

NIST PSIAP Stakeholders / PI Meeting July 2019

PI: Jason Corso

http://web.eecs.umich.edu/~jjcorso jjcorso@umich.edu

DISCLAIMER

This presentation was produced by guest speaker(s) and presented at the National Institute of Standards and Technology's 2019 Public Safety Broadband Stakeholder Meeting. The contents of this presentation do not necessarily reflect the views or policies of the National Institute of Standards and Technology or the U.S. Government.

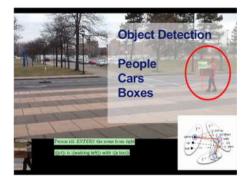
Posted with permission

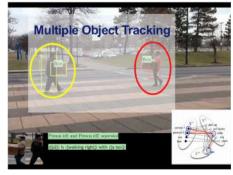
Team

- University of Michigan
 - PI: Jason Corso (EECS)
 - Graduate Student: Kyle Byungsu Min
- Texas State University (Sub-Contract)
 - Faculty: Tom Yan (Computer Science)
 - Undergraduate students: Mario Delagarza, William Hunt and Kevin McNeff

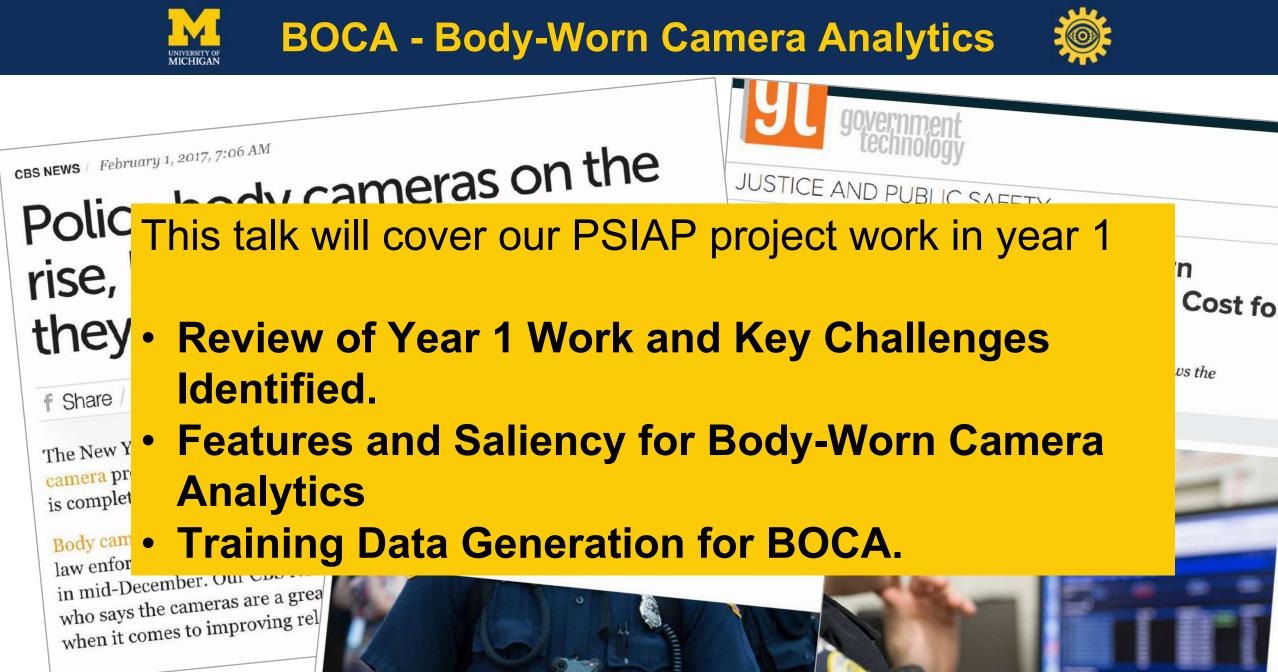
What can we do now?

Video On an Index Card Engine





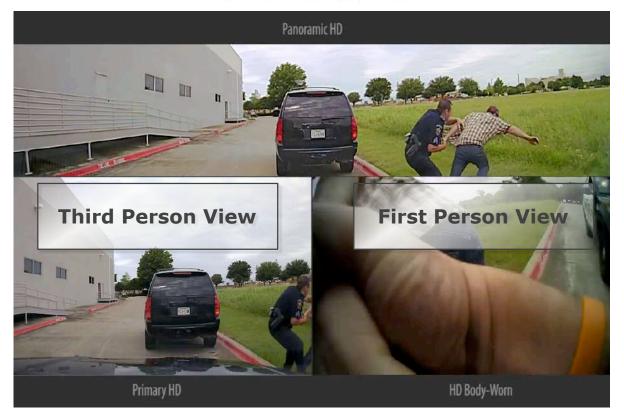
Demo Video Download https://youtu.be/DOmyl-UOkmc



First-person vs Third-person

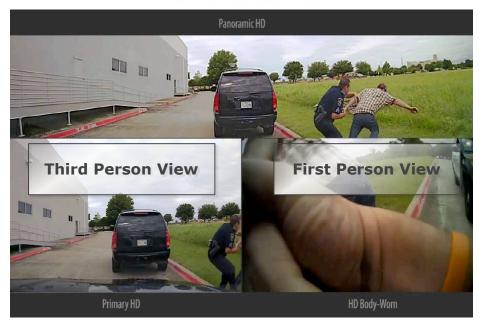
Both third and first person views are critical for fully understanding activities; often only one is available.

Activity Recognition



First-person vs Third-person

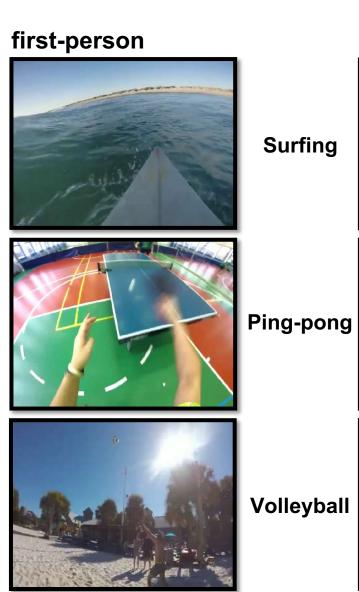
Both third and first person views are critical for fully understanding activities; often only one is available.



Activity Recognition

There is **no existing activity recognition dataset in the literature that supports body-worn activity recognition benchmarking**, nor with synchronized third-person view data. Therefore, a new body-worn camera activity dataset needs will be curated.

BOCA Dataset



UNIVERSITY O MICHIGAN

third-person

FPV dataset						
Name	Year	Video	Activity			
VINST	2011	31	9			
ADL	2012	20	18			
GTEA+	2012	30	100			
Disney Social	2012	8	12			
JPL Interaction	2013	57	7			
Huji EgoSeg	2014	122	7			

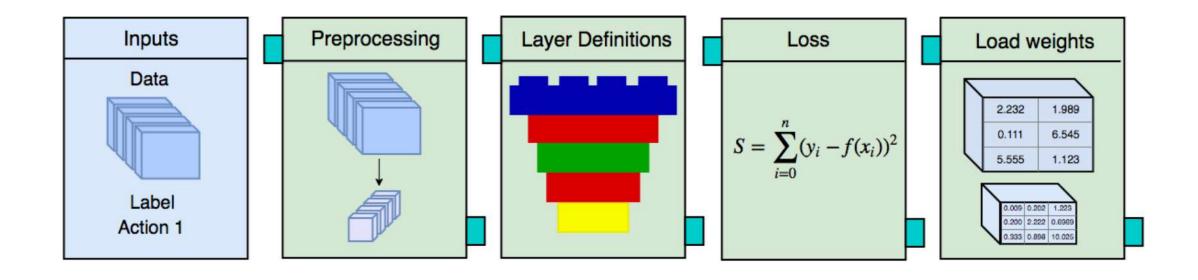
BOCA Dataset Statistics

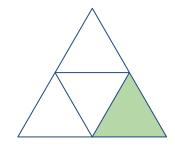
Activity	First-person	Third-person	Total
Horseback-riding	139	144	283
Surfing	146	124	270
Ping-pong	134	155	289
Running-a-marathon	148	143	291
Playing-racquetball	146	142	288
Playing-lacrosse	144	141	285
Volleyball	141	153	294
Playing-squash	144	156	300
Playing-badminton	144	115	259
Windsurfing	142	158	300
Snowboarding	140	158	298
Playing-water-polo	138	186	324
Playing-ice-hockey	148	148	306
Hammer-throw	23	155	178
Dodgeball	130	144	274
ALL	2007	2222	4229

Table 2: Statistics for the collected sport activity dataset.

BOCA - Body-Worn Camera Analytics MICHIGA **M-PACT: Michigan Platform for Activity Classification** in Tensorflow Execution Block Model Input Definition Data Block Block

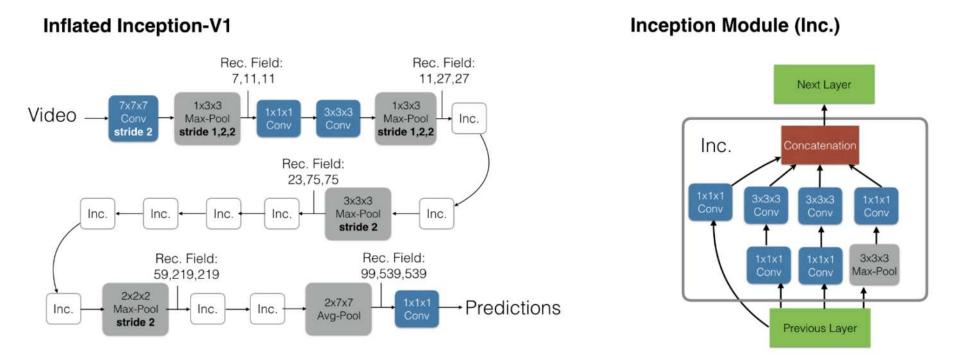
Model Definition Block





https://github.com/MichiganCOG/M-PACT

Implemented Model: I3D



Medal	HMDB51 Ad	ccuracy (%)	UCF101 Accuracy (%)		
Model	Orig. Authors	M-PACT	Orig. Authors	M-PACT	
I3D	74.80	68.10	95.60	92.55	



https://github.com/MichiganCOG/M-PACT

Carreira J. et al. CVPR 2017

Where?

