

And outdoor failures observed

Karl A. Berger (AIT)

Karl A. Berger, Gusztáv Újvári, Rita Ebner AIT, Austrian Institute of Technology GmbH, Vienna Gabriele C. Eder, Yuliya Voronko OFI, Austrian Research Institute for Chemistry and Technology, Vienna Karl Knöbl, Simon Dimitriadis FH-TW, University of Applied Sciences Vienna Lukas Neumaier

CTR, Carinthian Tech Research | SAL, Silicon Austria Labs, Villach

- > Motivation: PV installations under challenging climatic conditions
- PV Industry trends in applications
- > Outdoor failures observed with respect to Koeppen-Geiger climate zones
- Circular failure tree approach
- > Our test results, and the manifold of test procedures and failure modes
- Summary & Outlook

ESTIMATED INSTALLATION 2019 ABOVE 100GW AGAIN

Rapid worldwide market grow: mostly young systems, few data about long term performance

TOP PV MARKETS 2018

Changing markets

- Early PV installations & markets: mostly in moderate climates Large incentives to get started
- NOW: many installations under more challenging environmental conditions
- Extremely competing market conditions: Cost driven
- Fast uptakes of new processes, materials and technologies if promising

3

 Growing incentives for NON-renewables

karl.berger@ait.ac.at

KOEPPEN-GEIGER

Online map, and different scenarios how the climate zones may change in the 21th century,

PVPS Task 12 Environmental Impact Assessment Service Tool, http://viewer.webservice-energy.org/project_iea/

IF PV system is very performant and long-lasting – better ... and better the more sun we have

TRIAN INSTITUTE

IF PV system is very performant and long-lasting – better ... and better the more sun we have?

RIAN INSTITUTE

MOTIVATION & OBJECTIVE

- Photovoltaic has enormous potential, and is able to outperform nonrenewables by an order of magnitude in CO_2 -footprint. This gets even better, when industry and its power supply gets more and more environmental friendly
- \succ But this is only true, if PV is performant and long lasting: Apart from initial failure modes, performance losses due to continuous ageing and degradation of the materials/components ("midlife failures") are defining the long-term stability and profitability of PV-systems
- > To guarantee this, artificial accelerated ageing tests, simulating ageinginduced degradation of PV-modules under given stress conditions, are seen as a key for an efficient and fast product improvements
- > As a part of the Austrian "Energy Research Program" project INFINITY field failures were analyzed, and climate related test-procedures applied

Different PV-module failure types – the reverted Bathtub Curve

10.12.2019 NIST / UL WS

 \checkmark

 \checkmark

IEC TC82 ACTIVITY ON COMBINED AND SEQUENTIAL TESTING

- Circular failure tree
- Center: module
- Outer areas: parts and interfaces

P. Hacke & Tadanori Tanahashi: Draft IEC TR: Combined and Sequential Accelerated Stress Testing for Derisking Photovoltaic Modules (IEC TC82 WG2 Spring meeting @ PTB, 2019)

M. Halwachs et al., *"Statistical evaluation of PV system performance and failure data among different climate zones,"* Renew. Energy, vol. 139, pp. 1040–1060, Aug. 2019.

10.12.2019 NIST / UL WS

FAILURE STATISTICS FIELDED PV-MODULES >2000, (303)

RELATIVE PERCENTAGE OF REPORTED FAILURES PER COMPONENT AND CLIMATE ZONE AS DERIVED FROM THE INFINITY STUDY, M. Halwachs et al., Renewable Energy, vol.139, pp. 1040-1060, 2019.

	Kö	Köppen Geiger main climate zone						
Component	A tropical	B arid	C temperate	D continental	E alpine / polar			
Glass	33%	22%	22%	19%	-			
Cells/Busbars	46%	29%	38%	62%	15%			
Interconnectors	4%	5%	3%	-	15%			
Encapsulant	8%	11%	12%	-	8%			
Backsheet	-	9%	1%	5%	54%			
Junction Box	4%	15%	13%	-	8%			
Other	4%	8%	7%	14%	-			

Stress also by application / µ-climate

Failure tree patterns

- Many common failures in A D but clearly visible differences
- E (Alpine) clearly differs from the others (with having no broken frames or glass in our sample)
- >300 observed failures in systems built after 2000 is still a (too) small sample
- Update with more data would be nice ...

