Alan G. Davenport Wind Engineering Group

NIST/TTU Cooperative Agreement —
Windstorm Mitigation Initiative: Wind
Tunnel Experiments on Generic Low
Buildings

T.C.E. Ho, D. Surry & D. Morrish

BLWT-SS20-2003 / May 2003

The Boundary Layer Wind Tunnel Laboratory

The University of Western Ontario, Faculty of Engineering Science

London, Ontario, Canada N6A 5B9; Tel: (519) 661-3338; Fax: (519) 661-3339
Internet: www.blwtl.uwo.ca; E-mail: info@blwtl.uwo.ca




TABLE OF CONTENTS

ACKNOWLEDGEMENTS 5
1 INTRODUCTION 6
2 MODEL TESTS 7
2.1 The modelling Of the WIN...........ouiiiii e e e e e e s e e e e e eaaanes 7
211 Terrain modelling 7
2.1.2 Characteristics of the modelled wind 7
2.2 The Measurements Of LOCAI PrESSUIES ......ccoiuiiiiiiiiiie ettt e e sibeee e 8
221 Model instrumentation 8
2.2.2 Model tubing system 9
2.2.3 Wind tunnel measurements 9
224 Aerodynamic data 10
3 VARIABILITY OF ROOF HEIGHT DYNAMIC PRESSURES 11
3.1 [T Tod (o | (0] 1T S 11
3.2 UWO Wind Speed Profiles and Conversion FaCtOrS...........cevieeiiiiiiiiieeeee e e 11
4 DATA QUALITY CHECKS 13
4.1 LT o1 | PP 13
4.2 OVETAll dAtB CNECKS ...ttt e e e bbb e e e e nbe e e e 13
4.3 Comparison of data within the database ...........cccuuveeiiiii s 13
431 Effect of building height 14
4.3.2 Effect of roof pitch 14
4.3.3 Effect of building plan dimensions 15
434 Comparison with Full Scale TTU Data 15
4.35 Comparison with ASCE 7-02 Recommended Loads 16
5 DATA ARCHIVAL SYSTEM 17
5.1 [T Tod (o | (0] 1o T S 17
5.2 Selection Of Dat@ FOMMAL.........ooiiiiiiie ittt e e e st e e e et e e e e nnbeeeenrees 17
52.1 Self documentation 17
522 Building geometry and tap locations 18
523 Data handling 18
5.3 Data generated at other faCilitieS...........cooiiiiiii e 18
REFERENCES 19
TABLES 21
FIGURES 26
FIGURES 26
APPENDIX A PRESSURE TAP LOCATIONS AND NOMENCLATURE

APPENDIX B SUMMARY DATA SHEETS

APPENDIX C

SUM OF MEAN SQUARES AND SUM OF VARIANCES FOR ALL TESTS

m Report: BLWT-SS20-2003 1

Alan G. Davenport Wind Engineering Group



LIST OF TABLES

TABLE 1

TABLE 2

TABLE 3

TABLE 4

TEST CONFIGURATIONS FOR THE GENERIC MODEL TESTS (TESTS 1 TO

D) et e et et e et ettt et e et e et e et e e e e 22
TEST CONFIGURATIONS FOR THE WERFL BUILDING MODEL TESTS

(TESTS 6 TO 8) oo eeee e e s eeeeeee e ee e e ee e e e ee e ee e eesse 23
FACTORS FOR RE-REFERENCING PRESSURE COEFFICIENTS TO ROOF

HEIGHT DYNAMIC PRESSURES ........coveoiiveeieeeeeeeeeeesee e eeeeeeeeee e eeeees e eseeee e 24
REFERENCE WIND SPEED / PRESSURE MEAUSREMENTS .......vvvuvveeeeeieeesseeeeenn. 25

MReport: BLWT-SS20-2003 2 Alan G. Davenport Wind Engineering Group



LIST OF FIGURES

FIGURE 1

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 11

FIGURE 12

FIGURE 13

FIGURE 14

FIGURE 15

FIGURE 16

FIGURE 17

FIGURE 18

FIGURE 19

VIEWS OF A GENERIC BUILDING MODEL IN THE WIND TUNNEL.........ccccccoviininnen.
VIEWS OF THE 1:50 WERFL BUILDING MODEL IN THE WIND TUNNEL ..................
VIEWS OF THE 1:100 WERFL BUILDING MODEL IN THE WIND TUNNEL ................

WIND SPEED AND TURBULENCE INTENSITY PROFILE. 1:100 SCALE
WIND SIMULATION - OPEN EXPOSURE .....coooiiiiiiic e

WIND SPEED AND TURBULENCE INTENSITY PROFILE. 1:100 SCALE
WIND SIMULATION - SUBURBAN EXPOSURE ........cooiiiiiiiiiiiiiiiiieneee s

WIND SPEED AND TURBULENCE INTENSITY PROFILE. 1:50 SCALE WIND
SIMULATION FOR THE WERFL BUILDING MODEL TEST — EXPOSURE 1
(10T PERCENTILE) ..ottt ee e s e e ee e e en s

WIND SPEED AND TURBULENCE INTENSITY PROFILE. 1:50 SCALE WIND
SIMULATION FOR THE WERFL BUILDING MODEL TEST — EXPOSURE 2

CTO R =T =1 Lo = N T =) TR
WIND SPEED AND TURBULENCE INTENSITY PROFILE. 1:100 SCALE

WIND SIMULATION FOR THE WERFL BUILDING MODEL TEST —

EXPOSURE 1 (10" PERCENTILE) ....ciuiuiieeeieieeeeceeeeseeees s en s
WIND SPEED AND TURBULENCE INTENSITY PROFILE. 1:100 SCALE

WIND SIMULATION FOR THE WERFL BUILDING MODEL TEST —

EXPOSURE 2 (90™ PERCENTILE) ... vueieeeeeeeeeeeeeeeeeeeeee e e ee et esen s e e en s s
LONGITUDINAL WIND SPECTRA ....c.ocuieeiieeeeeeeeeeeeesseeeee st ssesnss s esas e
LATERAL WIND SPECTRA .....ooviiieeeeeeeeeeeseseeeeeseseseee s nsesesasses s enansnasnens
VERTICAL WIND SPECTRA .....oviviteeieeeieeese e ses e esaeses s s ensasss s

EXPLODED VIEW OF THE 1:12 ROOF LOPE BUILDING — GENERIC
BUILDING MODELS ...ttt ettt e e s e e e

PRESSURE TAP LAYOUT ON THE GABLE END WALLS OF THE 3:12 AND
Y2:12 ROOF SLOPE BUILDING MODELS ......coo it

PRESSURE TAP LAYOUT ON THE SIDE WALLS OF THE 3:12 AND ¥%4:12
ROOF SLOPE BUILDING MODELS........coiiiiitiiiiiic e

VIEWS OF THE DOMINANT OPENINGS ON THE 125'X80’, 1:12 ROOF
SLOPE BUILDING.....ciiiiiiitiiiiiie e

VIEWS OF SEALED CHAMBER UNDERNEATH THE TURNTABLE FOR
VOLUMETRIC SCALING ..ottt

PRESSURE TAP LAYOUT OF THE 1:50 SCALE UWO MODEL OF THE
WERFL BUILDING ...ttt e e e e e e e e e e s sannes

PRESSURE TAP LAYOUT OF THE 1:100 SCALE UWO MODEL OF THE
WERFL BUILDING ...ttt ettt e e e e e e e e e e e s

m Report: BLWT-SS20-2003 3

Alan G. Davenport Wind Engineering Group



FIGURE 20

FIGURE 21

FIGURE 22

FIGURE 23

FIGURE 24

FIGURE 25

FIGURE 26

FIGURE 27

FIGURE 28

FIGURE 29

FIGURE 30

FIGURE 31

FIGURE 32

FIGURE 33

FIGURE 34

FIGURE 35

FIGURE 36

FIGURE 37

PRESSURE TAP LAYOUT OF THE 1:100 SCALE CSU MODEL OF THE

WERFL BUILDING ..ottt 46
CLOSE-UP VIEWS OF THE GENERIC BUILDING MODEL - TEST 1.....cccccceeviiieeennne a7
CLOSE-UP VIEWS OF THE GENERIC BUILDING MODEL - TEST 2.....cccocveivviireeeene 48
CLOSE-UP VIEWS OF THE GENERIC BUILDING MODEL - TEST 3.....cccocveiviiireeee 49
CLOSE-UP VIEWS OF THE GENERIC BUILDING MODEL - TEST 4......cccc.ceoviineenee 50
CLOSE-UP VIEWS OF THE GENERIC BUILDING MODEL - TEST 5......ccccccoiiiininee 51