• https://github.com/MichiganCOG/M-PACT

M-PACT: Michigan Platform for Activity Classification in Tensorflow

This python framework provides modular access to common activity recognition models for the use of baseline comparisons between the current state of the art and custom models.

This README will walk you through the process of installing dependencies, downloading and formatting datasets, testing the framework, and expanding the framework to train your own models.

This repository holds the code and models for the paper M-PACT: Michigan Platform for Activity Classification in Tensorflow, Eric Hofesmann, Madan Ravi Ganesh, and Jason J. Corso, arXiv, April 2018.

ATTENTION: Please cite the arXiv paper introducing this platform when releasing any work that used this code. Link: https://arxiv.org/abs/1804.05879

Implemented Model's Classification Accuracy:

Model Architecture	Dataset (Split 1)	M-PACT Accuracy (%)	Original Authors Accuracy (%)
I3D	HMDB51	68.10	74.80*
C3D	HMDB51	51.90	50.30*
TSN	HMDB51	51.70	54.40
ResNet50 + LSTM	HMDB51	43.86	43.90
I3D	UCF101	92.55	95.60*
C3D	UCF101	93,66	82.30*
TSN	UCF101	85.25	85.50
ResNet50 + LSTM	UCF101	80.20	84.30

(*) Indicates that results are shown across all three splits

Table of Contents

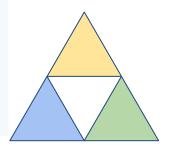
MICHIGAN

Introduction and Setup
Requirements
 Configuring Datasets
 Using the Framework
 Framework File Structure
 Examples of Common Uses
Add Custom Components
 Adding a Model
 Adding a Dataset
Results
Version History
Acknowledgements
Code Acknowledgements
References

Framework File Structure

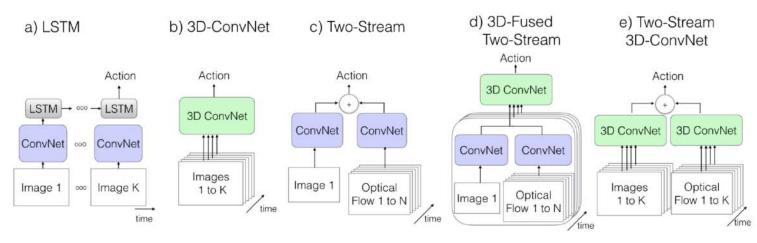
logger.py

/1	f-activity-recognition-framework
	train.py
	test.py
	create_model.py
	load a video.py
	/models
	/model_name
	modelname_model.py
	default_preprocessing.py
	model_weights.npy shortcut to/weights/model_weights.npy (Optional)
	/weights
	model weights.npy
	/results
	/model_name
	/dataset_name
	/preprocessing_method
	/experiment_name
	/checkpoints
	checkpoint
	checkpoint-100.npy
	checkpoint-100.dat
	/metrics_method
	testing_results.npy
	/logs
	/model_name
	/dataset_name
	/preprocessing_method
	/metrics_method
	/experiment_name
	tensorboard_log
	/scripts
	/shell
	download_weights.sh
	/utils
	generate_tfrecords_dataset.py
	convert_checkpoint.py
	checkpoint_utils.py
	layers_utils.py
	metrics_utils.py
	preprocessing_utils.py
	sys_utils.py



SOTA Video Classification Pipeline

ConvNet + LSTM and two-stream network are usually used for video classification.



We use I3D model [1] trained from third-person and evaluated on our collected BOCA dataset. We observe that there is actually distribution gap between first-person and third-person activities. (74.2% vs 60.9%, 54.4% vs 50.4%)

	top1_acc	$top5_acc$
First-person	50.4 %	69.4 %
First-person (removing classes doesn't overlap with third-person)	60.9 %	85.1 %
Third-person	54.4 %	66.8 %
Third-person (removing classes doesn't overlap with first-person)	74.2 %	91.3 %

Table 1: I3D model baselines on our collected dataset.

[1] "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset" by Joao Carreira and Andrew Zisserman, CVPR 2017

BOCA Dataset (cont.)

What makes FPV activity understanding so hard?

Original video

Dense Optical Flow Field

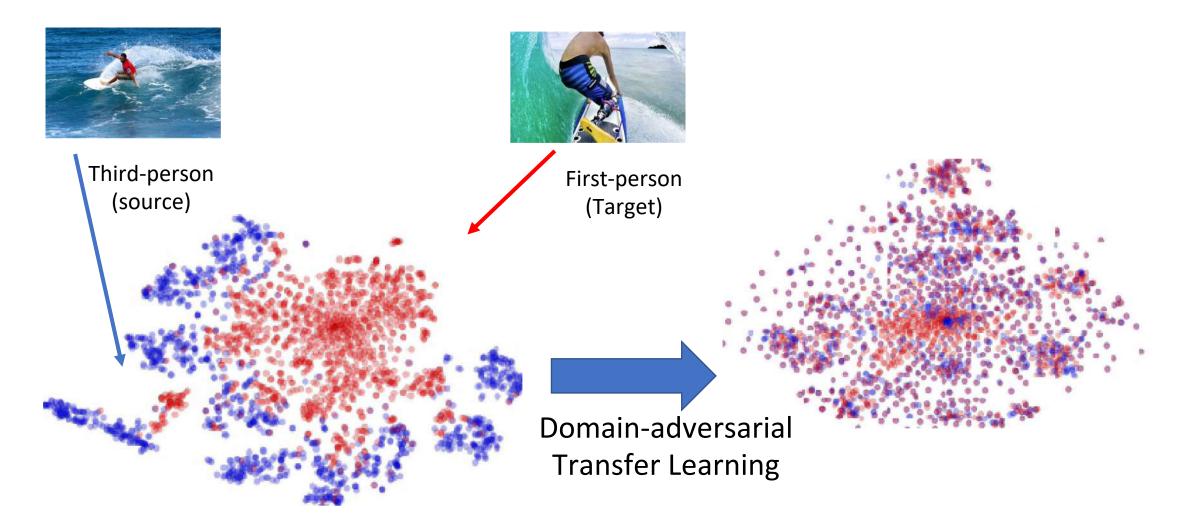
Point tracking using OF

Summary of Findings from Year 1

- Third-Person v First-Person Activities
 - First-Person activity recognition is more difficult because the range of motion of higher.
- Third-Person v First-Person Data
 - The available data resources are limited for first-personbased learning models, unlike third-person.
- Suggests
 - Transfer learning approaches are important.
 - Different handling of features and content in first-person video is necessary.

- Market Contraction of the second se

Domain-adversarial Transfer Learning

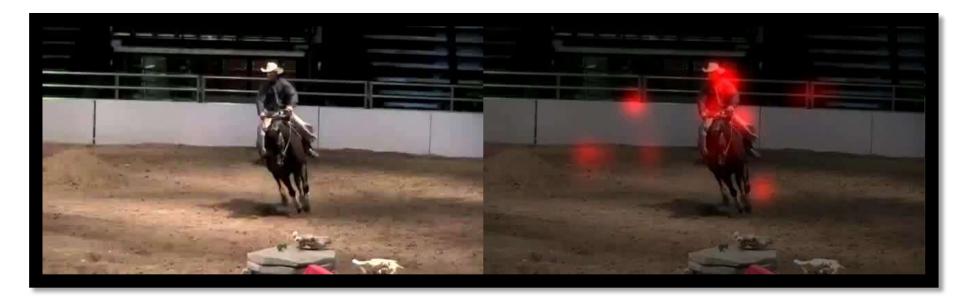


Year 2 Emphasis 1: Feature-Saliency for Body-Worn Cameras

Challenge: Conventional feature descriptors and models do not perform well on firstperson videos from a body-worn camera largely due to a high range of motion.

To overcome this problem, we propose a saliency-based approach as a different, effective way of analyzing first-person videos.

Video Saliency

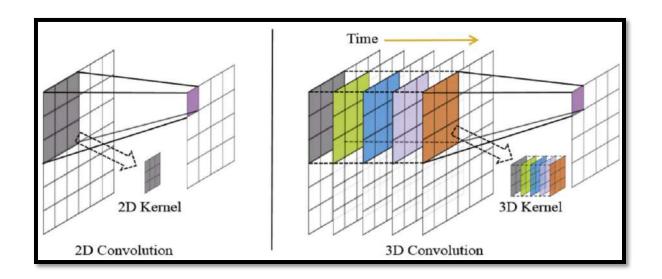


- It prioritize the information across space and time
- There no longer is a need for an explicit detection or tracking of objects.
- In this sense, we study video saliency detection models to develop an implicit approach which can boost the performance of the activity recognition model for first-person videos.

