Nanoscale Contact Formation Dynamics

John J. Boland, Borislav Naydenov, Peter Ryan & Luci Teague

The School of Chemistry & Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) Trinity College Dublin Dublin 2, Ireland

1

Other Research Activities

CRAN

Why Contacts?

- The success of future nanoscale devices is critically dependent on gaining an atom-level understanding of contact formation
 - How are electronic properties of the molecule/nanomaterial affected by contact?
 - How does the molecule/material respond when contact is established?
 - What role is played by the contact metal?
 - Can we predict the conductance of nanoscale systems?
- How can one go about answering these types of questions?
 - Approach: develop new methodologies based on cryogenic STM

Scanning Tunneling Microscopy

- Overlap of tip and sample wavefunctions
- Applied bias defines the energy window sampled
- Study HOMO and LUMO levels

$$I_t \propto \rho_s(0, E_F) e^{-\phi^{1/2}Z}$$

LDOS at location z and energy E

DOS, Molecular Vibrations, and Barrier-height

In principle STM can provide significant insights

Not delivered in practice, poor correlation of properties with contact formation, no ability to account for forces involved

Strategy

- Separate the electronic and mechanical effects:
 - Record detailed changes in the electronic and vibrational properties of molecule as probe approaches to contact
 - Measure forces experienced during contact (new technique, refer to as relaxation spectroscopy)
 - Study contacts with molecules and nanomaterials

Scanning Tunnelling Spectroscopy (STS)

Integrated Substrate* for probe preparation

Metal-inking essential to control composition and electrical properties of probe Guarantees that bias maps onto the energy scale in STS measurements

*co-developed with Intel, processing at Tyndall National Institute

Integrated Substrate for probe preparation

Top view

Probe sharpening on Pd surface

Characterize sharpened probe by STS and barrier height measurements on known samples

Example A: Si(100) Substrate and Molecule

5 K STM image of Si(100)

1,3-cyclohexadiene (1,3-CHD)

After reaction one C=C double bond remains and corresponds to the topographic maximum visible in STM (5 different possible configurations)

10

1,3-CHD on bare Si(100) surface

[2+2] Products

[4+2] Products

Color Key: Si C C=C H Si-C

Product identification based on location of single remaining C=C Always some noisy sites on surface

F

С

Empty state images: tunnelling into π^* level of C=C?

Can't explain origin of STM contrast

- DFT reveals broadened π^* state at +3.5eV
- Broadened π^* does not extend appreciably below +2 eV

Energy window 0-1eV

Energy window 1-2eV

Energy window 2-3eV

Energy window 3-4.5eV

1,3-CHD reacted Si(100) surface at 5 K

science foundation in

Pt(111) 63.5x63.5nm 0.1nA 450mV

Si(100) 13x12.6nm 0.1nA 700mV

Dimer flipping at 5 K, especially under high bias/current conditions

Contacts: Single Molecule on Si(100)

• Large LDOS feature grows in at 350meV (completely reversible) and anticorrelated with disappearance of C=C vibrations

Bias window 0 – 200meV LDOS independent of separation (basis
for subsequent relaxation and force measurements)

science foundation irelan

14

Current during approach to contact

science foundation irel

Contact with Pt surface Current well described by: $I \propto \exp(-A\sqrt{\phi_A} z)$ (1)

Jump to contact & neck formation

Contact with 1,3-CHD molecule

Current not globally described by Eq. (1)

Deviations seen in harmonics

Shaded region: no hystersis

 \odot What is the origin of these deviations from Eq. (1)?