CLOSE-UP VIEWS OF THE 1:50 SCALE UWO MODEL OF THE WERFL
BUILDING = TEST 6 ...ttt ettt e s e e e e 52

CLOSE-UP VIEWS OF THE 1:100 SCALE UWO MODEL OF THE WERFL
BUILDING = TEST 7 ittt e e e e e s 53

CLOSE-UP VIEWS OF THE 1:100 SCALE CSU MODEL OF THE WERFL
BUILDING - TEST 8 ...ttt 54

FREQUENCY RESPONSE CHARACTERISTICS OF THE PRESSURE
TUBIING SYSTEM USED ......otiiiiiiiiiic ettt 55

VARIATION OF PRESSURE COEFFICIENTS ALONG A LINE OF TAPS AT
MID-SPAN WITH DIFFERENT ROOF HEIGHTS (1:12 ROOF SLOPE; WIND
ANGLE 2700 ..ottt ettt n et 56

VARIATION OF PRESSURE COEFFICIENTS ALONG A LINE OF TAPS
NEAR THE EDGE OF THE BUILDINGS WITH DIFFERENT ROOF HEIGHTS
(1:12 ROOF SLOPE; WIND ANGLE 325%) .......oiviiieeieeieeeeeeseeeeeeeseeees s, 57

VARIATION OF PRESSURE COEFFICIENTS ALONG A LINE OF TAPS AT
MID-SPAN WITH DIFFERENT ROOF SLOPES (24 FT BUILDING HEIGHT;
WIND ANGLE 270%) ...t 58

VARIATION OF PRESSURE COEFFICIENTS ALONG A LINE OF TAPS
NEAR THE EDGE OF THE BUILDINGS WITH DIFFERENT ROOF SLOPES
(24 FT BUILDING HEIGHT; WIND ANGLE 325%).......ciieieeieieceeeeeeeeeeeeee e, 59

VARIATION OF PRESSURE COEFFICIENTS ALONG A LINE OF TAPS AT
MID-SPAN WITH DIFFERENT PLAN DIMENSIONS (WIND ANGLE 270°) .................. 60

COMPARISON OF THE PRESSURE COEFFICIENTS AMONG THE
GENERIC MODEL TEST 3, WERFL BUILDING MODEL TEST 6 AND FULL
SCALE WERFL BUILDING RESULTS (WIND ANGLE 325%) ........cooveveieceeeeeneen, 61

COMPARISON OF THE PRESSURE COEFFICIENTS FOR TAP 50501
AMONG THE GENERIC MODEL TEST 3, WERFL BUILDING MODEL TEST
6 AND FULL SCALE WERFL BUILDING RESULTS (WIND ANGLE 325°).................. 63

COMPARISON OF AERA-AVERAGED PRESSURE COEFFICIENTS WITH
ASCE 7-02 RECOMMENDED LOADS ......ooii ottt 65

m Report: BLWT-SS20-2003 4

Alan G. Davenport Wind Engineering Group



ACKNOWLEDGEMENTS

The NIST/TTU Cooperative Agreement: Windstorm Mitigation Initiave was initiated by Dr. Emil Simiu
of the National Institute of Standards and Technology and Dr. Kishor Mehta of Texas Tech University and
is guided by an advisory committee. The cooperation of Drs. Simiu and Mehta, as well as the members of
the advisory committee, is greatly appreciated.

Acknowledgment is also made of the contributions by various members of the technical staff of the
Laboratory, particularly: Mr. Gerry Dafoe and Mr. Stan Norman who carried out most of the experimental
phases of the study. Acknowledgement is also made to the graduate students, Ms Lizeanne St. Pierre
and Mr. Mark Blissitt who carried out portions of the experiments and analysis of the data. The pressure
models were constructed by members of the University Machine Shop.

m Report: BLWT-SS20-2003 5 Alan G. Davenport Wind Engineering Group



1 INTRODUCTION

This study is part of the NIST/TTU Cooperative Agreement — Windstorm Mitigation Initiative, jointly
sponsored by the National Bureau of Standards and Technology and Texas Tech University. It forms part
of a larger scope of generic low building testing and analysis. The objective of the initiative is “to conduct
research to mitigate detrimental effects of wind stroms on low buildings and structures and on human
activities”. This portion of the study is part of reseach thrust 4: Integrated testing for wind effects.

As part of the Windstorm Mitigation Initiative, a testing program was initiated to create a low building
database for the purpose of providing time series of wind load data for public access. The data may be
used in the dynamic design of low buildings.

This phase of the experimental program consists of two different sets of tests. The first set of tests
was on generic low building models with the aim to provide a low-rise building database via electronic
means. The second set of tests was on the models of the TTU full scale house with the aim to carry out
comparison of the results from full- and model-scale experiments and comparison of the results from
model-scale experiments in different laboratories.

The current testing program has a total of 5 different generic building model variations:

Generic Model Tests

Test 1. 125'x80’, 4 heights, 1:12 roof slope, 2 exposures, 1:100 scale
Test 2. 125'x80’, 4 heights, 3:12 roof slope, 2 exposures, 1:100 scale
Test 3. 125'x80’, 4 heights, %:12 roof slope, 2 exposures, 1:100 scale
Test 4. 62.5'x40’, 4 heights, 1:12 roof slope, 2 exposures, 1:100 scale
Test 5. 250'x160’, 4 heights, 1:12 roof slope, 2 exposures, 1:100 scale

and three different models of the full scale building at the Texas Tech Wind Engineering Research Field
Laboratory (WERFL):

WERFL Building Tests

Test 6. 45'x30'x13’, 1:48 roof slope, 2 exposures, 1:50 scale (UWO model)

Test 7. 45'x30'x13’, 1:48 roof slope, 2 exposures, 1:100 scale (UWO model)
Test 8. 45'x30'x13’, 1:48 roof slope, 2 exposures, 1:100 scale (CSU model)

The two UWO models of the WERFL building constructed at the University of Western Ontario (UWO)
included a 1:50 scale model primarily for local point pressure measurements, and a 1:100 scale model
primarily for structural load evaluation. The model provided by Colorado State University (CSU) included
the pressure taps for local point pressure measurements.

Details of the model variations are described in Section 2.2.

This report provides basic information on the test parameters used in these wind tunnel tests and
describes the data quality control checks undertaken.

The data from all of the tests described above will form part of the overall generic low building
database. Detailed time series of all the pressure data are available through the standard archival system
described in this report.

Other tests on generic models with additional variation in building size and roof slope (187.5'x120’,
1:12 roof slope and 125'x80’, 6:12 roof slope) are reported elsewhere [1]. Additional wind tunnel tests on
a different set of generic models (200'’x100’ at 1:200 length scale) including investigation of the effects of
length scale, building length and parapet are also reported in [1].
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2 MODEL TESTS

2.1 The modelling of the wind

2.1.1Terrain modelling

The basic tool used is the Laboratory's boundary layer wind tunnel. The tunnel is designed with a long
test section, which allows extended models of upwind terrain to be placed in front of the model of the
building under test. The wind flow then develops characteristics which are similar to the wind over the
different terrain conditions.

For the generic model tests (Tests 1 to 5), two typical terrain cases were used; namely, the open and
suburban exposures, defined as having roughness length,z,, of 0.03 m and 0.3 m respectively.

Simulated winds at 1:100 scale were used in the generic model experiments. Figure 1 shows an example
of the generic model in the wind tunnel with the two upstream terrain simulations.

