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This talk will cover our PSIAP project work in year 1

• Review of Year 1 Work and Key Challenges 
Identified.

• Features and Saliency for Body-Worn Camera 
Analytics

• Training Data Generation for BOCA.
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First-person vs Third-person

Activity Recognition

Third Person View First Person View

Both third and first person views are critical for fully understanding
activities; often only one is available.
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First-person vs Third-person

Activity Recognition

Third Person View First Person View

There is no existing activity recognition dataset in the literature that
supports body-worn activity recognition benchmarking, nor with synchronized
third-person view data. Therefore, a new body-worn camera activity dataset needs will be curated.

Both third and first person views are critical for fully understanding
activities; often only one is available.
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BOCA Dataset

first-person third-person

Surfing

Ping-pong

Volleyball

BOCA Dataset Statistics
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Execution 
Block

Input
Data
Block

Model 
Definition 

Block

M-PACT: Michigan Platform for Activity Classification 
in Tensorflow

https://github.com/MichiganCOG/M-PACT
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Model Definition Block

https://github.com/MichiganCOG/M-PACT
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Implemented Model: I3D

Model
HMDB51 Accuracy (%) UCF101 Accuracy (%)

Orig. Authors M-PACT Orig. Authors M-PACT

I3D 74.80 68.10 95.60 92.55

Carreira J. et al. CVPR 2017https://github.com/MichiganCOG/M-PACT
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Where?
• https://github.com/MichiganCOG/M-PACT



BOCA - Body-Worn Camera Analytics

SOTA Video Classification Pipeline
ConvNet + LSTM and two-stream network are usually used for video classification.

We use I3D model [1] trained from third-person and evaluated on our collected BOCA dataset. 
We observe that there is actually distribution gap between first-person and third-person activities. 
(74.2% vs 60.9%, 54.4% vs 50.4%)

[1] "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset" by Joao Carreira and Andrew Zisserman, CVPR 2017
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BOCA Dataset (cont.)

What makes FPV activity understanding so hard?

H
orseback-riding

Volleyball
H

am
m

er-throw

Original video Dense Optical Flow Field Point tracking using OF

Camera motion
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Summary of Findings from Year 1

• Third-Person v First-Person Activities
– First-Person activity recognition is more difficult because 

the range of motion of higher.
• Third-Person v First-Person Data

– The available data resources are limited for first-person-
based learning models, unlike third-person.

• Suggests
– Transfer learning approaches are important.
– Different handling of features and content in first-person 

video is necessary.
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Domain-adversarial Transfer Learning

Third-person
(source)

First-person
(Target)

Domain-adversarial 
Transfer Learning 
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Challenge: Conventional feature descriptors and models do not perform well on first-
person videos from a body-worn camera largely due to a high range of motion.

To overcome this problem, we propose a saliency-based approach as a 
different, effective way of analyzing first-person videos.

Year 2 Emphasis 1: 
Feature-Saliency for Body-Worn Cameras



BOCA - Body-Worn Camera Analytics

• It prioritize the information across space and time
• There no longer is a need for an explicit detection or tracking of objects.
• In this sense, we study video saliency detection models to develop an implicit approach which can 

boost the performance of the activity recognition model for first-person videos.

Video Saliency
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We found that all the previous approaches fail to jointly process the spatiotemporal 
information, which is expected to be important to video saliency detection; that is, The 
existing works are unable to leverage the collective spatiotemporal variation.

Video Saliency

To this end, we propose TASED-Net, which is a novel 3D ConvNet 
architecture for video saliency detection.

Time
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In TASED-Net (Temporally-Aggregating Spatial Encoder-Decoder Network), an input clip of multiple 
frames is spatiotemporally encoded. The encoded features are then decoded spatially while all the 
temporal information of it is aggregated by the following decoder to produce a saliency map.

TASED-Net
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TASED-Net

Using 3D convolutional networks for the decoding purpose is non-trivial.

In order to resolve the tricky problem, we propose Auxiliary poolings.
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Auxiliary Poolings

In mathematical notation,

Normal pooling: 𝑝, 𝑠 = 𝑃 𝑧

1st Auxiliary pooling: 𝑝, − = 𝑃((𝑧*)

Normal pooling: −, 𝑠 = 𝑃,(𝑝)

Normal pooling: 𝑦 = 𝑈/(𝑧0)
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Auxiliary Poolings

TASED-Net-tri and TASED-Net-trp do not utilize Auxiliary pooling because they replace unpooling  
layers with trilinear upsampling and transposed convolution, respectively.

TASED-Net perform better, which demonstrates the effectiveness of Auxiliary pooling.
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How many frames should we use?

In order to decide how many frames we use to aggregate at one pass, we performed many experiments 
to optimize T.

We observe that a clip with a duration of about one second (32 frames) produces the best performance.
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Results
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Results

ACLNet
1.577, 0.267, 0.197, 0.875, 0.602

3.521, 0.576, 0.408, 0.934, 0.832GT
TASED-Net
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Results

ACLNet

GT

2.369, 0.445, 0.343, 0.915, 0.636

TASED-Net
3.282, 0.598, 0.470, 0.909, 0.776
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Results

ACLNet
2.369, 0.450, 0.358, 0.910, 0.674

TASED-Net
3.101, 0.574, 0.438, 0.901, 0.742GT
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Challenge: Body-worn cameras produce a huge amount of data—unannotated data the annotation of 
which would require a massive human effort.

