

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin Nationales Metrologieinstitut

OCD Metrology for Advanced Lithography

B. Bodermann, Alexander Diener, Sebastian Heidenreich, Frank Scholze, Victor Soltwisch, Matthias Wurm

- 1. Introduction
- 2. Common challenges in OCD metrology
- 3. PTB tools and analysis methods
- 4. Challenges of future applications
- 5. Future directions in OCD

1. Introduction

- 2. Common challenges in OCD metrology
- 3. PTB tools and analysis methods
- 4. Challenges of future applications
- 5. Future directions in OCD

Introduction CD Metrology for Advanced Lithography

2015 EDITION Metrology

First Year of IC Production	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
14 nm 1/2 pitch (Flash)												
No. 1944												
CD-SEM												
Optical Scatterometry		Translate and the										
CD-AFM (calibration)												
Mueller Matrix Scatterometry	1		_									
CD-SAXS				_								
10 nm 1/2 pitch (Flash)												
CD-SEM		Concernance of the	1									
Optical Scatterometry			Consult 5									
CD-AFM (calibration)		1 10	1125									
Mueller Matrix Scatterometry	2	2 2										
CD-SAXS												
7 nm 1/2 nitch (Flash)												
, and the burning and the												
CD-SEM		1	1									
Optical Scatterometry							Same -					
CD-AFM (calibration)		8	0.000			1	10000					
Mueller Matrix Scatterometry		3				de la consta	Sector 1					
CD-SAXS												
5 nm 1/2 pitch (Flash)												
CD-SEM	6	6	10			1	(1) (1)			11 × 1 × 1		
Optical Scatterometry		-				1	1				1	
CD-AFM (calibration)		1	1		1	10000	10000			17 12		
Mueller Matrix Scatterometry	1	1			In the second second					the state of the		
CD-SAXS	_											

 \Rightarrow OCD (Scatterometry) and extensions (X-ray, hybrid,...) will retain its important role!

Figure MET1

Lithography Metrology Potential Solutions

Introduction CD Metrology for Advanced Lithography

Research Required Development Underway Qualification/Pre-Production Continuous Intercoverted

International Technology Roadmap for Semiconductors

Figure MET1

Lithography Metrology Potential Solutions

 \Rightarrow OCD (Scatterometry) and extensions (X-ray, hybrid,...) will retain its important role!

Critical Dimension CD: structure widths / size

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

- Device shrinkage
- Planar to complex 3D architectures
- Novel materials
- Large diversity of NGL technologies
- Metrology solution required yesterday

⇒ Semiconductor people keep us busy in metrology!

FCMN 2017, Monterey

Introduction Why Scatterometry (OCD)?

Н	IVM Met	trology	Gap Ar	alysis	(simpli	fied)*		*B. Bunday SUNY Poly SEMATECH Proc. SPIE 9778 97780E-1 (2016)
		local (imaging) ensemble ("spectroscopic")						
Application	CD-SEM	HV-SEM	HelM	CD-AFM	OCD	T-SAXS	GI-SAXS	
currently lim. node (mean)	7 nm modelling	5 nm modelling	≤ 5 nm modelling	10 nm (iso 5 nm)	7 nm n&k	≤ 5 nm	≤ 5 nm	color code
Meas. time								excellent
Meas. area								high
Destructiveness								very high
Advantages:• fast, non-destructive and contamination free • structure profile sensitive, good 3D capability, multi-parameter • no "diffraction limit" • process integrable • high statistical significance • characterisation of optical effects, "at-wavelength"-metrology • comparison with local methods to eliminate systematic errors								
Disadvantages: only integral measurements, relatively large interaction range parameter correlations, unambiguity 								
ITRS (2015): It is important to have both imaging and scattering techniques available for any given process control situation. (Table MET1)							g techniques (Table MET1)	

Introduction Applications

Samples: wafers, photomasks,...; many materials (Si, diel., high k, metals)

Measurands: 1D and 2D gratings

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

\rightarrow complex 3D multiparameter

22 nm Tri-Gate Transistors

Nationales Metrologieinstitut FCMN 2017, Monterey

Introduction Scatterometry (Optical CD metrology)

<u>Scatterometric methods</u> measure property changes of the light caused by the interaction with the sample, use information to reconstruct the structures under test

Properties of light, that can be measured with scatterometric methods are:

8

Introduction Scatterometry (Optical CD metrology)

<u>Scatterometric methods</u> measure property changes of the light caused by the interaction with the sample, use information to reconstruct the structures under test

Properties of light, that can be measured with scatterometric methods are:

Radiant power (diffr. efficiency η)

(type: **pol. reflectometer** class. scatterometer)

- Direction of propagation (type: diffractometer)
- State of polarisation

(type: ellipsometer, Mueller matrix)

Phase information

22.03.2017

(type: interferometric scatterometer)

Current commercial OCD tools N-OVA ASMI

spectroscopic

Introduction Model based analysis

- 1. Introduction
- 2. Common challenges in OCD metrology
- 3. PTB tools and analysis methods
- 4. Challenges of future applications
- 5. Future directions in OCD

Nationales Metrologieinstitut FCMN 2017, Monterey

Dissemination: Development of a scatterometry reference standard

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

Scatterometry reference standards to improve tool matching and traceability in lithographical nanomanufacturing, B. Bodermann et al. (2015), Proc SPIE 9556 955610

Traceability: Approximations & simplifications

- U(CD) < 1 nm
- Two materials: Silicon and Si₃N₄ (dielectric)

Common OCD Challenges

- GISAXS reference target
- Characterised by scatterometry, Mueller ellipsometry, CD/tilt AFM, CD-SEM and GISAXS

Common OCD Challenges Approximations & simplifications

Examples:

- numerical approximations: periodic extension, computational volume and discretisation,...
- neglection of local parameter variations (CDU, stiching,...)
- geometrical structure model (binary, trapezoidal, corner roundling,...)

13

- monochromatic plane wave illumination
- infinite interaction area: finite spot size of illuminating beam, finite target (grating) size
- n & k: size dependent complex refractive indices gradients, EMA-interlayers (diffusion, roughness)
- roughness: surface, LER, LWR,...
- neglection of stray light ...

beam profile at sample

Common OCD Challenges Solution of inverse problem

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

FCMN 2017, Monterey

Common OCD Challenges Stochastic parameters, roughness

Example Decomposition

 $\mathbf{M} = \mathbf{M}_0 + \Delta \mathbf{M}$

- M measured MM
- **M**₀ best-fit Mueller-Jones matrix (no depolarisation)
- $\Delta \boldsymbol{M}$ residuum

• Stochastic parameters \Rightarrow depolarisation & diffuse scattering

- Depolarisation & scattering usually not adequately described!
 ⇒ wrong uncertainty estimations, may introduce systematic bias
- Full rigorous modelling essentially impossible (very elaborate) Options:
- Mueller matrix ellipsometry: decomposition-techniques

Combined analytical and rigorous modelling for rough surfaces:

- Effective Medium Aproach (EMA)
- Scattering theories (Born approximation, Beckmann- Kirchhoff, Rayleigh-Rice, Harvey-Shack (NP), ...)

* J. J. Gil Perez, R. Ossikovski, *Polarized light* and the Mueller matrix approach CRC Press 2016

- 1. Introduction
- 2. Common challenges in OCD metrology
- 3. PTB tools and analysis methods
- 4. Challenges of future applications
- 5. Future directions in OCD

PTB tools and methods FEM Reconstruction: The Model

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

22.03.2017

<u>Rigorous modelling</u> for all 'optical' methods from NIR to X-ray

- Spectr. Ellipsometry / Mueller
- DUV Scatterometry
- EUV SAS
- GISAXS

Maxwell solver: FEM allows to model arbitrary structures

Downhill simplex method

PTB tools and methods Goniometric Scatterometry & Reflectometry

Sample holder:

DUV goniometric Scatterometer

- Reflectometry, diffractometry, scatterometry
- Polarised (any state of polarisation)
- At wavelength metrology (193 nm)
- Wafers and photomasks (mapping)

Detector on (nearly) 360° rotating arm: transmission & reflection

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

22.03.2017

M. Wurm, F. Pilarski, B. Bodermann: A new flexible scatterometer for critical dimension metrology, Rev. Sci. Instrum. **81** (2010), 2, 023701-1-023701-8,

M. Wurm, S. Bonifer, B. Bodermann, J. Richter: *Deep* ultraviolet scatterometer for dimensional characterization of nanostructures: system improvements and test measurements Meas. Sci. Technol. **22** (2011), 094024-1 - 094024-9