For the WERFL building model tests (Tests 6 to 8), two definitions of nominally open exposure
conditions were used. These are based on the range of full scale conditions measured at the WERFL
site. For the purpose of comparison with the full scale pressure data, the wind tunnel test data were
obtained with simulated winds near two ends of the range of the full scale site condition; namely, at the
10th and 90th percentile of the site condition measurements; primarily focussing on the turbulence
intensities from the site measurements. A cross-check with the power law exponents derived also from
the site measurements confirms that the 10th and 90th percentile of these measurements are consistent
with generally accepted values.

The two terrain cases can be broadly defined as open exposure; with turbulence intensities matching
those obtained using ESDU formulation [2,3] for roughness lengths, z,, of 0.01 m and 0.087 m

respectively. Wind characteristics for 1:50 and 1:100 length scales were developed for the three models
tested. Figures 2 and 3 show the UWO and CSU models in the wind tunnel.

For all tests, three 5-foot high spires were placed at the entrance of the wind tunnel as well as a 1.25
feet high barrier across the wind tunnel immediately downstream of the spires. These two devices
produce the large scale wind gusts in the wind tunnel. Various heights of roughness elements were used
along the 100-foot wind tunnel section to provide mixing of the wind gusts and generate the boundary
layer characteristics. Note that the required roughness elements tend to be relatively higher for the model
case than in full scale. For this reason, it is unrealistic to continue these roughness elements right up to
the model. In practice, smaller roughness elements are used very close to the model and some distortion
of flow turbulence modelling at low heights is accepted in order to maintain better overall flow
homogeneity over the model.

2.1.2 Characteristics of the modelled wind

The simulation of the wind speed and turbulence intensity profiles for all tests described here was
based on the wind characteristics described by ESDU 82026 [2], 83045 [3] and 74031[4] for mean wind
speed profile, turbulence intensity and wind spectrum respectively. Figures 4 and 5 show the 1:100 scale
wind speed and turbulence intensity profiles for open and suburban simulation respectively for the generic
model tests. Figures 6 to 9 show the lower (z,= 0.01 m) and upper (z,=0.087 m) bounds of the open

exposure simulation used in the WERFL building tests. The profiles were measured without any building
model present at a location 18” (model scale) upstream of the center of the turntable; approximately at
the leading edges of the models. The matching characteristics determined using ESDU are
superimposed. Based on the comparison of turbulence intensities, the simulated exposures match the
roughness lengths of z,=0.01 m and z,=0.087 m satisfactorily over the heights of the building models.
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Figures 10 to 12 show the normalized longitudinal, lateral and vertical wind spectra respectively,
measured in open exposure at 32’ (full scale) above ground. They are shown to match the ESDU spectra
reasonably well. At this height, o, /o, =0.68 and o, /o, =0.4 where u, v and wdenote the

longitudinal, lateral and vertical directions respectively.

The longitudinal turbulence scale is shown to have a mismatch by about a factor of two based on the
shift in the high frequency end of the spectra. This level of mismatch is likely to be inconsequential for
local pressures. The scale mismatch would be expected to have more importance for area or frame loads
where the spatial correlation of the loads are important; however, even here a factor of two in scale is
moderated dramatically when translated into an area integral (see Surry [5] for example). Typically, the
order of error associated with a scale mismatch of a factor of two should be in the 5 to 10% range.

2.2 The Measurements of Local Pressures

2.2.1 Model instrumentation

A total of 8 different model variations have been tested. Parametrically, the generic model tests
include 125'x80" models with various heights and three different roof slopes; ¥4:12, 1:12 and 3:12. They
also include 1:12 roof slope buildings with three different plan sizes; 62.5'x40’, 125'’x80 and 250'x160’.
Note that all the generic model tests (Tests 1 to 5) were carried out based on 1:100 scale wind simulation.

For the WERFL building test, models built at two different testing facilities, UWO and CSU, were
tested. The UWO models were tested at two different scales; 1:50 and 1:100. Tables 1 and 2 summarize
the model and test parameters for the generic model tests and the WERFL building tests respectively.

Figure 13 shows the basic tap arrangement for the 1:12 roof slope buildings. The roof tap
arrangement is essentially the same for generic model tests of all three roof slopes. Figure 14 shows the
tap layout of the gable end walls for the 3:12 and ¥4:12 roof slope buildings and Figure 15 shows the tap
layout of the side walls for the 3:12 and ¥4:12 roof slope buildings.

Except for the 250'x160' model (Test 4), all the generic model tests included internal pressure
measurements due to distributed leakage. The distributed leakage on the models was represented by 80
- 1/16” (model scale) diameter holes distributed over the wall areas. For the 125'x80’ buildings, the
distributed leakage area is about 0.1% of the total wall areas corresponding to the largest building height
of 40’. As the building height is reduced, the leakage openings are also reduced, maintaining the
approximate leakage ratio. For the 62.5'x40’ building, the distributed leakage area is about 0.2% of the
total wall areas.

The 125'x80’, 1:12 roof slope building test (Test 1) also included internal pressure measurements due
to dominant openings. Additional small and large openings representing 0.1% and 1% of the total wall
areas were modelled. Pictures showing these openings on the model are shown in Figure 16. During
testing, internal pressures due to the openings were measured also with the distributed leakage in the
model. In order to be able to measure the dynamic internal pressures, the interior volume of the model is
exaggerated approximately based on the following volumetric scaling.

A (@Ww0P 1
2, (4P 62500

vel

ﬂ“vol

The actual model internal volume, including the volume of the model and a sealed chamber extending
below the turntable, was 6.27 ft>. The actual volumetric scale based on the 40’ building was

o oe27ft] 1
o 41666613 66422
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For the 16’ building, a portion of the volume in the chamber was filled with Styrofoam in order to
maintain the volume similitude. Close-up views of the modelled internal volume are shown in Figure 17.
The sealed chamber was also used for all other tests with internal pressure measurements but the
volumetric scaling was not critical since dynamic internal pressures are not expected to be significant for
buildings with distributed leakage only.

Figures 18 and 19 show the tap layout of the UWO model of the WERFL building. Figure 20 shows
the tap layout of the CSU model of the WERFL building. The pressure tap numbering systems for all
model tests are included in Appendix A. Views of the models are shown in Figures 21 to 28.

2.2.2Model tubing system

A 30-inch long tubing system was used to connect the pressure taps to solid state high speed
pressure scanners. This tubing consists of a 12-inch long PVC tube with internal diameter of 0.053 in
connected to the model which is connected by a pass-through plate with a 1.25-inch long brass tubing
going into the sealed chamber, two restrictors and a 13-inch long PVC tube with internal diameter of
0.035 in connecting to the pressure scanner. The frequency response of this tubing system was tested in
a separate testing chamber by measuring the transfer function of an input white noise signal and the
signal after passing through the tubing system. Figure 29 shows the tubing response with an illustrative
diagram of the tubing arrangement used.

2.2.3Wind tunnel measurements

A high speed solid state pressure scanning system was used to take the pressure measurements.
For the generic model tests, measurements were taken at 37 wind angles over the range between 180°
and 360° at 5° increments. The definition of wind direction can be found in Figure 13. The wind directions
tested are summarized in Table 1 and Appendix B. For the WERFL building tests, tests were carried out
for winds approaching the quadrant with the high concentration of pressure taps. The wind directions
tested are summarized in Table 2 and Appendix B..

For the generic model tests, pressure measurements were sampled at 500 samples per second for
100 seconds. Based on a nominal full scale roof height wind speed of 84 mph (approximated Hurricane
Andrew condition), the sampled data are equivalent to about 22 samples per second for 0.64 hours in full
scale for the open exposure tests and equivalent to about 29 samples per second for 0.48 hours in full
scale for the suburban exposure tests. All of the samples were stored. Summary data sheets for the
generic model tests are included in Appendix B.

For the WERFL building 1:50 scale tests, pressure data were sampled at 250 samples per second for
180 seconds. Based on the same nominal full scale roof height wind speed of 84 mph as above, the
sampled data are equivalent to about 22 to 26 samples per second for 0.58 to 0.49 hours in full scale for
the two exposures. For the 1:100 scale tests, pressure data were sampled at 500 samples per second for
100 seconds. The sampled data are equivalent to about 22 to 29 samples per second for 0.64 to 0.48
hours in full scale for the two exposures.