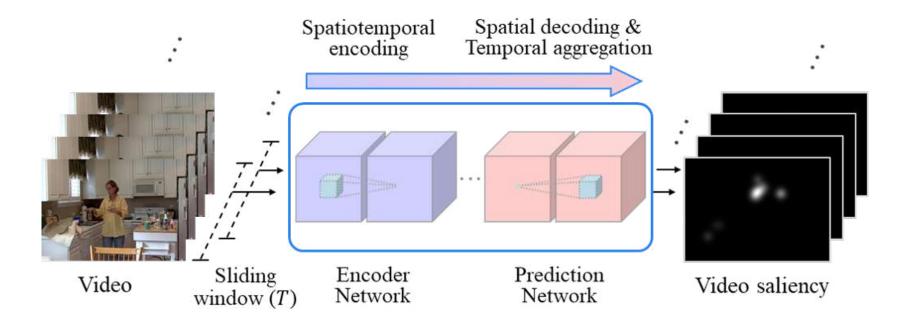
Video Saliency

We found that all the previous approaches fail to jointly process the spatiotemporal information, which is expected to be important to video saliency detection; that is, The existing works are unable to leverage the collective spatiotemporal variation.

To this end, we propose TASED-Net, which is a novel 3D ConvNet architecture for video saliency detection.

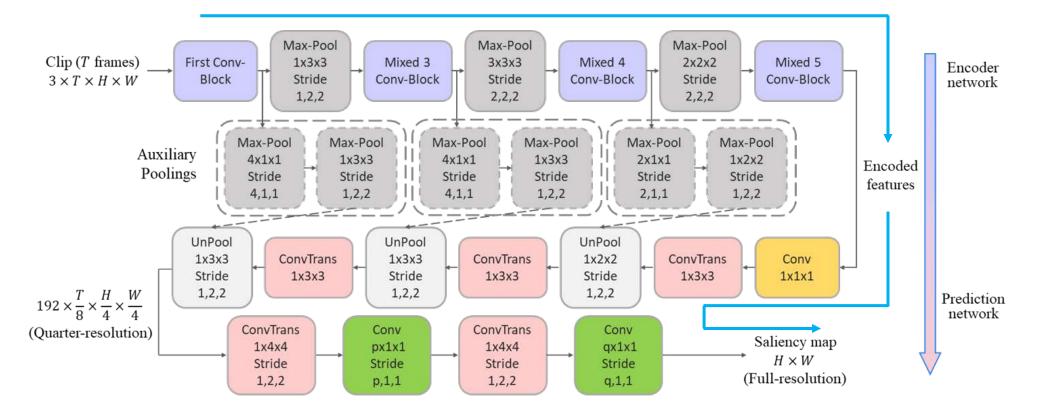


TASED-Net



In TASED-Net (Temporally-Aggregating Spatial Encoder-Decoder Network), an input clip of multiple frames is spatiotemporally encoded. The encoded features are then decoded spatially while all the temporal information of it is aggregated by the following decoder to produce a saliency map.

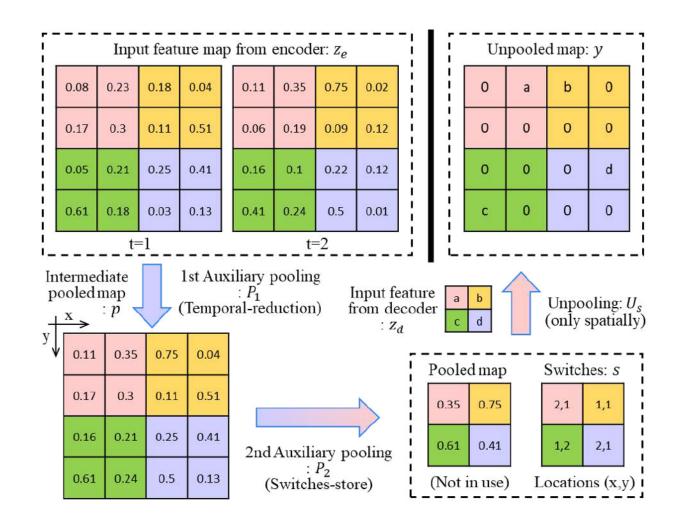
TASED-Net



Using 3D convolutional networks for the decoding purpose is non-trivial.

In order to resolve the tricky problem, we propose Auxiliary poolings.

Auxiliary Poolings



In mathematical notation,

Normal pooling: [p, s] = P(z)

1st Auxiliary pooling: $[p, -] = P_1(z_e)$ Normal pooling: $[-, s] = P_2(p)$ Normal pooling: $y = U_s(z_d)$

Auxiliary Poolings

Metric	NSS	CC	SIM	AUC-J	s-AUC
TASED-Net-tri	2.452	0.448	0.337	0.891	0.702
TASED-Net-trp	2.598	0.470	0.353	0.894	0.707
TASED-Net	2.706	0.481	0.362	0.894	0.718

TASED-Net-tri and TASED-Net-trp do not utilize Auxiliary pooling because they replace unpooling layers with trilinear upsampling and transposed convolution, respectively.

TASED-Net perform better, which demonstrates the effectiveness of Auxiliary pooling.

How many frames should we use?

Metric	NSS	CC	SIM	AUC-J	s-AUC
TASED-Net (4)	2.434	0.441	0.327	0.887	0.689
TASED-Net (8)	2.585	0.460	0.348	0.889	0.696
TASED-Net (16)	2.622	0.469	0.349	0.892	0.713
TASED-Net (32)	2.706	0.481	0.362	0.894	0.718
TASED-Net (48)	2.636	0.472	0.348	0.894	0.708
TASED-Net (64)	2.554	0.459	0.336	0.893	0.702

In order to decide how many frames we use to aggregate at one pass, we performed many experiments to optimize T.

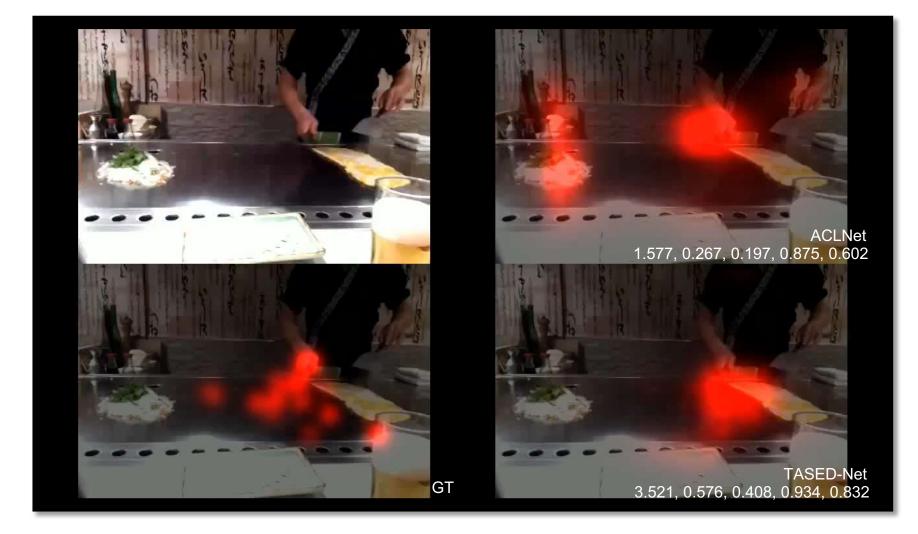
We observe that a clip with a duration of about one second (32 frames) produces the best performance.

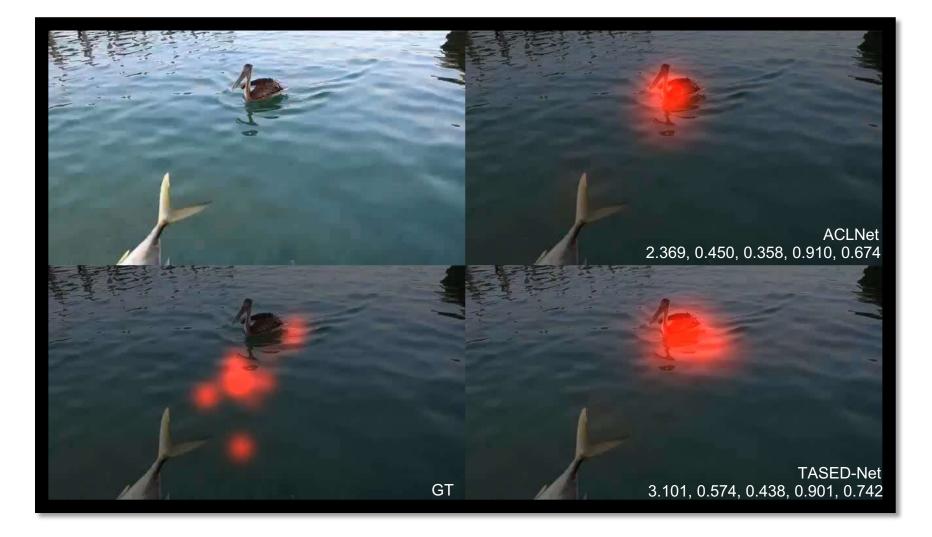
UNIVERSITY OF MICHIGAN

BOCA - Body-Worn Camera Analytics

Metric	NSS	CC	SIM	AUC-J	s-AUC
GBVS	1.474	0.283	0.186	0.828	0.554
STSConvNet	1.632	0.325	0.197	0.834	0.581
Deep Net	1.775	0.331	0.201	0.855	0.592
SALICON	1.901	0.327	0.232	0.857	0.590
OM-CNN	1.911	0.344	0.256	0.856	0.583
DVA	2.013	0.358	0.262	0.860	0.595
SalGAN	2.043	0.370	0.262	0.866	0.709
ACLNet	2.354	0.434	0.315	0.890	0.601
TASED-Net	2.667	0.470	0.361	0.895	0.712