> 266 nm (Nd:YAG), or NIR (780 - 840 nm) to DUV (193 - 210 nm)

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

FCMN 2017, Monterey

PTB tools and methods Spectroscopic (Mueller) Ellipsometry

Spectroscopic Mueller polarimeter

• Full Mueller matrix, 190 nm – 2500 nm

- Θ_{in} und Θ_{out} independent, transmission
- Layers (thickness) and layer systems
 - Complex permittivity
 ('material parameters' n&k)
- Depolarisation
- OCD metrology

Ellipsometry

Mueller Ellipsometry (MME)

R&D on

- Reliable data analysis (MM decomposition*)
- Uncertainty evaluation and traceability
- Treatment of depolarisation and roughness

* J. J. Gil Perez, R. Ossikovski, *Polarized light* and the Mueller matrix approach CRC Press 2016

PTB tools and methods X-ray-Scatterometry

- Structure geometry (CD, SWA,..)
- LER/LWR
- Surface roughness
- Stiching errors...

Physikalisch-Technische Bundesanstalt
Braunschweig und Berlin

FCMN 2017, Monterey

Nationales Metrologieinstitut

22.03.2017

PTB tools and methods Hybrid metrology

Combining measurements from multiple toolset types in order to enable or improve metrology for advanced structures.

Different approaches:

- (Weighted mean of multiple toolset measurements)
- Sequential
- Interpolating co-optimisation
- full parallel evaluation: usually requires to much computation costs, often issues of reasonable weighting

22

Aims and advantages:

- Combine strengths and overcome individual weaknesses of different tools
- Break or minimize parameter correlations
- Improve sensitivity and accuracy beyond the sum of individual results

Results	CD / nm	h /nm				
DUV-Scatterometry	25.9 (1.4)	50.0 (4.4)				
Comb. With MME	26.4 (0.9)	50.5 (1.6)				
GISAXS	25.1	48.2				
Physikalisch-Technische Bundesanstalt Braunschweig und Berlin						

Sample	HZB_P100_CD35(100, 35, 100 nm)					
(nom. p, CD, h)	Scatt.	MME.	comb.			
CD [nm]	32.3 (1.8)	33.0 (1.5)	32.5 (1.1)			
h [nm]	105.7 (2.3)	105.8 (2.2)	105.7 (1.6)			
swa [°]	91.4 (1.9)	90.9 (1.6)	91.2 (1.2)			
h_oxide [nm]	3.0 (0.6)	3.2 (0.7)	3.1 (0.4)			
CR _{top} [nm]	14.9 (3.0)	13.8 (1.9)	14.0 (1.1)			
CR _{bottom} [nm]	29.3 (2.8)	30.4 (1.4)	30.1 (1.2)			

Bayesian approach

- 1. Introduction
- 2. Common challenges in OCD metrology
- 3. PTB tools and analysis methods
- 4. Challenges of future applications
- 5. Future directions in OCD

Substantially increasing **requirements** due to:

- decreasing dimensions
- complex 3D structures: FinFET, Nanowire / GAA,...
- requires multi parameter characterization (≥ 12)
 ⇒ increasing correlation issues!

⇒ increased variability required to break correlations: combined goniometric & spectroscopic or other hybrid approaches

Challenges of future applications Complex 3D metrology

Challenges of future applications **Application specific challenges**

Leading Innovation >>>

FCMN 2017, Monterey

Challenges of future applications Material parameter challenges

- Complex refractive index process dependent!
- Many novel materials (advanced litho & beyond CMOS)
- Interplay of dimensions and refractive index: quantum confinement, el.-phonon interactions,...

Electron-phonon interaction effects on the direct gap transitions of nanoscale Si films V. K. Kamineni and A. C. Diebold, Appl. Phys. Lett. **99**, 151903 (2011)

- Strain / stress induced birefringence
- Beyond CMOS: many 1D & 2D materials discussed (Si NW, CNT, graphene...)

 \Rightarrow anisotropy \Rightarrow permitivity tensor

$$\varepsilon \rightarrow \begin{bmatrix} \varepsilon_{XX} & \varepsilon_{Xy} & \varepsilon_{Xz} \\ \varepsilon_{yX} & \varepsilon_{yy} & \varepsilon_{yz} \\ \varepsilon_{ZX} & \varepsilon_{Zy} & \varepsilon_{Zz} \end{bmatrix}$$

affects in particular goniometric methods

Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study. Laref S¹, et al., <u>Opt Express.</u> 2013, 21 11827-38.