In addition, the WERFL building 1:50 scale model test at the wind angle of 45° and exposure 1
(z5=0.01 m) has been repeated 20 times in order to examine the variability of the aerodynamic data

excluding the non-aerodynamic effects such as model, set-up and instrumentation. Similar repeats have
also been carried out for the 1:100 scale model tests. Summary data sheets for the WERFL building tests
are included in Appendix B.

All instrumented taps were measured essentially instantaneously. The measurements taken within
the sampling cycle have a maximum time lag of about 15/16 of the sampling rate. For example, the
generic model tests have a maximum time lag of approximately 15/16x0.002 seconds = 1.875
milliseconds. This time lag is corrected by linear interpolation of the data within the same sample cycle.

In addition to storing all time histories of the pressure measurements, the maximum, minimum, mean
and rms pressure from these time histories were calculated and reviewed as a data quality check.
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2.2.4 Aerodynamic data

All the time series files were stored in an archive to be accessible by electronic means. The raw data
have been referenced to the dynamic pressure taken at an upper reference level in the wind tunnel.

For general use, the roof height referenced pressure coefficients are needed and are defined using
the following expression:

2
_ Vref
CpH - Cpref ( Vy

2
where [\%] is a conversion factor obtained from the wind tunnel experiments and is the ratio of the
H

dynamic pressure at the reference height in the wind tunnel where upper level wind speed is taken
(subscript ref ) and the dynamic pressure at roof (eave) height (subscript H ). Because of high turbulence
near roof height, the measurements taken at this level have large variability. The uncertainties of this
factor and wind tunnel testing on low buildings are further discussed in the following section. General
discussion on the variability of wind tunnel testing on low buildings can be found in Kopp, et al. [6].

Table 3 summarizes the factors used for re-referencing the pressure coefficients to roof height
dynamic pressures.

The maximum and minimum pressure coefficients included in this report have been Lieblein-fitted and
are more statistically stable quantities than the measured peaks. This involves dividing the record into 10
parts, using the Lieblein BLUE formulation [7] with the 10 individual peaks to estimate the mode and
dispersion of the Type | extreme value distribution, and using these to obtain the “best” expected peak for
the entire record.
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3 VARIABILITY OF ROOF HEIGHT DYNAMIC PRESSURES

3.1 Background

It is widely accepted that aerodynamic data referenced to roof height dynamic pressure produces the
least variability. All low building pressure data sets follow this convention, including those in building
codes. It is also intended in this study that all acquired data will be presented and compared based on
such a definition.

Because of the high turbulence at the heights of low buildings, it is generally not practical to use the
roof height wind speed as a close loop control of the wind tunnel test wind speed. A pitot-static tube at
upper level, outside of the boundary layer of the wind tunnel roof is generally used as the reference wind
speed for test purposes. All raw pressure data are initially referenced to this upper level wind speed. By
knowing the ratio of the roof height and upper level reference wind speed, conversion can be carried out
to obtain pressure coefficients referenced to roof height dynamic pressure.

It is common practice to carry out wind profile measurements for the simulated wind for any wind
tunnel test. The wind speed profile can then be used to obtain this roof-to-reference-height speed ratio. In
the experiments described in this report, wind speed profile measurements have been taken for each of
the wind tunnel simulations mentioned in the previous sections. The measurements include hot-wire
anemometer and pitot static tubes at various heights in the wind tunnel. Two hot-wire anemometers were
used, each travelling approximately half the height of the wind tunnel. Two pitot-static tubes were
mounted beside the hot-wire anemometers. While the hot-wire anemometers are capable of measuring
mean wind speeds and turbulence intensities, the mean speeds are sensitive to small temperature
fluctuations. The pitot-static tubes do not have the frequency response to give correct turbulence
intensities but are insensitive to temperature and are used as a cross-check of the mean wind speed.

Because of the low height of the low buildings, the wind speed ratios at roof and reference height can
be as small as 0.5. When converted to dynamic pressures, the ratio becomes 0.25 and the conversion
factor can be in the order of 4. A small error in the wind speed ratio can affect significantly the pressure
coefficients referenced to roof height.

3.2 UWO Wind Speed Profiles and Conversion Factors

The mean wind profiles between the hot-wire and pitot-static measurements are shown to be
comparable. It is recognized that the roof height dynamic pressure may be best measured using a pitot-
static tube at roof height. This has been done for all tests. However, for low roof height cases in rougher
terrain, the roof height pitot-static tube located off the turntable can be affected significantly by the
roughness elements. It was decided that additional pitot-static tubes at an intermediate height upstream
of the turnatable at about % point of the width of the wind tunnel and at the centerline of the wind tunnel
should be installed and sampled in every test. The intermediate heights used in these tests were 70 feet
(equivalent full scale) for the 1:50 scale tests and 160 feet (equivalent full scale) for the 1:100 scale tests.
These data are used based on the premise that the intermediate height measurements will give a
reference related to upper level wind speed measurements during the time of the tests and that the lower
part of the wind profile will have little variation between the intermediate measuring location and the roof
height.

In addition to the measurements taken during the tests, three subsequent sets of reference pressure
measurements were taken separated by 3 months. Although the data show some variation, they are
consistent. They did not match the roof height measurements taken during the 125'x80’, 1:12 roof slope
building model tests (the first attempt of Test 1). It was subsequently discovered that the first attempt of
Test 1 suffered from a static pressure problem. While the pressure data for Test 1 have been re-tested,
the dynamic pressure ratios from the original data for Test 1 were found to be consistent when
approximate corrections for the static pressure problem were applied.
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Table 4 summarizes the measurements of the roof height and intermediate height wind speed ratios
and the variability of the measurements. With no obvious difference among the tests, overall averages of
the ratios taken in different measurements were taken as best estimates. The range of the roof-height-to-
intermediate-height speed ratios is -4% to +3% of the average values while the range of the intermediate-
height-to-reference-height speed ratios is -2% to +1% of the average.
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4 DATA QUALITY CHECKS

4.1 General

General checks have been carried out to ensure consistency of the current data with other data sets.
In some cases, data from similar tests were used for comparison. All wind tunnel experiments are
expected to have inherent uncertainties; further discussion on the topic of experimental uncertainties can
be found in Kopp, et al. [6].

4.2 Overall data checks

For an isolated low building, the pressure variations on the building are directly related to the energy
in the incident wind. The total fluctuating energy measured on the building will vary with wind direction
because of the detailed aerodynamics but Holmes [8] has suggested that the variation can be expected to
be slow. Thus, the calculation of the overall sum of variances at all point measurements and its variation
with wind direction offers a simple way of checking the overall data consistency.

Evar (“) = Z Gép (a)

all taps

An alternative measure is the sum of mean square values about zero over all pressure taps. This is
related to the total energy rather than just the fluctuating energy inherent in the above expression.

Emeansquare(@)= Y. |CB(@n)]= Y [0 (@)+C2a)

all taps all taps

The sum of variances and the sum of mean square values were calculated for all data sets and their
variations with wind direction are shown in Appendix C.

The sum of mean square values are seen to be slightly less variable than the sum of variances. As
far as the variation with wind direction is concerned, it was found that most of the data sets appear to be
well behaved. In a few occasions, the sum of variances indicates large variation with wind direction
whereas the sum of mean squares shows a much smoother behaviour. Nevertheless, data sets showing
a large change in the variance summation have been examined; however, no clear reason for the
deviation is obvious. Since equal weighting is given to each tap, some of the variability may be due to the
non-uniform tap resolution. The figures in Appendix C can be used as a guide for a general level of
reliability of the data within the data sets.

For example, in the case of Test 4. 12-ft building in suburban terrain, data at 0° have been identified
as unreliable because of a reference pressure problem. The error is relatively small and it affects the
smaller readings more significantly. The sum of variances is shown to be very different when compared
with the adjacent wind angles but the sum of mean squares are similar, suggesting that the error does not
affect the large peak pressures significantly.