	Metric Method	NSS	CC	SIM	AUC-J	s-AUC
	STSConvNet	1.748	0.382	0.276	0.863	0.710
2	SALICON	2.013	0.425	0.321	0.856	0.711
Hollywood2	Deep Net	2.066	0.451	0.300	0.884	0.736
/W(OM-CNN	2.313	0.446	0.356	0.887	0.693
llo	DVA	2.459	0.482	0.372	0.886	0.727
H	ACLNet	3.086	0.623	0.542	0.913	0.757
;	TASED-Net	3.302	0.646	0.507	0.918	0.768
	GBVS	1.818	0.396	0.274	0.859	0.697
rts	Deep Net	1.903	0.414	0.282	0.861	0.719
UCFSports	OM-CNN	2.089	0.405	0.321	0.870	0.691
FS	DVA	2.311	0.439	0.339	0.872	0.725
UC	ACLNet	2.567	0.510	0.406	0.897	0.744
-	- TASED-Net	2.920	0.582	0.469	0.899	0.752



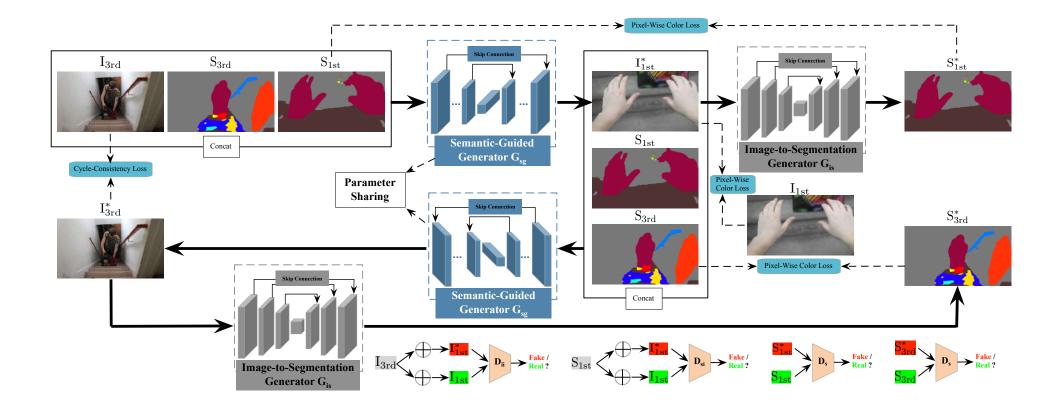


Year 2 Emphasis 2: Training Data Generation for Body-Worn Cameras

Challenge: Body-worn cameras produce a huge amount of data—unannotated data the annotation of which would require a massive human effort.

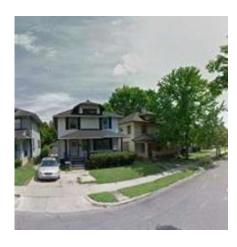
We target to generate first-person videos from third-person videos via Segmentation Map Guided Cycle-Consistent Generative Adversarial Network.

We target to generate first-person videos from third-person videos via Segmentation Map Guided Cycle-Consistent Generative Adversarial Network.



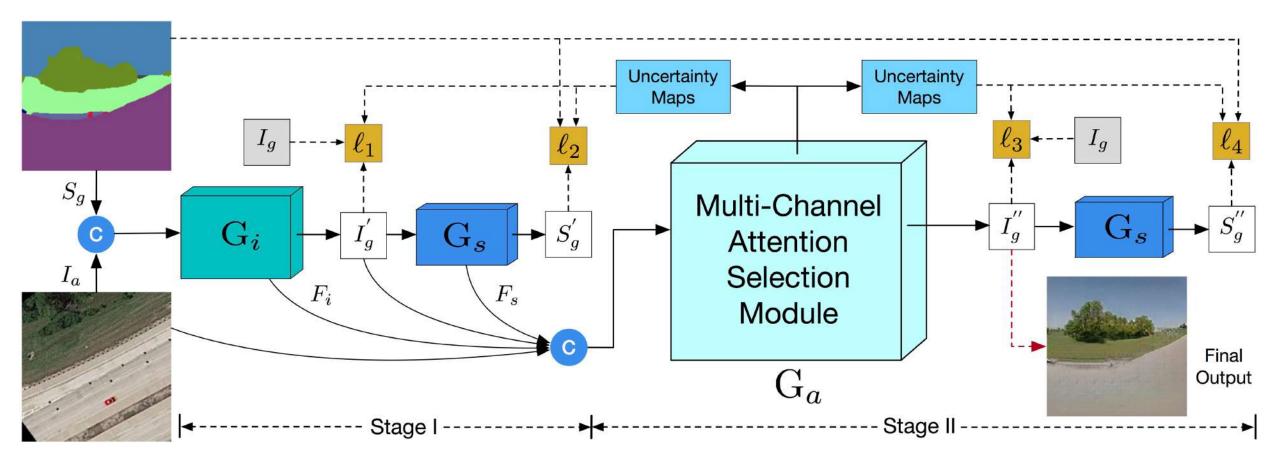
- **Goal:** generate new images from one viewpoint to another.
- Problem:
- 1. Pretrained semantic models
- 2. Single phase generation
- 3. Three-channel generation space
- Key idea: generate scene images based on an image of the scene and a novel semantic map.

Input Image



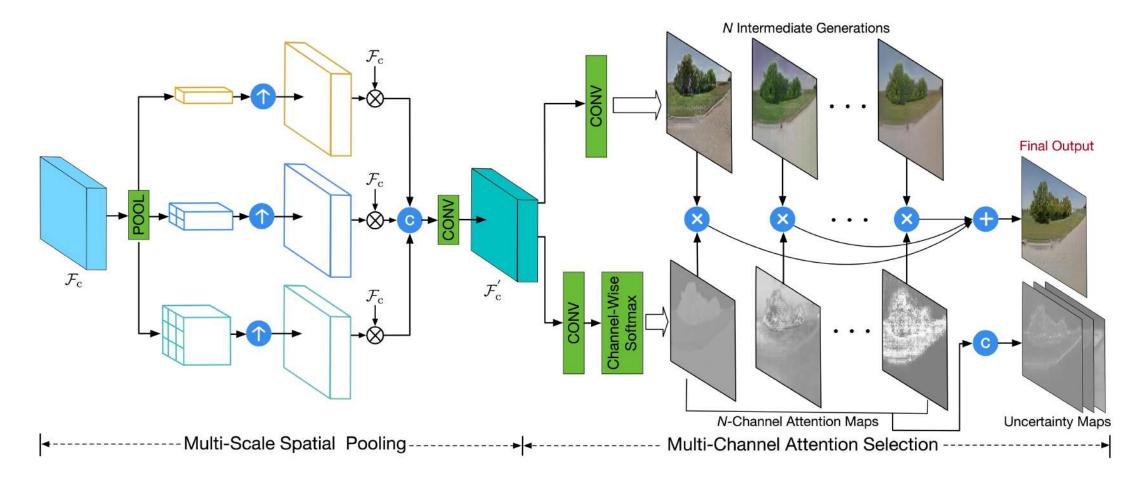


SelectionGAN Framework



Our Proposed Multi-Channel Attention Selection GAN (SelectionGAN) consisting of two stages

Multi-Channel Attention Selection Module



Our Proposed Multi-Channel Attention Selection Module consists of a multi-scale spatial pooling and a multi-channel attention selection component

MICHIGA

Ablation Analysis

Baseline	Setup	SSIM	PSNR	SD
Α	$I_a \stackrel{G_i}{ ightarrow} I_g'$	0.4555	19.6574	18.8870
В	$S_g \stackrel{G_i}{ ightarrow} I_g'$	0.5223	22.4961	19.2648
С	$[I_a,S_g] \stackrel{G_i}{ ightarrow} I_g'$	0.5374	22.8345	19.2075
D	$[I_a, S_g] \stackrel{G_i}{\rightarrow} I'_g \stackrel{G_s}{\rightarrow} S'_g$	0.5438	22.9773	19.4568
E	D + Uncertainty-Guided Pixel Loss	0.5522	23.0317	19.5127
F	E + Multi-Channel Attention Selection	0.5989	23.7562	20.0000
G	F + Total Variation Regularization	0.6047	23.7956	20.0830
Н	G + Multi-Scale Spatial Pooling	0.6167	23.9310	20.1214

SelectionGAN has 8 baselines

Results – Aerial2Ground

Input

Pix2pix

X-Fork

X-Seq

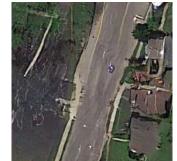
Ours

Results – Ground2Aerial

Input

Pix2pix

X-Fork



X-Seq



Ours

GT

Arbitrary Cross-View Image Translation

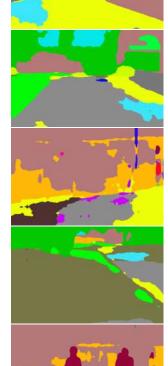
Input

MICHIGA

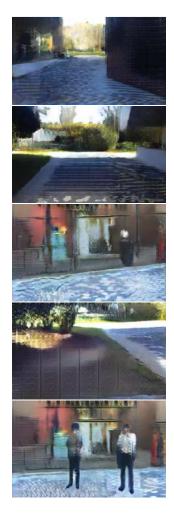
Semantic Map

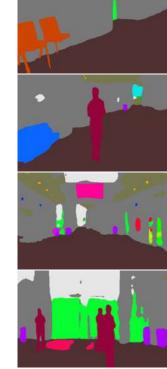
SelectionGAN

Input



Semantic Map





• Publications:

[1] H. Tang, W. Wang, D. Xu, Y. Yan, J. J. Corso, and N. Sebe. "Attribute-guided Sketch Generation". In Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition. 2019. <u>https://arxiv.org/abs/1901.0974</u>

[2] H. Tang, D. Xu, N. Sebe, Y. Wang, **J. J. Corso**, and Y. Yan. "Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation". In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. 2019. https://arxiv.org/abs/1904.06807

• Publications (in submission):

[3] H. Tang, D. Xu, N. Sebe, J. J. Corso, and Y. Yan. "Joint Adversarial Learning Local Class-Specific and Global Image-Level Generation for Cross-View Image Translation". In Proceedings of IEEE International Conference on Computer Vision. 2019.