We target to generate first-person videos from third-person videos via Segmentation Map Guided 
Cycle-Consistent Generative Adversarial Network.

Year 2 Emphasis 2: 
Training Data Generation for Body-Worn Cameras
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We target to generate first-person videos from third-person videos via Segmentation Map Guided 
Cycle-Consistent Generative Adversarial Network.
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• Goal: generate new images from one viewpoint to another.  

• Problem:
1. Pretrained semantic models 
2. Single phase generation
3. Three-channel generation space

• Key idea: generate scene images based on an image of the scene and a novel semantic map.

Input Image Semantic Map Generated Image
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SelectionGAN Framework

Our Proposed Multi-Channel Attention Selection GAN (SelectionGAN) consisting of
two stages
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Multi-Channel Attention Selection Module

Our Proposed Multi-Channel Attention Selection Module consists of a multi-scale 
spatial pooling and a multi-channel attention selection component
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Ablation Analysis

SelectionGAN has 8 baselines
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Results – Aerial2Ground

Iuput Ground TruthPix2pix [2] X-Fork [3] X-Seq [3] SelectionGANInput Pix2pix X-Fork X-Seq Ours GT
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Results – Ground2Aerial

Input Ground TruthPix2pix [2] X-Fork [3] X-Seq [3] SelectionGAN
Input Pix2pix X-Fork X-Seq Ours GT
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Arbitrary Cross-View Image Translation

Input
Semantic Map SelectionGAN Input Semantic Map SelectionGAN

Input Semantic Map SelectionGAN Input Semantic Map SelectionGAN
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• Publications:

[1] H. Tang, W. Wang, D. Xu, Y. Yan, J. J. Corso, and N. Sebe. "Attribute-guided Sketch Generation”. In Proceedings of IEEE International 
Conference on Automatic Face and Gesture Recognition. 2019. https://arxiv.org/abs/1901.0974

[2] H. Tang, D. Xu, N. Sebe, Y. Wang, J. J. Corso, and Y. Yan. “Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance 
for Cross-View Image Translation”. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2019.
https://arxiv.org/abs/1904.06807

• Publications (in submission):

[3] H. Tang, D. Xu, N. Sebe, J. J. Corso, and Y. Yan. “Joint Adversarial Learning Local Class-Specific and Global Image-Level Generation 
for Cross-View Image Translation”. In Proceedings of IEEE International Conference on Computer Vision. 2019.

[4] Y. Yan, C. Xu, D. Cai, J. J. Corso. “A Weakly Supervised Multi-task Ranking Framework for Actor-Action Semantic Segmentation”, In 
International Journal of Computer Vision, 2019

[5] K. B. Min and J. J. Corso. “TASED-Net: Temporally-Aggregating Spatial Encoder-Decoder Network for Video Saliency Detection”, In 
Proceedings of IEEE International Conference on Computer Vision. 2019.

• Software:

[1] E. Hofesman, M. R. Ganesh and J. J. Corso.  M-PACT.  https://github.com/MichiganCOG/M-Pact.  2019.

https://arxiv.org/abs/1901.0974
https://arxiv.org/abs/1904.06807
https://github.com/MichiganCOG/M-Pact
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Conclusions and Summary

• BOCA focuses on two core goals
1. Catalyzing a broader research effort in the challenging problem of 

video analytics in BWC.
2. Developing advances in understanding activity in BWC.  

• Acknowledging NIST PSIAP 60NANB17D191.
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Examples of Third-person Activity

Playing-badminton

Playing-squash

Playing-water-polo
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Examples of First-person Activity

Windsurfing

Playing-squash

Running-a-marathon
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SOTA Video Classification Pipeline
ConvNet + LSTM and two-stream network are usually used for video classification.

We use I3D model [1] trained from third-person and evaluated on our collected BOCA dataset. 
We observe that there is actually distribution gap between first-person and third-person activities. 
(74.2% vs 60.9%, 54.4% vs 50.4%)

[1] "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset" by Joao Carreira and Andrew Zisserman, CVPR 2017
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We have BOCA Dataset + TPV algorithm.
What is Next?