4.3 Comparison of data within the database

The following comparisons provide an initial summary of the low building database by examining the
spatial variation of the mean and rms pressure coefficients. The analysis makes use of the building
configurations tested at UWO to separately examine the effects of roof slope, building height and building
plan dimension on local pressure coefficients. This was repeated along two lines of pressure taps, firstly
along a line in the middle of the building (mid-span) for a wind direction of 270° and secondly at a short
distance from the building edge for a wind direction of 325°. Only the results from the open country
terrain are included in this report.
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4.3.1 Effect of building height

Comparisons were made to determine the effect of building height on wind loads. Only the results
from the 1:12 building are presented in this report. It is the current understanding for building roofs large
enough for flow reattachment to take place that local pressure coefficients on the building roof, when

g (y)
H

referenced to the eaves height mean dynamic pressure, qy, are dependent on the ratio o or,

distance from leading edge
building height
at the building corner with the high tap density, with the x axis in the direction of the gable end wall and
the y axis along the long side wall of the building. In particular, it is believed that once the flow has
separated from the leading edge (or corner) of the building, the distance until the flow reattaches is
proportional to the height of the building. This is shown in Figure 30, which presents the spatial variation
of the mean and rms pressure coefficients along the line of taps at mid-span, for a wind direction of 270°.
Note that the distance of the tap from the leading edge of the building, x, is normalized by the eave
height of the building, H . The figures show the pressure coefficients at the leading edge collapse
reasonably well within the separated and reattached flow region for all buildings for x/H <~1.0.

Deviations in the mean pressure coefficients begin to occur as x/H approaches the building ridge, with
secondary separation of the flow at the ridge for all four building heights. It can be seen in Figure 30 that
the pressure levels off on the 16 ft building prior to the ridge for x/H > ~ 1.4, indicating fully reattached

flow. This is similar on the 24 ft building. There is clear evidence of increases in mean and rms pressure
coefficients at the ridge for the 16 ft and 24 ft buildings. Slight increases in mean pressure coefficients
can also be seen at the ridge on the 32 ft and 40 ft buildings, indicating the flow is not fully reattached
before reaching the ridge, at x/H of 1.25 and 1.0 respectively. It is not clear what kind of normalization
could collapse the data in the lee of the ridge. Since the flow adjusts to the presence of the ridge
upstream of the ridge, normalization based on the distance from the ridge, for locations in its lee may not
be entirely appropriate. It should be noted that, over the complete roof, the neural network approach of
Chen et al. [9] captures the variations of the mean and rms pressure coefficients more accurately than
this simple relationship with roof height.

. Figure 13 shows the coordinate system used for the roof area. The origin is

Similar comparisons were performed for a line of taps located a distance approximately y/H =0.41
from the building edge and for a wind direction of 325° in Figure 31. In this case, the line of pressure taps
is chosen such that it crosses the path of both corner vortices. Different rows of pressure taps were used
for different building heights in order to maintain similar ratios of y/H for comparison. As such, no
pressure taps are available for comparison in the lee of the ridge for the 24 ft and 40 ft buildings. The
distribution of the mean and rms coefficients clearly show the presence of the two corner vortices by the

xy) g

large rms values at the leading edge and again at x/H =1.2. The figures indicate that a

reasonable normalizing parameter for the pressure distribution up until the center of the second vortex.
For this line of taps, both the mean and rms coefficients are strongly affected by the ridge where the
pressure gradient is very high, just ahead of flow separation at the ridge.

4.3.2 Effect of roof pitch

Three different roof slopes have been tested (¥2:12 , 1:12, and 3:12) in this phase of the testing
program for buildings with the same plan dimensions of 125 ft x 80 ft. Comparisons of the effect of roof
pitch on local pressure coefficients are limited to the building height of 24 ft.

Figure 32 presents the effect of roof slope on the mean and rms pressure coefficients measured at
mid-span, for a wind direction of 270°. The figures indicate that the pressure distributions on the %412
and 1:12 roof sloped buildings are relatively similar for this wind direction, consistent with the assumption
that roof slopes less than 10° have similar aerodynamic behaviour. Mean pressure coefficients for the
1:12 roof slope building are higher by less than 12% at the leading edge and 30% behind the ridge. In
absolute values, this equates to a difference in pressure coefficient of less than 0.15 in both instances.
The results from the 3:12 roof slope show the greatest variation with roof slope. As expected, the steeper
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roof slope has a significant reduction in suction pressures at the leading edge of the building because of
the earlier reattachment; however, there is an increase in the suction pressures behind the ridge.

Similar trends were observed near the roof edge for winds approaching from 325°, as shown in Figure
33. In this case, the third row of pressure taps was used for the comparisons (y /H =0.28). Again, the

%:12 and 1:12 buildings show similar pressure distributions until just before the ridge. Beyond the ridge,
the mean and rms coefficients increase with roof slope.

4.3.3 Effect of building plan dimensions

All buildings tested in the current testing program have the same length to width ratio. For the 1:12
roof slope, three different building plan dimensions, 62.5 ft x 40 ft, 125 ft x 80 ft, and 250 ft x 160 ft, were
tested in this phase of the program. Among three of the buildings tested, appropriate roof heights are
selected, i.e., 62.5 ft x 40ft x 12 ft, 125 ft x 80 ft x 24 ft and 250 ft x 160 ft x 40 ft, for comparison among
geometrically similar buildings with variation only in size, although the largest model is relatively shorter
by proportion. Figure 34 presents the spatial variation of the mean and rms pressure coefficients recorded
along the row of taps at mid-span for a wind direction of 270° for each of the above buildings.
Comparisons of the mean pressure distribution show good agreement at the leading edge and behind the
ridge of the buildings. The largest building size gives slightly higher mean pressures at the leading edge
but otherwise all three buildings agree quite well. For rms pressures, Figure 34 show good agreement
among all three buildings except higher values for the smallest building at the leading edge.

4.3.4 Comparison with Full Scale TTU Data

The previous comparisons show that normalized distance from the building edge, (x,y)/H, provides
a reasonably good collapse of the aerodynamic data among wind tunnel tests. Comparison with the TTU
field experiment data [10] will now be made to assess similar relationships with the full-scale data. It
should be noted that the standard open exposure (z, = 0.03 m) used in the wind tunnel tests falls within

the range of full scale terrain condition based on the reported turbulence intensities taken at TTU and the
data are therefore generally comparable.

Figure 35 shows the mean, rms and peak pressure coefficients along the first row of pressure taps on
the TTU building; i.e. taps 50101, 50501 and 50901. The TTU building has dimensions of 45 ft x 30 ft x 13
ft with a ¥4:12 roof slope. These are compared with the second row of taps on the % :12 roof slope, 125 ft
x 80 ft x 40 ft, building tests, the equivalent y /H value is approximately 0.09. Data are available for the

windward half of the roof up to x/H =1.0. The comparison is for a cornering wind 35° from the long
building axis (equivalent to 325° in the generic model test wind angle definition). These included all data
from the TTU experiments with wind directions within 2.5° of 325°. They are compared to wind tunnel
results at 325° (note that definition of wind angle is based on the convention of the current NIST data).
The top portion of Figure 35 shows that the mean pressures compare well. The rms pressure coefficients
in the bottom half of Figure 35 show significant differences although the trend is captured, with the wind
tunnel data being lower. This is in line with previous model scale / full scale comparisons of the TTU
Building [11,12]. Similar differences are observed in the peak pressure coefficients shown in Figure 35
where the negative peaks under the vortex at Tap 50501 are not reproduced in the wind tunnel tests.
Near the edge of the building, the wind tunnel results show a large negative peak pressure coefficient of
-10.7 . The full scale data set does not have any pressure tap at this distance from the building edge. It is
also interesting to observe that the wind tunnel data tends to envelope the lower range of the full-scale
values.

Figure 36 shows the comparison of mean, rms and peak pressure coefficients between tap 50501
from the TTU full scale experiments and a comparable tap from the current NIST tests on the ¥4 :12 roof
slope, 125 ft x 80 ft x 40 ft building, based on normalized distance from the leading edge with x/H =0.36
and y/H =0.09. The comparison is limited to the cornering wind directions, equivalent to the NIST test

angle range of 270° to 360°.
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Comparison of the mean pressure coefficients in Figure 36 shows good agreement, given the large
variability of the full scale data. The rms pressure coefficients shown in Figure 36 from the current NIST
data and the TTU do not match as well, although the wind tunnel data again envelope the lower range of
the full-scale data. This is similar to previous comparisons carried out between the model tests of the TTU
model and full-scale results [11,12,13,14]. Similar observations can be made for peak pressure
coefficients from the current generic model tests and the TTU full-scale data. It can be concluded that the
wind tunnel technique used cannot reproduce the highest peaks obtained near the edges of the roof, but
does seem to match the lower end of the full-scale data.