[4] Y. Yan, C. Xu, D. Cai, J. J. Corso. "A Weakly Supervised Multi-task Ranking Framework for Actor-Action Semantic Segmentation", In International Journal of Computer Vision, 2019

[5] K. B. Min and **J. J. Corso**. "TASED-Net: Temporally-Aggregating Spatial Encoder-Decoder Network for Video Saliency Detection", In Proceedings of IEEE International Conference on Computer Vision. 2019.

• Software:

[1] E. Hofesman, M. R. Ganesh and J. J. Corso. M-PACT. <u>https://github.com/MichiganCOG/M-Pact</u>. 2019.

Conclusions and Summary

- BOCA focuses on two core goals
- 1. Catalyzing a broader research effort in the challenging problem of video analytics in BWC.
- 2. Developing advances in understanding activity in BWC.

• Acknowledging NIST PSIAP 60NANB17D191.

#PSCR2019

Break for Lunch BACK AT 1:00PM

Backup

Examples of Third-person Activity

Playing-badminton

MICHIGA

Playing-squash

Playing-water-polo

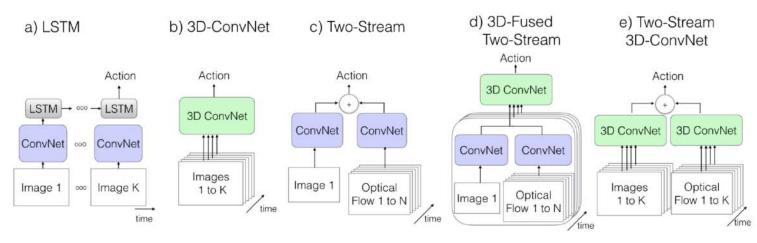
Examples of First-person Activity

Windsurfing

Running-a-marathon

SOTA Video Classification Pipeline

ConvNet + LSTM and two-stream network are usually used for video classification.



We use I3D model [1] trained from third-person and evaluated on our collected BOCA dataset. We observe that there is actually distribution gap between first-person and third-person activities. (74.2% vs 60.9%, 54.4% vs 50.4%)

	top1_acc	$top5_acc$
First-person	50.4 %	69.4 %
First-person (removing classes doesn't overlap with third-person)	60.9 %	85.1 %
Third-person	54.4 %	66.8 %
Third-person (removing classes doesn't overlap with first-person)	74.2 %	91.3 %

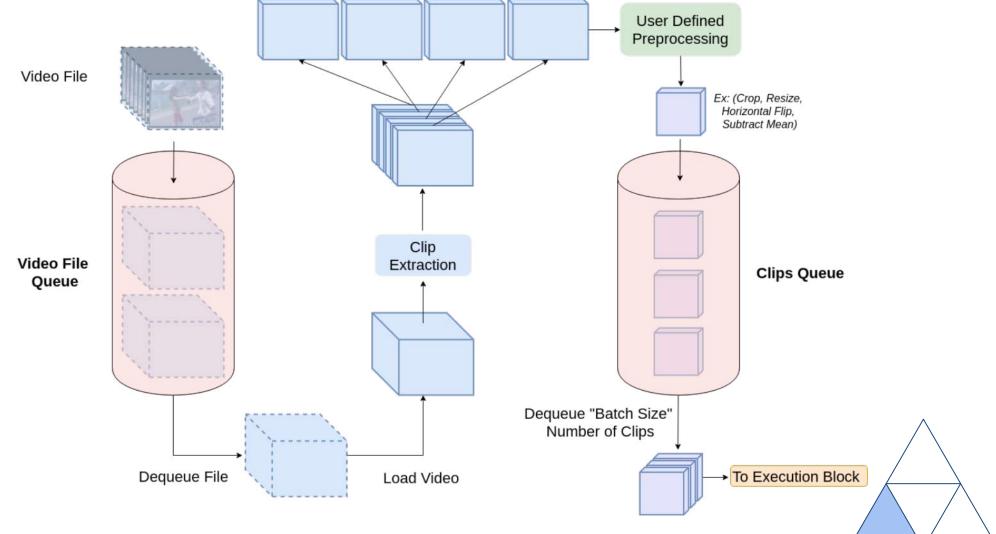
Table 1: I3D model baselines on our collected dataset.

[1] "Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset" by Joao Carreira and Andrew Zisserman, CVPR 2017

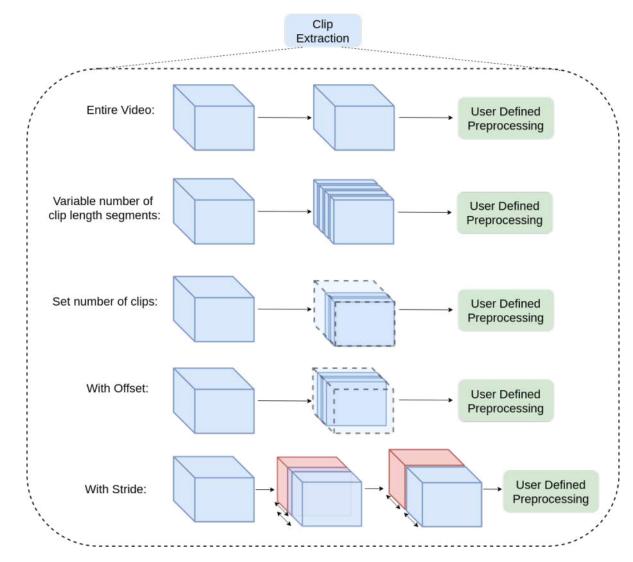
We have BOCA Dataset + TPV algorithm. What is Next?

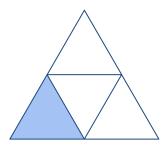
How do we leverage existing knowledge and well-developed models of thirdperson to assist immature technique first-person activity recognition?