How do we leverage existing knowledge and well-developed models of third-
person to assist immature technique first-person activity recognition?
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Input Data Block

https://github.com/MichiganCOG/M-PACT
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Input Data Block

https://github.com/MichiganCOG/M-PACT
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Model Definition Block

https://github.com/MichiganCOG/M-PACT
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Implemented Model: ResNet50 + LSTM

Model
HMDB51 Accuracy (%) UCF101 Accuracy (%)

Orig. Authors M-PACT Orig. Authors M-PACT

ResNet50 + LSTM 43.90 43.86 84.30 80.20

Donahue J. et al. CVPR 2015https://github.com/MichiganCOG/M-PACT
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Implemented Model: C3D

Model
HMDB51 Accuracy (%) UCF101 Accuracy (%)

Orig. Authors M-PACT Orig. Authors M-PACT

C3D 50.30 51.90 82.30 93.66

Tran D. et al. ICCV 2015https://github.com/MichiganCOG/M-PACT
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Implemented Model: TSN

Model
HMDB51 Accuracy (%) UCF101 Accuracy (%)

Orig. Authors M-PACT Orig. Authors M-PACT

TSN 54.40 51.70 85.50 85.25

Wang L. et al. ECCV 2016https://github.com/MichiganCOG/M-PACT
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Implemented Model: I3D

Model
HMDB51 Accuracy (%) UCF101 Accuracy (%)

Orig. Authors M-PACT Orig. Authors M-PACT

I3D 74.80 68.10 95.60 92.55

Carreira J. et al. CVPR 2017https://github.com/MichiganCOG/M-PACT
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Execution Block

https://github.com/MichiganCOG/M-PACT
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Execution Block - Metrics
• Classification metrics include:

• Average pooling
• Classification using the last frame of the input
• Linear SVM

• Internal scalar tensorboard logging
• Feature extraction and storage

https://github.com/MichiganCOG/M-PACT
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Results

https://github.com/MichiganCOG/M-PACT
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Easy to use
• Download Dataset
• Format Dataset using tfrecords

• python utils/generate_tfrecords_dataset.py
• --videos_dir /dir/to/dataset/vids

• --save_dir /dir/to/save/tfrecords_dataset

• Download trained model weights
• sh scripts/shell/download_weights.sh

• Train models
• python train.py --model I3D --dataset UCF101 --inputDims 64 --outputDims 101 --seqLength 1 --size 

224 --expName i3d_train --numVids 9537 --baseDataPath /tfrecords_dataset --fName trainlist

• Test models
• python test.py --model resnet --dataset HMDB51 --loadedDataset HMDB51 --inputDims 50 --

outputDims 51 --seqLength 50 --size 224 --expName resnet_test --numVids 1530 --baseDataPath
/tfrecords_dataset --fName testlist

https://github.com/MichiganCOG/M-PACT



BOCA - Body-Worn Camera Analytics

Easy to use - Add model using template

https://github.com/MichiganCOG/M-PACT
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Easy to use - Add preprocessing and loss

https://github.com/MichiganCOG/M-PACT
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Where?
• https://github.com/MichiganCOG/M-PACT
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M-PACT Additions: T-RECS

Ravi Ganesh M., Hofesmann E., Min K., Gafoor N., Corso J., ArXiv 2018

I3D Prediction:

α = 0.6 α = 0.8 α = 1.0 α = 1.2

Shoot Bow Shoot Bow Hug Shoot Ball

Original Video Speed

Training for Rate-Invariant Embeddings by Controlling Speed
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M-PACT Additions: T-RECS
Training for Rate-Invariant Embeddings by Controlling Speed

Ravi Ganesh M., Hofesmann E., Min K., Gafoor N., Corso J., ArXiv 2018
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M-PACT Additions: T-RECS

Ravi Ganesh M., Hofesmann E., Min K., Gafoor N., Corso J., ArXiv 2018

Training for Rate-Invariant Embeddings by Controlling Speed
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M-PACT as a platform for BOCA 

Execution 
Block

Input
Data
Block

Model 
Definition 

Block

M-PACT

BOCA Transfer Learning Method

Execution 
Block

Input
Data
Block

Model 
Definition 

Block
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Transfer Learning

Dog/Cat
Classifier

cat dog

Data not directly related to the task considered

elephant tiger

Similar domain, different tasks Different domains, same task

dog cat
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Domain-adversarial Transfer Learning
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Domain-adversarial Transfer Learning

Not only cheat the domain classifier, 
but satisfying label classifier at the 
same time

This is a big network, but different parts have different goals.

Maximize label 
classification accuracy

Maximize
domain classification accuracy

Maximize label classification accuracy + minimize 
domain classification accuracy

Feature extractor

Domain classifier

Label predictor
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Domain-adversarial Transfer Learning

Third-person
(source)

First-person
(Target)

Domain-adversarial 
Transfer Learning 
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Transfer Learning Difficulty

Surfing

Ping-pong Source 
Domain

Target 
Domain

Volleyball

Volleyball

The discriminative structures may be 
mixed or false aligned across domains
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Multi-adversarial Unsupervised Domain Adaptation

We propose a multi-adversarial domain adaptation networks approach for unsupervised transfer learning by 
extracting transferable features that can reduce the distribution shift between the source third-person domain 
and the target first-person domain.
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Results

Some preliminary results of top-1 and top-5 accuracy are shown in the Table.

• We observe that the performance increases if we transfer knowledge from third-
person to first-person.

• However, the performance drops if we adapt first-person to third-person which is
a bit strange. We will investigate if there are some bugs or analyze the reason of
this happening in the next step.
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Successful Transfer case

Scene
Person Movement Patterns

Number of players in the activity

Third-person First-person 
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Successful cases
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Failure cases

Involved in less important parts for activity

Less information for the scene of marathon Not engaged in the activity frequently

Too much foreground occupied by human