4.3.5 Comparison with ASCE 7-02 Recommended Loads

The experimental results are compared for a limited number of cases with the existing American
Society of Civil Engineers (ASCE 7-02) Standard [15], by comparing a number of area-averaged loading
coefficients. St. Peirre et al. [16] presented a detailed comparison with wind load provisions for structural
loads and also with Stathopoulos’ data [17]. In addition to examining point pressure coefficients (single
pressure taps), five area-averaged loading coefficients were developed at the leading corner of the
building by simultaneously combining pressures recorded on a number of taps covering the area
considered. The tap combinations used in the analysis are presented in Figure 37, where the corner of
each loading area corresponds to the corner point of the building. Note that these may not be the worst
locations for each of these areas, especially the smaller ones.

Figure 37 presents the minimum pressure coefficients versus loading area for a number of the current
generic model data sets with constant plan dimensions of 125 ft x 80 ft. The pressure coefficients
presented in the figure represent the worst pressure coefficients recorded over all wind directions. Also
included in the figure are the ASCE 7-02 recommended loading coefficients obtained for the
corresponding loading areas, with all relevant reduction factors ignored in the analysis. All coefficients
presented in the figure are normalized by the 10-m height, 3-second gust wind speed, as recommended
by the ASCE 7-02 standard.

The figure indicates that the area-averaged coefficients tend to increase with building height, with the
worst coefficients occurring on the lesser sloped buildings. The worst point pressure coefficient of —5.2
was recorded on the 40 ft tall building with a 1:12 gable roof slope. In most cases the ASCE 7-02 derived
loads were below the measured coefficients, in particular for the point pressures, where the H = 40 ft,
1:12 slope building configuration recorded a worst coefficient almost twice as large as the ASCE 7-02
derived load. However, the comparisons do improve for the larger areas, with the ASCE provisions
underestimating the maximum experimental load by 30% for area ‘A2’ and by 20% for area ‘A3’. Some of
these differences would be reduced through the use of wind directionality factors, etc.
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5 DATA ARCHIVAL SYSTEM

5.1 Background

The NIST aerodynamic database will be used by a large group of researchers for an extended period
of time. All pressure readings taken in experiments carried out at UWO are routinely saved for later “off-
line” analysis. These files are written in binary format and consist of a descriptive header followed by
several thousand scans of “raw” integer counts from the Analog-to-Digital (A/D) converter. This technique
generates a large quantity of data. For example, a 650-tap building yields a 40 MB file when sampled at
500 Hz for 60 seconds or over 1.3 GB for a typical test with 36 wind directions.

In the past, data files consisting of raw time series from UWO have been sent to other researchers
written in a hexadecimal format for compactness and cross platform readability. Although it provided a
usable way of conveying the data, details about test parameters, model and wind tunnel configuration,
etc. were stored separately from the data. It became clear that as the number of data sets and
configurations increases, the possibility of introducing errors due to miscommunication of experimental
parameters becomes large.

The overall objective of the current archiving system is to provide the user with all the information
needed to define the experiment within which the data were taken, and to allow the user to extract the
data needed for further analysis. The information provided for the user includes pictures of the model and
set-up, and whatever ancillary supporting information is deemed necessary to define the tests.

5.2 Selection of Data Format

Among several ‘standard’ data formats used within the scientific community, the NCSA (National
Center For Supercomputing Applications) HDF (Hierarchical Data Format) was selected for the archive.
This format was chosen for several reasons:

1. A large existing base (several platforms and languages) of public domain software libraries to
access and manipulate HDF files;

2. The ability to manipulate large arrays and individual data items within a single container file;
and

3. Continually improving support for HDF files in MATLAB which was the language chosen to
develop the UWO supplied software.

More details regarding the HDF format are available on the following website:
http://hdf.ncsa.uiuc.edu.

The key features of the implemented format are described below:

5.2.1 Self documentation

In order for the files to be self-documenting, a file-naming scheme which conveys information about
the major test parameters by encoding them into specific fields of the filename has been adopted.

For example, a typical file name provides information on the originating facility, the roof slope, the
exposure, the model scale, the leakage case for internal pressures, the building eave height and the wind
angle:

Filename: ADW1000100S048a3250.HDF

pos 1-3 identifies the originating facility (ADW = Alan G. Davenport Wind Engineering Group)
pos 4-6 identifies the roof slope in 12ths multiplied by 100 (100 = 1:12 roof slope)
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pos 7 identifies the exposure (o = open exposure)
pos 8-10 identifies the model scale to 3 digits (100 = 1:100 length scale)

pos 11 identifies the leakage case (S = small opening case)

pos 12-14 is the building eave height in full scale feet to 3 digits (048 = 48 feet building height)

pos 15 is the index for different cases with otherwise the same filename (a = case a)

pos 16-19 is the wind angle in degrees to be read as xxx.x (3250 = 325.0 degree wind direction)
.HDF identifies the data format as a Hierarchical Data File which is the standard file format

chosen for the exchange of the data.

The file includes a header that contains all possible details for interpreting the data. Due to the size of
data sets within the file, the headers can be relatively large and still make up only a small percentage of
the file. Some items within the comprehensive file header are:

e time stamp, experiment title, and originating organization
e azimuth, wind speed (roof height and reference height)

o file size: number of records times the size of records

¢ wind profile information

e mean wind speed

e turbulence intensity

e spectral density function

e tap locations/ tap mapping within the file

e details of model geometry

The last three points are achieved by referencing external profile and drawing files.

5.2.2Building geometry and tap locations

The HDF files contain data items with supporting information for the data set. For example,
information on the order of the data, the tap number and the building face nhumber on which the tap is
located are provided. To complement the tap coordinate information, data items of the building geometry
and the tap locations in 3D coordinates as well as in 2D coordinates of a flattened coordinate system are
available to draw a wire frame outline of the building and the tap locations for illustration.

5.2.3 Data handling

The data handling routines supplied by the NCSA as part of the HDF standard have the ability to
extract any slice of any data item within an HDF file. These routines have been incorporated into the
MATLAB HDF support facility. Specific functions have been developed to load and read the data set.
Subroutines could be written to provide the casual user with data on a scan-by-scan basis thereby
isolating the user from learning the mechanics of file buffers, etc.

5.3 Data generated at other facilities

For the archiving of data generated at other testing facilities, the MATLAB source code used for
creating the UWO archives is available. This may be adapted by individual facilities to fit their raw data file
format for conversion to the HDF file format. This program requires several basic input items to complete
the documentation of the data set. The names of the required input files are assembled based on rules
and information contained in control files which act as lookup tables.
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TABLE 3

Generic Model Tests

FACTORS FOR RE-REFERENCING PRESSURE COEFFICIENTS TO ROOF
HEIGHT DYNAMIC PRESSURES

Building Exposure 1 Exposure 2
Test Height (ft
eight (ft) Open Suburban
12 3.18 5.00
16 2.96 4.59
1t05 18 2.90 4.57
24 2.60 4.21
32 2.43 3.82
40 2.32 3.51
WERFL Building Model Tests
Exposure 1 Exposure 2
Test Building 10th- 90th-
Height (ft) percentile percentile
(see Figures 6|(see Figures 7
and 8) and 9)
6 13 2.39 3.44
7 13 231 4.00
8 13 2.31 4.00
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FIGURES

MReport: BLWT-SS20-2003 26 Alan G. Davenport Wind Engineering Group



EXPOSURE 2 (SUBURBAN)

FIGURE 1 VIEWS OF A GENERIC BUILDING MODEL IN THE WIND TUNNEL
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EXPOSURE 2 (zo = 0.087 m)

FIGURE 2 VIEWS OF THE 1:50 WERFL BUILDING MODEL IN THE WIND TUNNEL
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EXPOSURE 2 (zo = 0.087 m)