Input Data Block

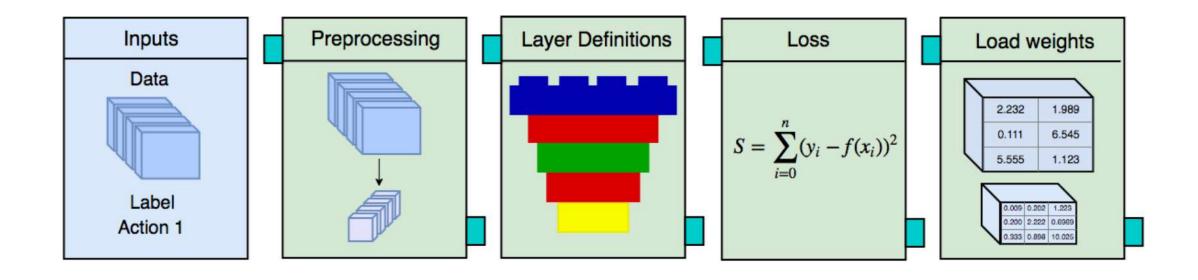


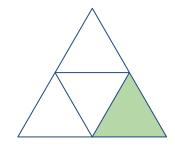
Input Data Block





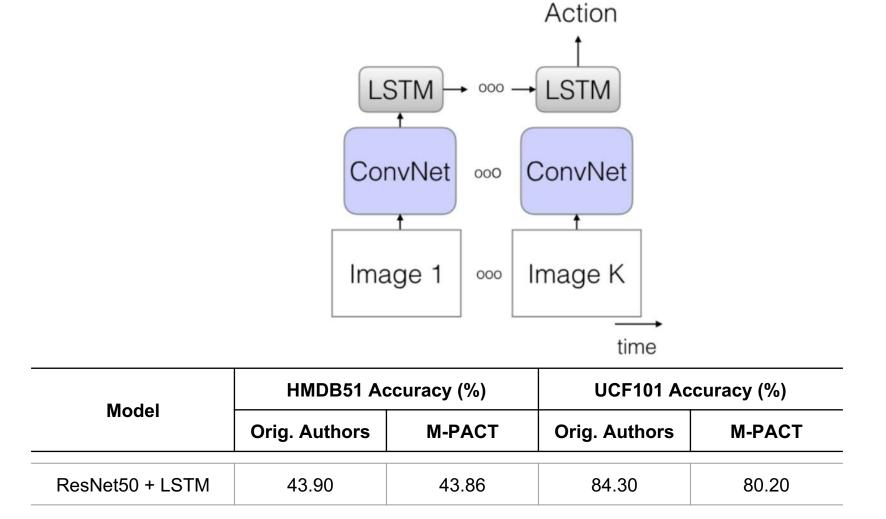
Model Definition Block

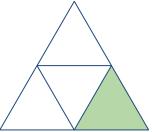




https://github.com/MichiganCOG/M-PACT

Implemented Model: ResNet50 + LSTM

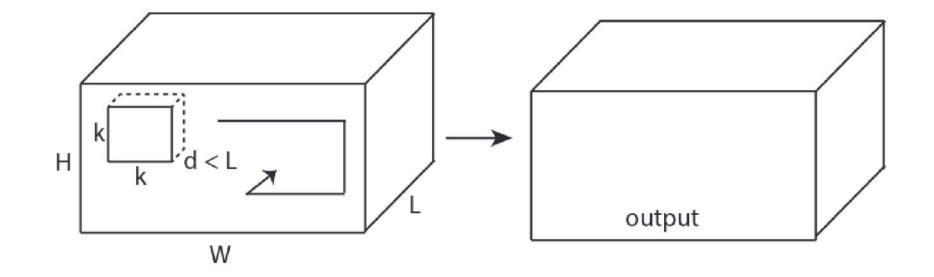




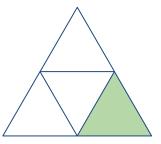
https://github.com/MichiganCOG/M-PACT

Donahue J. et al. CVPR 2015

Implemented Model: C3D



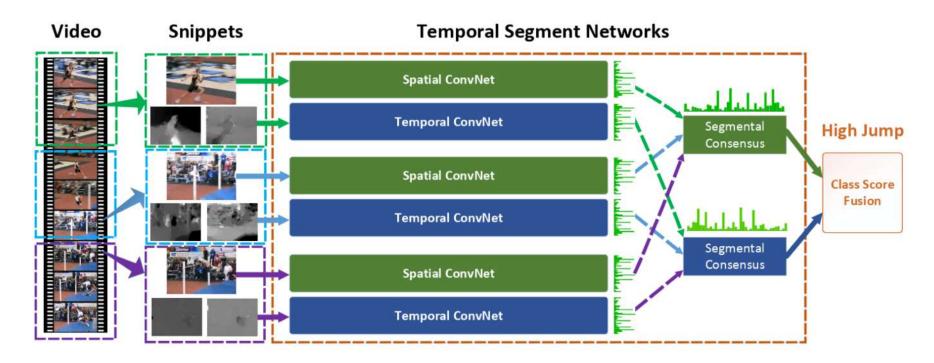
Model	HMDB51 Accuracy (%)		UCF101 Accuracy (%)	
	Orig. Authors	M-PACT	Orig. Authors	M-PACT
C3D	50.30	51.90	82.30	93.66



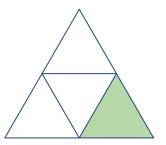
https://github.com/MichiganCOG/M-PACT

Tran D. et al. ICCV 2015

Implemented Model: TSN



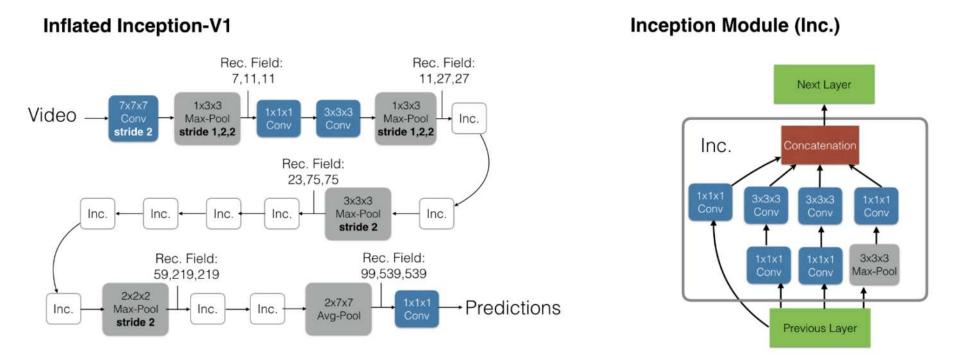
Madal	HMDB51 Accuracy (%)		UCF101 Accuracy (%)	
Model	Orig. Authors	M-PACT	Orig. Authors	M-PACT
TSN	54.40	51.70	85.50	85.25



https://github.com/MichiganCOG/M-PACT

Wang L. et al. ECCV 2016

Implemented Model: I3D



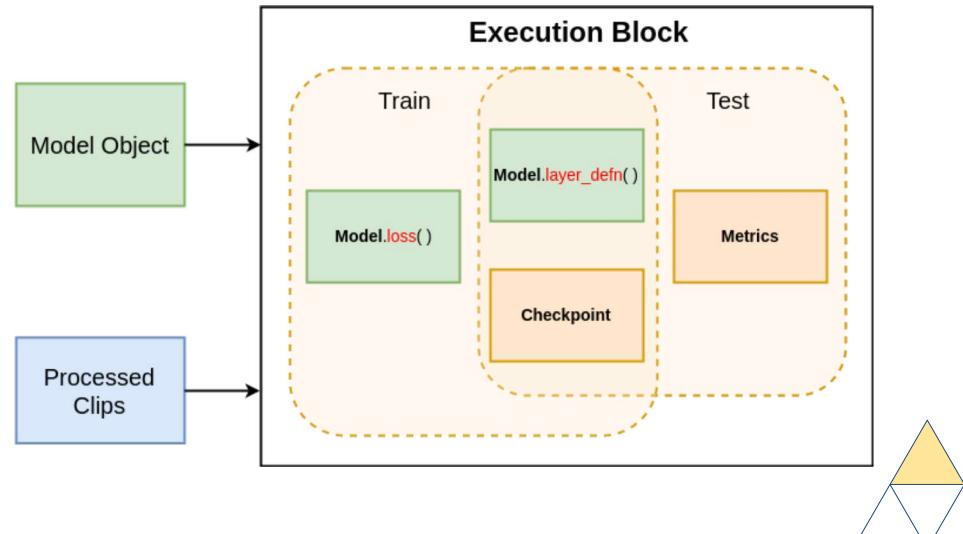
Medal	HMDB51 Accuracy (%)		UCF101 Accuracy (%)	
Model	Orig. Authors	M-PACT	Orig. Authors	M-PACT
I3D	74.80	68.10	95.60	92.55



https://github.com/MichiganCOG/M-PACT

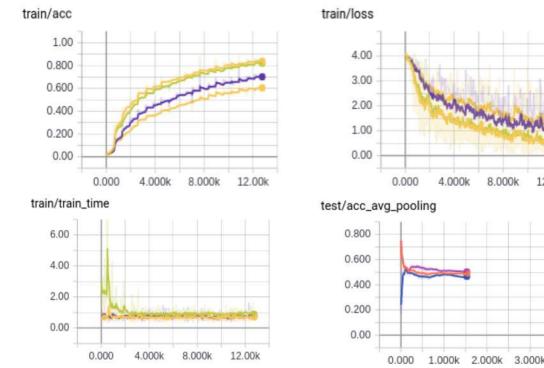
Carreira J. et al. CVPR 2017

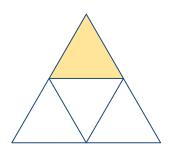
Execution Block



Execution Block - Metrics

- Classification metrics include:
 - Average pooling
 - Classification using the last frame of the input
 - Linear SVM
- Internal scalar tensorboard logging
- Feature extraction and storage



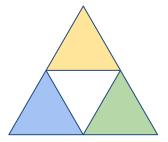


12.00k

https://github.com/MichiganCOG/M-PACT

Results

Model	HMDB51 Accuracy (%)		UCF101 Accuracy (%)	
	Orig. Authors	M-PACT	Orig. Authors	M-PACT
I3D	74.80	68.10	95.60	92.55
C3D	50.30	51.90	82.30	93.66
TSN	54.40	51.70	85.50	85.25
ResNet50 + LSTM	43.90	43.86	84.30	80.20



Easy to use

- Download Dataset
- Format Dataset using tfrecords
 - python utils/generate_tfrecords_dataset.py
 - --videos_dir /dir/to/dataset/vids
 - --save_dir /dir/to/save/tfrecords_dataset
- Download trained model weights
 - sh scripts/shell/download_weights.sh
- Train models
 - python train.py --model I3D --dataset UCF101 --inputDims 64 --outputDims 101 --seqLength 1 --size
 224 --expName i3d_train --numVids 9537 --baseDataPath /tfrecords_dataset --fName trainlist
- Test models
 - python test.py --model resnet --dataset HMDB51 --loadedDataset HMDB51 --inputDims 50 -outputDims 51 --seqLength 50 --size 224 --expName resnet_test --numVids 1530 --baseDataPath /tfrecords_dataset --fName testlist

Easy to use - Add model using template

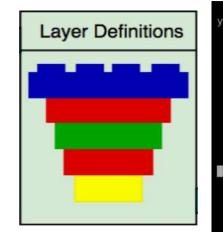
class MODELNAME(Abstract_Model_Class):

```
def __init__(self, **kwargs):
```

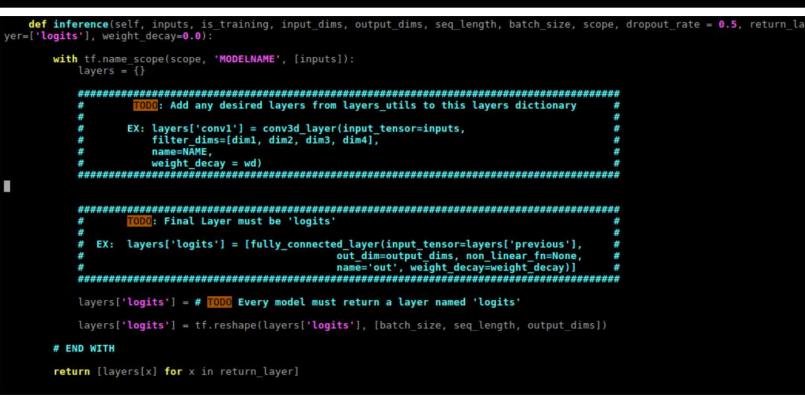
Args:

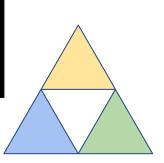
Pass all arguments on to parent class, you may not add additional arguments without modifying abstract_model_class.py, Models.py, train.py, and test.py. Enter any additional initialization functionality here if desired.

super(MODELNAME, self).__init__(**kwargs)

