

Localized light absorption by nanoscale semiconducting tips in laser-assisted Atom Probe Tomography

J. BOGDANOWICZ^{1,2}, M. GILBERT²,

S. KOELLING^{2,3}, AND W. VANDERVORST^{1,2}

'INSTITUUT VOOR KERN- EN STRALINGSFYSIKA, KU LEUVEN, CELESTIJNENLAAN 200D, B-3001 LEUVEN, BELGIUM

²IMEC, KAPELDREEF 75, B-3000 LEUVEN, BELGIUM

³FRAUNHOFER -CNT, KÖNIGSBRÜCKER STR. 180, 01099 DRESDEN, GERMANY

LASER-ASSISTED ATOM PROBETOMOGRAPHY

LASER-ASSISTED ATOM PROBETOMOGRAPHY

EXPERIMENTAL OBSERVATION OF SHARPLY LOCALIZED LASER IMPACT

Light absorption in conical silicon particles

J. Bogdanowicz, 1,2,7 M. Gilbert, 2 N. Innocenti, 2,3 S. Koelling, 2,5 B. Vanderheyden, 4 and W. Vandervorst 1,2 February 2013 / Vol. 21, No. 3 / OPTICS EXPRESS 3891

EXPERIMENTAL OBSERVATION OF SHARPLY LOCALIZED LASER IMPACT

Light absorption in conical silicon particles

J. Bogdanowicz, 1,2,* M. Gilbert, N. Innocenti, 2,3 S. Koelling, 2,5 B. Vanderheyden, 4 and W. Vandervorst^{1,2} 11 February 2013 / Vol. 21, No. 3 / OPTICS EXPRESS 3891

In-situ observation of non-hemispherical tip shape formation during laserassisted atom probe tomography

S. Koelling, N. Innocenti, A. Schulze, M. Gilbert, A. K. Kambham et al.

Citation: J. Appl. Phys. 109, 104909 (2011); doi: 10.1063/1.3592339

Si²⁺,TiN⁺ Ti+ HfO₂+

Infrared: LOCALIZED holes

Ultraviolet: LOCALLY flattened tip

Ultraviolet: LOCAL Variation in fin width

OUTLINE

Localized absorption along the tip axis

Localized absorption
 in cross-sections

Localized heating

Electric field (rectification)

Free carriers

HEATING

Free carriers

HEATING

Free carriers

10

Field inside an infinite cylinder:

$$E_{z,\text{int}}(r, \theta) = E_{\text{incident}} \left[d_{0}(\frac{R}{\lambda_{0}}) J_{0}(\frac{2^{\pi} \tilde{n}}{\lambda_{0}} r) + \sum_{k=1}^{\infty} 2i^{k} d_{k}(\frac{R}{\lambda_{0}}) J_{k}(\frac{2^{\pi} \tilde{n}}{\lambda_{0}} r) \cos(k^{\theta}) \right] 4^{\frac{1}{2}}$$

Localized absorption along the axis

constructive interference between transmitted light and internal reflections at resonant radii

Light absorption in conical silicon particles

J. Bogdanowicz, ^{1,2,*} M. Gilbert, ² N. Innocenti, ^{2,3} S. Koelling, ^{2,5} B. Vanderheyden, ⁴ and W. Vandervorst ^{1,2}

11 February 2013 / Vol. 21, No. 3 / OPTICS EXPRESS 3891

OUTLINE

Localized absorption along the tip axis

Localized absorption in cross-sections

Localized heating

|E_{internal}/E_{incident}| distributions in resonant cross-sections:

- •Maximum electric field is always on the shadow side
- •Other maxima are observed along the perimeter (whispering gallery modes)

- Non uniform (localized) absorption in resonant cross sections
- Mie-based theory cannot account for one-sided holes

Free carriers

HEATING

NONLINEAR 2D MULTIPHYSICS SIMULATIONS

HIGH-FLUENCE INFRARED IRRADIATION WITH NONLINEAR ABSORPTION

HIGH-FLUENCE INFRARED IRRADIATION WITH NONLINEAR ABSORPTION

HIGH-FLUENCE INFRARED IRRADIATION WITH NONLINEAR ABSORPTION

one-sided holes due to nonlinear absorption

SIMULATION OF A GREEN PULSE (515 nm, 2 mW, 500 fs)

SIMULATION OF A GREEN PULSE (515 nm, 2 mW, 500 fs)

SIMULATION OF A GREEN PULSE (515 nm, 2 mW, 500 fs)

More uniform absorption in all directions

SIMULATION OF AN ULTRAVIOLET PULSE (343 nm, 0.5 mW, 500 fs)

SIMULATION OF AN ULTRAVIOLET PULSE (343 nm, 0.5 mW, 500 fs)

- Excellent uniformity along the axis
- Strong localization in the cross section

OUTLINE

Localized absorption along the tip axis

Localized absorption
 in cross-sections

Localized heating

DEGRADED HEAT DIFFUSIVITY IN SI NANOWIRES

DEGRADED HEAT DIFFUSIVITY IN SI NANOWIRES

CONCLUSION

Nanoscale dimensions of AP tip induce:

•Localized light absorption:

- o in resonant cross sections along the tip axis
- o along the perimeter inside each resonant cross section
- Contrast between absorbing and non-absorbing regions is enhanced by **nonlinear** free-carrier and two-photon absorption phenomena

•Localized heating due to:

- localized absorption
- o heat diffusivity degraded by nanoscale dimension