FIGURE 3 VIEWS OF THE 1:100 WERFL BUILDING MODEL IN THE WIND TUNNEL
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R SO e AN e e
OPENINGS ON THE 16’ BUILDING MODEL

OPENINGS ON THE 40’ BUILDING MODEL

FIGURE 16 VIEWS OF THE DOMINANT OPENINGS ON THE 125’X80’, 1:12 ROOF SLOPE
BUILDING
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TURNTABLE

SEALED
CHAMBER

FIGURE 17 VIEWS OF SEALED CHAMBER UNDERNEATH THE TURNTABLE FOR
VOLUMETRIC SCALING
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FIGURE 21 CLOSE-UP VIEWS OF THE GENERIC BUILDING MODEL - TEST 1
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FIGURE 22 CLOSE-UP VIEWS OF THE GENERIC BUILDING MODEL - TEST 2
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CLOSE-UP VIEWS OF THE GENERIC BUILDING MODEL - TEST 3

FIGURE 23

Alan G. Davenport Wind Engineering Group
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FIGURE 24 CLOSE-UP VIEWS OF THE GENERIC BUILDING MODEL - TEST 4
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FIGURE 25 CLOSE-UP VIEWS OF THE GENERIC BUILDING MODEL - TEST 5
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FIGURE 26 CLOSE-UP VIEWS OF THE 1:50 SCALE UWO MODEL OF THE WERFL BUILDING -
TEST 6
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FIGURE 27 CLOSE-UP VIEWS OF THE 1:100 SCALE UWO MODEL OF THE WERFL BUILDING -
TEST 7
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FIGURE 28 CLOSE-UP VIEWS OF THE 1:100 SCALE CSU MODEL OF THE WERFL BUILDING -
TEST 8

»
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FIGURE 29 FREQUENCY RESPONSE CHARACTERISTICS OF THE PRESSURE TUBIING
SYSTEM USED
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FIGURE 32 VARIATION OF PRESSURE COEFFICIENTS ALONG A LINE OF TAPS AT MID-SPAN
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APPENDIX B

SUMMARY DATA SHEETS
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SUMMARY DATA SHEET

TEST 1 - GENERIC MODEL (125'x80’, 1:12 ROOF SLOPE)

125’ x 80’ x four different eave heights; 1:12 roof

Building dimensions slope gable roof

Model scale 1:100
Number of pressure taps 665 external taps + 2 internal taps
Sampling frequency 500 Hz
Sampling period 100 seconds
Reference wind tunnel speed 45 fps, nominal (see note 1)
Test angles Every 5° between 180 ° and 360 ° (inclusive)
Upstream exposure 1 2
Exposure description Open country Suburban
H=16’ 0.581 0.467
Ratio of roof to reference wind speed H=24’ 0.620 0.487
(see note 2) H=32’ 0.642 0.512
H=40’ 0.657 0.534
H=16’ 26 21
Nominal roof height wind speed, Vy,, in | H=24' 28 22
fps (see notes 1 and 2) H=32" 29 23
H=40’ 30 24
Full scale mean wind speed at roof height (fps) Vy
. . 5V
Equivalent full scale sampling frequency -
VHm
_ ) _ 10000 Vym
Equivalent full scale sampling duration (seconds) T
Test file identifications:
No leakage H=32’ SG1
H=16' EE1 EE2
o H=24' EF1 EF2
Distributed leakage H=32" EG1 EGo
H=40’ EH1 EH2
Small opening H-16 FEL FE2
H=40’ GH1 GH2
) H=16' HE1 HE2
Large opening H=40' HH1 HH2

Notes:

1. Actual wind speeds are within 5% of 45 fps at reference level. Pressure coefficients have been
normalized based on actual wind tunnel speeds. For the determination of time scaling, nominal
wind speed of 45 fps has been used.

2. Best estimates of ratios of roof height to reference wind speeds.
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SUMMARY DATA SHEET

TEST 2 — GENERIC MODEL (125'x80’, 3:12 ROOF SLOPE)

Buildi . . 125’ x 80’ x four different eave heights; 3:12 roof
uilding dimensions
slope gable roof
Model scale 1:100
Number of pressure taps 677 external taps + 2 internal taps
Sampling frequency 500 Hz
Sampling period 100 seconds
Reference wind tunnel speed 45 fps, nominal (see note 1)
Test angles Every 5° between 180 ° and 360 ° (inclusive)
Upstream exposure 1 2
Exposure description Open country Suburban
H=16’ 0.581 0.467
Ratio of roof to reference wind speed H=24’ 0.620 0.487
(see note 2) H=32’ 0.642 0.512
H=40’ 0.657 0.534
H=16’ 26 21
Nominal roof height wind speed, Vy,, in | H=24' 28 22
fps (see notes 1 and 2) H=32" 29 23
H=40’ 30 24
Full scale mean wind speed at roof height (fps) Vy
. . 5V
Equivalent full scale sampling frequency -
VHm
_ ) _ 10000 Vym
Equivalent full scale sampling duration (seconds) T
Test file identifications:
H=16' M11 M12
H=24’ M21 M22
Distributed leakage H=32’ M31 M32
H=40’ M41 M42__

Notes:

1. Actual wind speeds are within 5% of 45 fps at reference level. Pressure coefficients have been
normalized based on actual wind tunnel speeds. For the determination of time scaling, nominal
wind speed of 45 fps has been used.

2. Best estimates of ratios of roof height to reference wind speeds.
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SUMMARY DATA SHEET

TEST 3 — GENERIC MODEL (125'x80’, ¥a:12 ROOF SLOPE)

Building dimensions

125’ x 80’ x five different eave heights; ¥4:12 roof
slope gable roof

Model scale 1:100
Number of pressure taps 659 external taps + 3 internal taps
Sampling frequency 500 Hz

Sampling period

100 seconds

Reference wind tunnel speed

45 fps, nominal (see note 1)

Test angles

Every 5° from 270° to 360° and from 0° to 90°

(inclusive) (except set 112, see note 3)

Upstream exposure 1 2
Exposure description Open country Suburban
H=12' 0.561 0.447
Ratio of roof to reference wind speed Ef;i 822(7) 8323
(see note 2) —— : :
H=32 0.642 0.512
H=40’ 0.657 0.534
H=12' 25 20
Nominal roof height wind speed, V,, in Ef;i gg ;;
fps (see notes 1 and 2) H=32' 29 23
H=40' 30 24
Full scale mean wind speed at roof height (fps) VH
. . 5Vy
Equivalent full scale sampling frequency Vo
Hm
) ) ) 10000 Vym
Equivalent full scale sampling duration (seconds) V.
H
Test file identifications:
H=12' . nz__
H=18' J1 J2__
Distributed leakage H=24' IK1___ IK2___
H=32' L L2
H=40' M1 IM2_

Notes:

1. Actual wind speeds are within 5% of 45 fps at reference level. Pressure coefficients have been
normalized based on actual wind tunnel speeds. For the determination of time scaling, nominal

wind speed of 45 fps has been used.

2. Best estimates of ratios of roof height to reference wind speeds.

3. Wind angles for set 112 are every 5° from 90°, through 180°, to 270°.
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SUMMARY DATA SHEET

TEST 4 — GENERIC MODEL (62.5'x40’, 1:12 ROOF SLOPE)

Building dimensions

62.5" x 40’ x four different eave heights; 1:12 roof
slope gable roof

Model scale 1:100
Number of pressure taps 665 external taps + 3 internal taps
Sampling frequency 500 Hz

Sampling period

100 seconds

Reference wind tunnel speed

45 fps, nominal (see note 1)

Every 5° from 270° to 360° and from 0° to 90°

Test angles . .
(inclusive)
Upstream exposure 1 2
Exposure description Open country Suburban
H=12’ 0.561 0.447
Ratio of roof to reference wind speed H=18’ 0.587 0.468
(see note 2) H=24’ 0.620 0.487
H=40’ 0.657 0.534
H=12’ 25 20
Nominal roof height wind speed, Vi, in | H=18’ 26 21
fps (see notes 1 and 2) H=24’ 28 22
H=40’ 30 24
Full scale mean wind speed at roof height (fps) Vy
. . 5Vy
Equivalent full scale sampling frequency -
VHm
. . . 10000 Vym
Equivalent full scale sampling duration (seconds) v,
H
Test file identifications:
H=12’ JN1__ JN2__
o H=18’ JM1_ JM2__
Distributed leakage H=24" JO1 102
H=40’ JP1__ JP2__

Notes:

1. Actual wind speeds are within 5% of 45 fps at reference level. Pressure coefficients have been
normalized based on actual wind tunnel speeds. For the determination of time scaling, nominal

wind speed of 45 fps has been used.