Origin of Relaxation Interaction

$$\begin{split} \Delta Z_{\text{gap}} &= - \left(\Delta Z_{\text{piezo}} + \Delta Z_{\text{C=C}} \right) \\ &= - \Delta Z_{\text{piezo}} + F_{\text{P}} / k_{\text{S}} \\ &= - \Delta Z_{\text{piezo}} + \alpha F_{\text{P}} \end{split}$$

Current increase during approach deviates from $I \propto \exp(-A\sqrt{\phi_A} z_{piezo})$

Interpreted locally as a change in the apparent barrier height φ_{A}

Qualitative Analysis of Current Hysteresis

Shaded hysteresis-free regions

Sfi

Bond-making and breaking region (dissipative)

Quantitative Analysis $F \equiv 0$ $F \neq 0$ $I \propto \exp\left(-A\sqrt{\phi}Z\right)$ $I \propto \exp \left[-A\sqrt{\phi} \left(Z_{piezo} + Z_0 + \alpha F\right)\right]$ $I' = \frac{dI}{dZ} \propto -A\sqrt{\phi} I$ $I' \propto -A\sqrt{\phi}(1+\alpha F')I$ $I'' \propto \left[A^2\phi(1+\alpha F') - A\sqrt{\phi}\alpha F''\right]I$ $I'' = \frac{d^2 I}{dZ^2} \propto A^2 \phi I$ $\left(-\frac{I'}{IA}\right)^2 \propto \phi \left(1+\alpha F'\right)^2$ $\left(-\frac{I'}{IA}\right)^2 \propto \phi_{A1}$ $\frac{I''}{IA^2} \propto \phi_{A2}$ Nominally $\frac{I''}{IA^2} \propto \phi (1 + \alpha F')^2 - \frac{\sqrt{\phi}}{\Lambda} \alpha F''$ $\left(-\frac{I''}{I'A}\right)^2 \propto \left[\sqrt{\phi}\left(1+\alpha F'\right)-\frac{\alpha F''}{A(1+\alpha F')}\right]^2$ $\left(-\frac{I''}{I'A}\right)^2 \propto \phi_{A3}$

Forces present: harmonics dI/dZ and d²I/dZ² are related to the local force gradient

Quantitative Analysis: Interaction Potentials

Invert current and barrier height data to determine forces & potentials

Description of the ϕ data requires a barrier term

Questions:

2. What is the origin of this barrier?

Use DFT

Emergence of LDOS feature

Energy window 0-1ev

Energy window 2-3ev

Energy window 1-2ev

Energy window 3-4ev

DOS in the presence of the probe tip

contact yields interface state in 0 - 1eV

rann

21

Origin of Interface State

 \int LDOS (0-1.5 eV) ~ STM image

Tip above C=C

Sfi

Molecule conductance dominated by interface state which is responsible for STM image

Bonding interaction associated with $p\pi \rightarrow d\pi$

charge transfer from C=C to Pt apex atom

Origin of Interface State

DFT also observes barrier - due to deformation and rehybridisation of the molecule C=C bond

Tip approach: Interface state

Deformation of molecule

Comprehensive picture of contact bond formation²⁴

Track dynamics of contact formation Precise overlay of potential, electronic and vibrational properties *NANO LETTERS* 6(9) 2006; *PRL* 97, 098304, 2006.

science foundation irelan

Conclusions: Molecular Contacts

- Three types of current-approach curves
 - Smooth exponential increase (tunnelling)
 - Sharps jumps (local atomic motion)
 - Slow, reproducible change in slope (relaxation forces)

Relaxation map of single 1,3 CHD

- Interface states may provide route to tailor molecule transport properties
- Track actual formation of contacts (chemical bond formation, evolution of vibrations, actual measure of potential)
- Widely applicable; catalysts and studies of general reaction dynamics

Example B: Nanoscale contact with Si(100):H

Specific Problem: contact resistance between contact metal and n+ region at source and drain limiting device performance

Approach: study of controlled contact formation at 5K. Measure local forces, electronic density of states and vibrations simultaneously

Pd

P

Pd Nanocontacts on n+ Si(100):H

Macroscopic Pd:Si(100) Contacts

Measurements on Carbon Nanotubes

Voltage (V)

Well defined van Hove singularities RT study – peak broadening No contact studies at 5 K yet

Address issue of Pd vs Pt contacts etc

CRANN Nanoscience Centre & Industry Partners

Acknowledgements

Science Foundation Ireland

Center for Research on Adaptive Nanostructures and Nanodevices (CRANN)

Intel Corporation