Requires additional metrology steps (time and effort issues) and/or fitting of corresponding material parameters (multi parameter, correlation issues)

- 1. Introduction
- 2. Common challenges in OCD metrology
- 3. PTB tools and analysis methods
- 4. Challenges of future applications
- 5. Future directions in OCD

Future directions Application optimised OCD

90

Num. simulation of reflectance for a gratings with a period of 100 nm and varying CD

Very large dynamics in reflectivities \rightarrow Excellent sensitivity with respect to linewidth

Small size or wavelength/size-ratio is not the main issue!

Silicon with oxide-layer

Future directions **Application optimised OCD**

Future directions Application optimised OCD

- \Rightarrow Adaption of field parameters (λ , AOI, pol.,...) can enhance sensitivity substantially exploiting nano-optical effects!
- ⇒ Another example: nonorthogonal azimuth angle reflectometry or/and MME for enhanced pitchwalk sensitivity

R. Chao et al.,*Multitechnique metrology methods for evaluating pitch walking in 14 nm and beyond FinFETs*, J. Micro/Nanolith. MEMS MOEMS. (2014) **13**, 041411

Future directions Advanced X-ray / EUV scatterometry

SX700 Soft X-ray reflectometer

- (0.7 25) nm
- Soft X-ray reflectometry (EUV)
- EUV-scatterometry
- Polarisation sensitive (s, p)

	EUV 210 eV to $230\mathrm{eV}$	GISAXS $5.5\mathrm{keV}$ to $5.6\mathrm{keV}$
pitch $/ nm$	150	150
cd / nm	66.31 ± 0.57	67.18 ± 0.16
height $/ nm$	120.12 ± 0.19	119.66 ± 0.06
top r $/ nm$	12.64 ± 0.60	7.46 ± 0.19
bot r / nm	10.29 ± 0.30	14.26 ± 0.32
$\sigma_r \; ({ m rms})$	1.89 ± 0.12	2.14 ± 0.08
sidewall angle / $^{\circ}$	83.48 ± 0.33	84.53 ± 0.19

- Much reduced foodprint but
- Enhanced uncertainty
- S/N-issues

Future directions Faster modelling/analysis

V

Speedchallenge!

- Hybrid metrology

- Uncertainty evaluation

- Analysis of Mueller matrix measurements

- 3D-modelling; complex structures

- stochastic structure parameters (roughness)

 \Rightarrow Faster numerical methods required:

smart interpolation of discrete sampling points in parameter space

Surrogate models

Method	Function evaluations	FEM	PC
Sensitivity Analysis	3×10^4	41d	20h + 0.1s
Bayesian MCMC	$\sim 10^5$	139d	20h + 47min
Maximum Likelihood	30	1h	20h + 0.84s
Least squares	15	0.6h	20h + 0.42s

Reduced Basis Method

Fast Simulation Method for Parameter Reconstruction in Optical Metrology

Sven Burger, ab Lin Zschiedrich, b Jan Pomplun, b Frank Schmidt, ab Bernd Bodermann c

^a Zuse Institute Berlin (ZIB), Takustraße 7, D-14195 Berlin, Germany ^b JCMwave GmbH, Bolivarallee 22, D-14050 Berlin, Germany ^c Physikalisch-Technische Bundesanstalt Braunschweig (PTB), Bundesallee 100, D-38116 Braunschweig, Germany

Proc. SPIE 8681, 868119 (2013)

22.03.2017

FCMN 2017, Monterey

Future directions Advanced hybrid metrology

- Scatterometry (OCD and/or X-ray based) will play an essential role in CD metrology down to 5 nm and beyond!
- Here the challenges increase dramatically, some of them critical
- Most critical: Material parameters, parameter correlations
 & choice of geometry modell!
- Thus essential R&D is required and significantly enhanced or novel approaches are required (hybrid, X-ray based, exploitation of nano-optical effects)

Thank you for your Attention!

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

Bundesallee 100 38116 Braunschweig Bernd Bodermann Telefon:0531 592-4222 E-Mail: bernd.bodermann@ptb.de

0.005

www.ptb.de/OptNanoMet