2. Best estimates of ratios of roof height to reference wind speeds.
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SUMMARY DATA SHEET

TEST 5 - GENERIC MODEL (250'x160’, 1:12 ROOF SLOPE)

Building dimensions

250’ x 160’ x four different eave heights; 1:12 roof

slope gable roof

Model scale

1:100

Number of pressure taps

665 external taps

Sampling frequency

500 Hz

Sampling period

100 seconds

Reference wind tunnel speed

45 fps, nominal (see note 1)

Every 5° from 270° to 360° and from 0° to 90°

Test angles . .
(inclusive)
Upstream exposure 1 2
Exposure description Open country Suburban
H=12’ 0.561 0.447
Ratio of roof to reference wind speed H=18’ 0.587 0.468
(see note 2) H=24’ 0.620 0.487
H=40’ 0.657 0.534
H=12’ 25 20
Nominal roof height wind speed, Vi, in | H=18’ 26 21
fps (see notes 1 and 2) H=24’ 28 22
H=40’ 30 24
Full scale mean wind speed at roof height (fps) Vy
. . 5Vy
Equivalent full scale sampling frequency -
VHm
. . . 10000 Vym
Equivalent full scale sampling duration (seconds) v,
H
Test file identifications:
H=12’ oul ou2__
) ] H=18’ ovi_ ova___
No leakage or dominant openings H=24" oW1 OoW?2
H=40’ OX1_ OoXx2___

Notes:

1. Actual wind speeds are within 5% of 45 fps at reference level. Pressure coefficients have been
normalized based on actual wind tunnel speeds. For the determination of time scaling, nominal

wind speed of 45 fps has been used.

2. Best estimates of ratios of roof height to reference wind speeds.
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SUMMARY DATA SHEET

TEST 6 — WERFL BUILDING — UWO 1:50 MODEL (45'x30'x13’, %2:12 ROOF SLOPE)

Building dimensions

45’ x 30’ x 13’; ¥4:12 roof slope gable roof
Model scale 1:50
Number of pressure taps 128 external taps
Sampling frequency 250 Hz

Sampling period

180 seconds

Reference wind tunnel speed

45 fps, nominal (see note 1)

Test angles

19 angles - 0°, 15°, 30°, 35°, 40°, 45°, 50°, 55°,
60°, 75°, 90°, 105°, 120°, 135°, 150°, 180°, 225°,
270°, 330°

Upstream exposure

1 2

Exposure description

WERFL site condition WERFL site condition
(10" percentile)

(90" percentile)
Roughness length (m) 0.01 0.087
Ratio of roof to reference wind speed (see note 2) 0.647 0.539
Nominal roof height wind speed, Vy, , in fps (see 29 24
notes 1 and 2)
Full scale mean wind speed at roof height (fps) Vy
: . SVh
Equivalent full scale sampling frequency —
VHm
, ) , 9000 Vy,
Equivalent full scale sampling duration (seconds) Vil
Test file identifications:
Basic tests BT1 BT2
Additional tests: 20 repeat tests at 45° wind angle BTR_

Notes:

Actual wind speeds are within 5% of 45 fps at reference level. Pressure coefficients have been

normalized based on actual wind tunnel speeds. For the determination of time scaling, nominal

wind speed of 45 fps has been used.

2. Best estimates of ratios of roof height to reference wind speeds.
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SUMMARY DATA SHEET

TEST 7 — WERFL BUILDING — UWO 1:100 MODEL (45'x30'x13’, ¥%:12 ROOF SLOPE)

Building dimensions

45’ x 30’ x 13’; ¥4:12 roof slope gable roof
Model scale 1:100
Number of pressure taps 206 external taps
Sampling frequency 500 Hz

Sampling period

100 seconds

Reference wind tunnel speed

45 fps, nominal (see note 1)

Test angles

22 angles — 0°, 10°, 15°, 20°, 25°, 30°, 35°, 40°,
45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 90°, 135°,
180°, 225°, 270°, 315°

Upstream exposure

1 2

Exposure description

WERFL site condition WERFL site condition
(10" percentile)

(90" percentile)
Roughness length (m) 0.01 0.087
Ratio of roof to reference wind speed (see note 2) 0.658 0.500
Nominal roof height wind speed, Vy, , in fps (see 30 23
notes 1 and 2)
Full scale mean wind speed at roof height (fps) Vy
: . SVh
Equivalent full scale sampling frequency —
VHm
, ) , 10000 Vi,
Equivalent full scale sampling duration (seconds) T
Test file identifications:
Basic tests ST3 ST4
Additional tests: 20 repeat tests at 45° wind angle STR__

Notes:

Actual wind speeds are within 5% of 45 fps at reference level. Pressure coefficients have been

normalized based on actual wind tunnel speeds. For the determination of time scaling, nominal

wind speed of 45 fps has been used.

2. Best estimates of ratios of roof height to reference wind speeds.
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SUMMARY DATA SHEET

TEST 8 - WERFL BUILDING — CSU 1:100 MODEL (45'x30'x13’, ¥a:12 ROOF SLOPE)

Building dimensions

45’ x 30’ x 13’; ¥4:12 roof slope gable roof
Model scale 1:100
Number of pressure taps 130 external taps
Sampling frequency 500 Hz

Sampling period

100 seconds

Reference wind tunnel speed

45 fps, nominal (see note 1)

Test angles

22 angles — 0°, 10°, 15°, 20°, 25°, 30°, 35°, 40°,
45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 90°, 135°,
180°, 225°, 270°, 315°

Upstream exposure

1 2

Exposure description

WERFL site condition WERFL site condition
(10" percentile)

(90" percentile)
Roughness length (m) 0.01 0.087
Ratio of roof to reference wind speed (see note 2) 0.658 0.500
Nominal roof height wind speed, Vy, , in fps (see 30 23
notes 1 and 2)
Full scale mean wind speed at roof height (fps) Vy
: . SVh
Equivalent full scale sampling frequency —
VHm
, ) , 10000 Vi,
Equivalent full scale sampling duration (seconds) T
Test file identifications:
Basic tests TP3__,TR3 | TP4

Notes:

Actual wind speeds are within 5% of 45 fps at reference level. Pressure coefficients have been

normalized based on actual wind tunnel speeds. For the determination of time scaling, nominal

wind speed of 45 fps has been used.

2. Best estimates of ratios of roof height to reference wind speeds.
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APPENDIX C

SUM OF MEAN SQUARES AND SUM OF VARIANCES FOR ALL TESTS

e Note: Sums of mean squares and variances were calculated for Test 1 to Test 5 only.
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Test 1, 16ft Bld, Open country terrain
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Test 1, 24ft Bld, Open country terrain
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Test 1, 32ft Bld, Open country terrain
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Test 1, 32ft Bld, Suburban terrain
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Test 1, 40ft Bld, Open country terrain
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Test 1, 40ft Bld, Suburban terrain
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Test 2, 16ft Bld, Open country terrain
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Test 2, 24ft Bld, Open country terrain
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Test 2, 32ft Bld, Open country terrain
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Test 2, 32ft Bld, Suburban terrain
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Test 2, 40ft Bld, Open country terrain
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Test 3, 12ft Bld, Open country terrain
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Test 3, 18ft Bld, Open country terrain
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Test 3, 32ft Bld, Open country terrain
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Test 3, 40ft Bld, Open country terrain
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Test 4, 12ft Bld, Open country terrain
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Test 4, 18ft Bld, Open country terrain
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Test 4, 24ft Bld, Open country terrain
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Test 4, 40ft Bld, Open country terrain
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Test 5, 18ft Bld, Open country terrain
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Test 5, 40ft Bld, Open country terrain
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