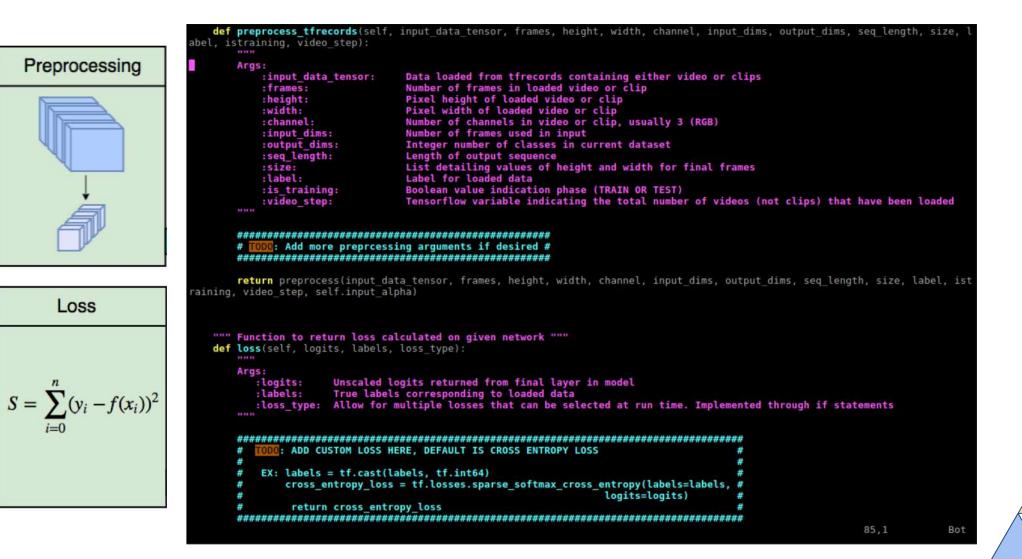


MICHIGAN





Easy to use - Add preprocessing and loss



MICHIGAN

Where?

• https://github.com/MichiganCOG/M-PACT

M-PACT: Michigan Platform for Activity Classification in Tensorflow

This python framework provides modular access to common activity recognition models for the use of baseline comparisons between the current state of the art and custom models.

This README will walk you through the process of installing dependencies, downloading and formatting datasets, testing the framework, and expanding the framework to train your own models.

This repository holds the code and models for the paper M-PACT: Michigan Platform for Activity Classification in Tensorflow, Eric Hofesmann, Madan Ravi Ganesh, and Jason J. Corso, arXiv, April 2018.

ATTENTION: Please cite the arXiv paper introducing this platform when releasing any work that used this code. Link: https://arxiv.org/abs/1804.05879

Implemented Model's Classification Accuracy:

Model Architecture	Dataset (Split 1)	M-PACT Accuracy (%)	Original Authors Accuracy (%)
I3D	HMDB51	68.10	74.80*
C3D	HMDB51	51.90	50.30*
TSN	HMDB51	51.70	54.40
ResNet50 + LSTM	HMDB51	43.86	43.90
I3D	UCF101	92.55	95.60*
C3D	UCF101	93,66	82.30*
TSN	UCF101	85.25	85.50
ResNet50 + LSTM	UCF101	80.20	84.30

(*) Indicates that results are shown across all three splits

Table of Contents

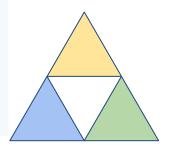
MICHIGAN

Introduction and Setup
Requirements
 Configuring Datasets
 Using the Framework
 Framework File Structure
 Examples of Common Uses
Add Custom Components
Adding a Model
 Adding a Dataset
Results
Version History
Acknowledgements
Code Acknowledgements
References

Framework File Structure

logger.py

/†	f-activity-recognition-framework
	train.py
	test.py
	create_model.py
	load a video.py
	/models
	/model_name
	modelname_model.py
	default_preprocessing.py
	model_weights.npy shortcut to/weights/model_weights.npy (Optional)
	/weights
	model weights.npy
	/results
	/model_name
	/dataset_name
	/preprocessing_method
	/experiment_name
	/checkpoints
	checkpoint
	checkpoint-100.npy
	checkpoint-100.dat
	/metrics_method
	testing_results.npy
	/logs
	/model_name
	/dataset_name
	/preprocessing_method
	/metrics_method
	/experiment_name
	tensorboard_log
	/scripts
	/shell
	download_weights.sh
	/utils
	generate_tfrecords_dataset.py
	convert_checkpoint.py
	checkpoint_utils.py
	layers_utils.py
	metrics_utils.py
	preprocessing_utils.py
	sys_utils.py



M-PACT Additions: T-RECS

Training for Rate-Invariant Embeddings by Controlling Speed

α = 0.6	α = 0.8	α = 1.0	α = 1.2
FILECABILNET	FILECABILNET	EINECABILNET	PLARCABILINES

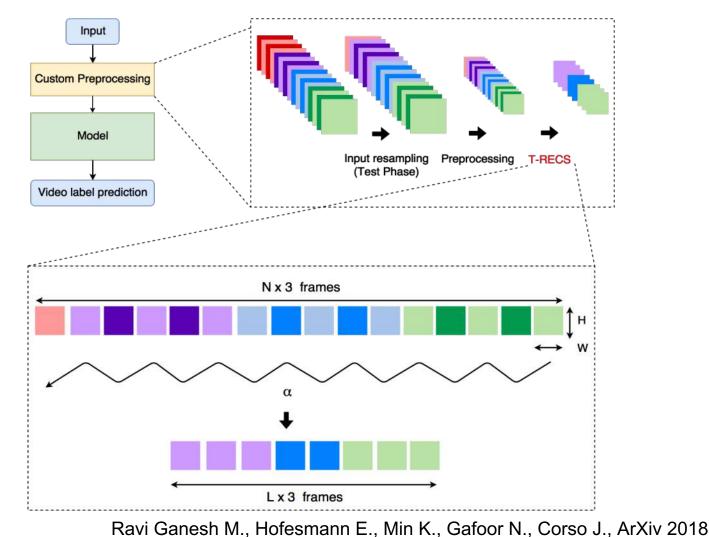
I3D Prediction:

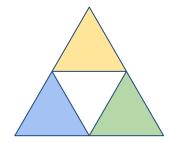
Ravi Ganesh M., Hofesmann E., Min K., Gafoor N., Corso J., ArXiv 2018

Original Video Speed

M-PACT Additions: T-RECS

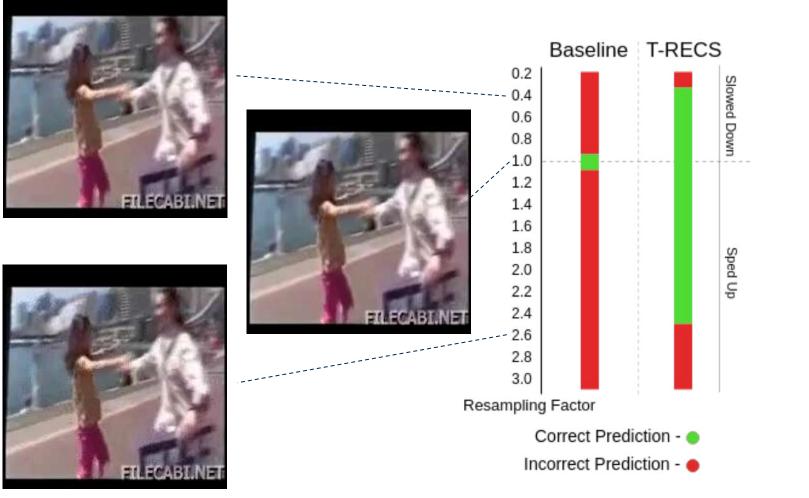
Training for Rate-Invariant Embeddings by Controlling Speed





