slope (relaxation forces) Relaxation map of single 1,3 CHD

» Interface states may provide route to tailor molecule transport properties

» Track actual formation of contacts (chemical bond formation,
evolution of vibrations, actual measure of potential)

« Widely applicable; catalysts and studies of general reaction dynamics
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Example B: Nanoscale contact with Si(100):H

% of
Transistor

Resistance
(Kim, ITRS)

Rcont= lmn:pt{ SEvEm: P }
Licon h Na

Specific Problem: contact resistance
between contact metal and n+ region at
source and drain limiting device
performance

Approach: study of controlled contact
formation at 5K. Measure local forces,
electronic density of states and vibrationsye:
simultaneously




Pd Nanocontacts on n+ Si(100):H
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science foundation ireland
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Macroscopic Pd:Si(100) Contacts
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Measurements on Carbon Nanotubes

di/dV (a.u.)

-1 -0.5 0 0.5 1

Voltage (V)

Well defined van Hove singularities
RT study — peak broadening
No contact studies at 5 K yet

CRANN
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CRANN Nanoscience Centre & Industry Partners
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