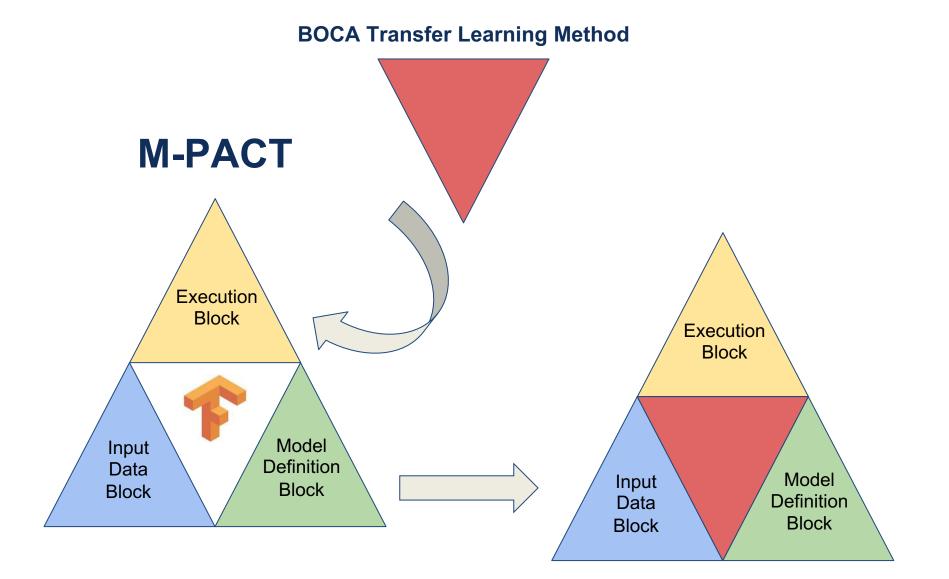
M-PACT Additions: T-RECS

Training for Rate-Invariant Embeddings by Controlling Speed



Ravi Ganesh M., Hofesmann E., Min K., Gafoor N., Corso J., ArXiv 2018

M-PACT as a platform for **BOCA**

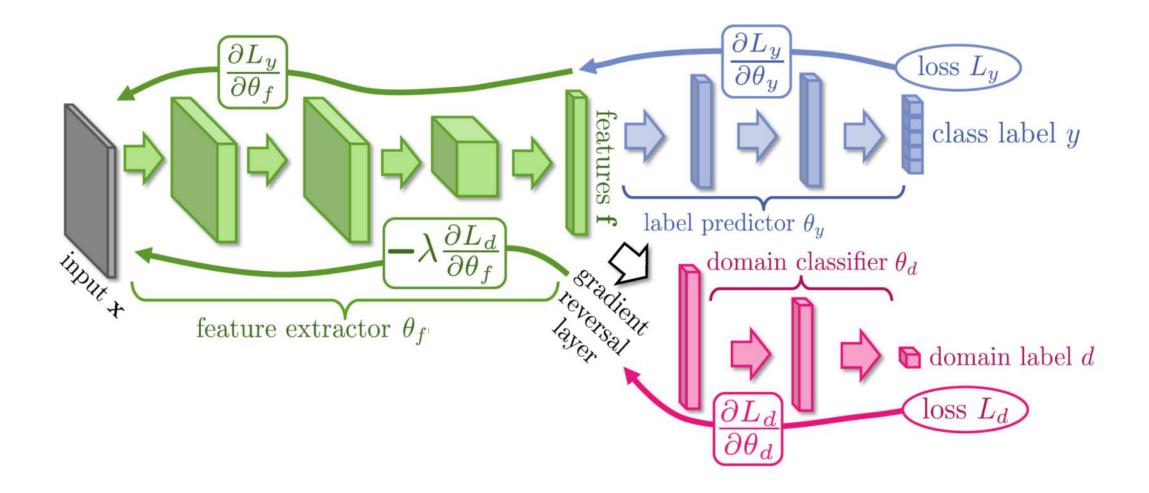


Transfer Learning

Data *not directly related to* the task considered

Similar domain, different tasks Different domains, same task

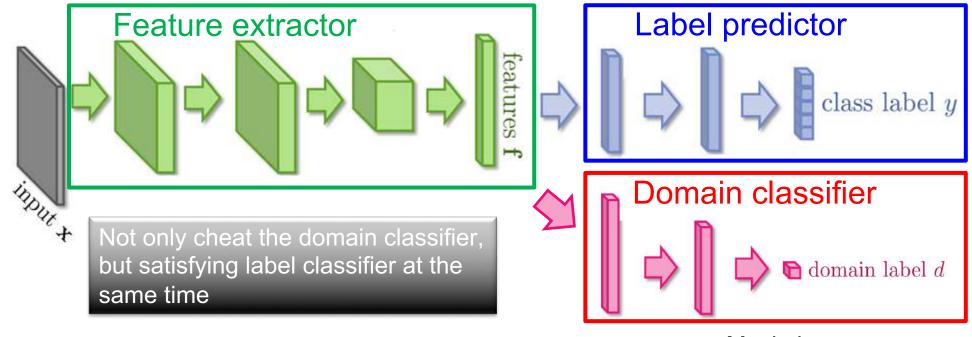
Domain-adversarial Transfer Learning



Domain-adversarial Transfer Learning

Maximize label classification accuracy + minimize domain classification accuracy

Maximize label classification accuracy

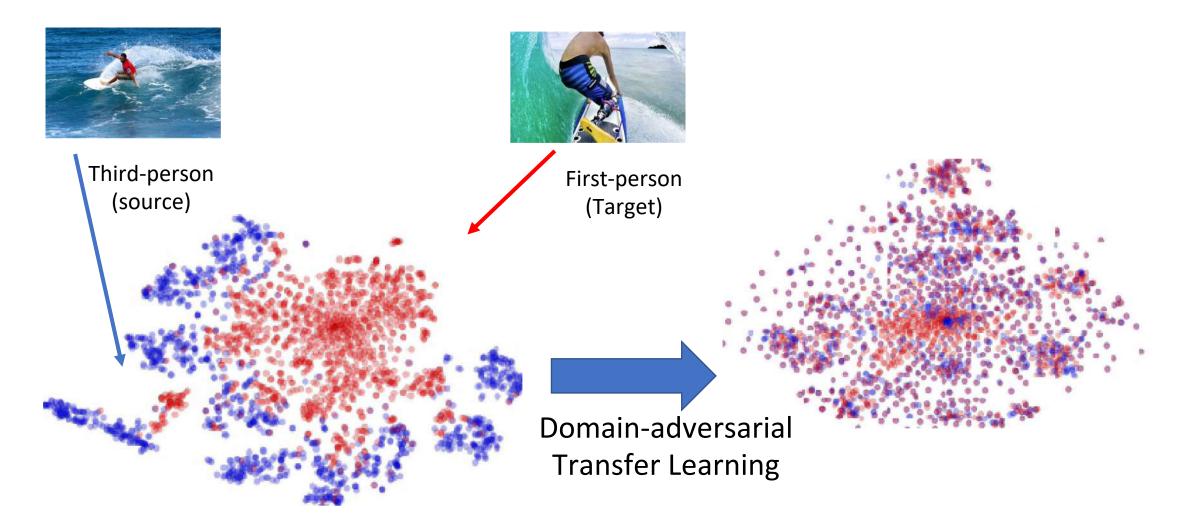


Maximize domain classification accuracy

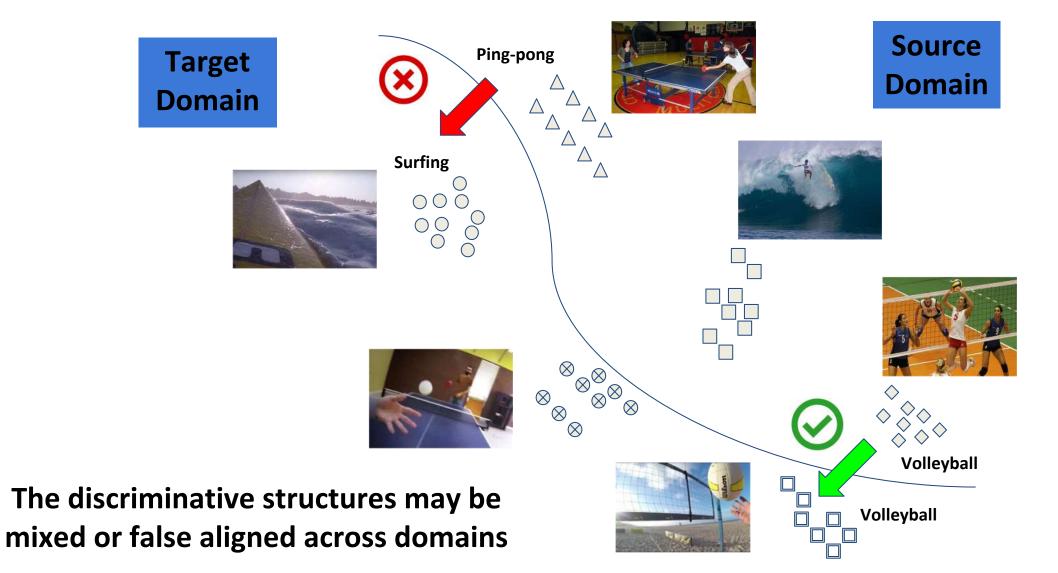
This is a big network, but different parts have different goals.

- Market Contraction of the second se

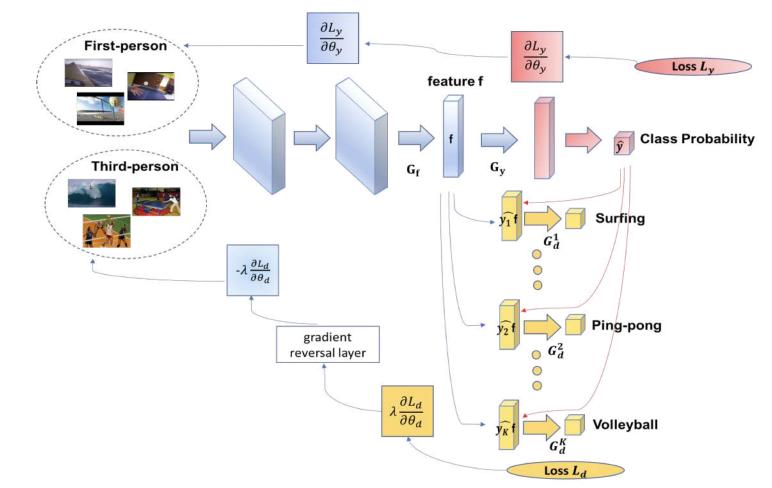
Domain-adversarial Transfer Learning



Transfer Learning Difficulty



Multi-adversarial Unsupervised Domain Adaptation



We propose a multi-adversarial domain adaptation networks approach for unsupervised transfer learning by extracting transferable features that can reduce the distribution shift between the source third-person domain and the target first-person domain.

Results

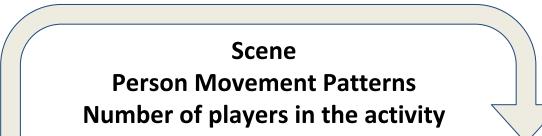
	$top1_acc$	$top5_acc$
I3D: First-person	50.4 %	69.4 %
I3D: Third-person	54.4 %	66.8 %
3rd to 1st	51.6 %	72.3 %
1st to 3rd	53.5 %	64.6 %

Table 2: I3D model baselines and domain adversarial training performance on our collected dataset.

Some preliminary results of top-1 and top-5 accuracy are shown in the Table.

- We observe that the performance increases if we transfer knowledge from thirdperson to first-person.
- However, the performance drops if we adapt first-person to third-person which is a bit strange. We will investigate if there are some bugs or analyze the reason of this happening in the next step.

Successful Transfer case



Third-person

First-person

Successful cases

Failure cases

Involved in less important parts for activity

Less information for the scene of marathon

Too much foreground occupied by human

Not engaged in the activity frequently