Data: Halwachs, 2019. 10.12.2019 NIST/ULWS

Failure tree patterns

- Many common failures in A D but clearly visible differences
- E (Alpine) clearly differs from the others (with having no broken frames or glass in our sample)
- >300 observed failures in systems built after 2000 is still a (too) small sample
- Update with more data would be nice ...

MW system +2000 m a.s.l. buried under several meters of snow in early Spring 2019. Pics from mid May & June 2019. Module top bent backwards – System failure?

10.12.2019 NIST / UL WS

SUMMARY: FIELD FAILURES – IV PARAM.

	Cause	Trigger / Accelerator	Climate zone
Degradation I _{SC}	 Soiling Encapsulant discolouration Delaminations 	 + high UV-irradiation (at high temperature) + sand/dust 	Arid (B)Alpin (E)
Degradation FF/R _s	 Cell corrosion Breakage connectors Corroding ribbons/grid lines PID 	 + high humidity and T + large T-changes (TC) + mechanical loads (snow load, wind) + Corrosive environment (salt) 	 Tropical (A) Arid (B) Continental (D) Alpin (E)
Degradation U _{oc}	 Bypass diode defect Inactive cells Increased cell temperature (partial over heating) 	 + Partial shading + Inhomogeneous Surface coverage (snow, soiling) 	Not very climate sensitive • Arid (B) • Alpin/polar (E)

M. Halwachs et al., "Statistical evaluation of PV system performance and failure data among different climate zones," Renew. Energy, vol. 139, pp. 1040–1060, Aug. 2019. https://doi.org/10.1016/j.renene.2019.02.135 karl.berger@ait.ac.at 17

10.12.2019 NIST / UL WS

CLIMATE ZONES ↔ ACCELERATED AGEING TESTS

Ageing tests applied, named like the climate zones, and hopefully provoking some similar failures ...

- A humid and hot → tropical/equatorial
- B dry and hot → arid
- **C warm moderate** → temperate
- **D cold moderate/snow** → continental
- E high irradiation/snow → alpin/polar

Additional stress factors like salt-mist and wind, mechanical-load (DML)

→ test program of 10 climate specific stress combinations

Objectives:

- a) Development of climate specific accelerated ageing test procedures for PV-modules (optimized for the installation in different climates)
- b) Comparison of the climate specific failures and degradation effects observed in real PV-plants to those detected using the climate specific accelerated ageing test procedures

Identical test-modules composed of poly c-Si cells, soldered (2 × 3) strings, EVA-encapsulation, PETbased backsheet, and front glass, framed. 3 (or more) such mini-modules per test sequence, add. single cell "modules" for destructive testing

karl.berger@ait.ac.at

18

Details see:

- Gabriele C. Eder, Karl Knöbl, et.al.: Climate specific accelerated ageing tests, 2019 IEEE PVSC-46 | Chicago, IL.
- G.C. Eder, et.al: Climate specific accelerated ageing tests and evaluation of ageing induced electrical, physical, and chemical changes, Prog Photovolt Res Appl. 2018;1–16., DOI: 10.1002/pip.3090

/////

ACCELERATED AGEING TEST SEQUENCES

/ / / /

Durati			Tempe	erature	Relative	Irradianaa	рмі	Salt	то	Intervalle
	Duration		Module	Chamber	Humidity	Inadiance	DIVIL	Sait		Intervalis
Trop1	3000h	1		85°C	85%	-		-	-	simultaneous
Trop2	3000h	1		90°C	90%	-		-	-	simultaneous
Arid	1000h	1	129°C	95°C	50%	1200 W/m ²		-	-	simultaneous
Mod1	1000h	1	113°C	85°C	85%	1000 W/m ²	-	-	-	simultaneous
Mada	1000h =	1	78 °C	60°C	40%	1000 W/m ²	-	-	-	48h
IVIOd2	7 cycles	2		85°C	85%	-	-	-	-	96h
	40001	1	78°C	60°C	40%	1000 W/m ²	-	-	-	48h
MOd3	1000h =	2		85°C	85%	-	-	-	-	96h
	I Cycles	3		-	-	-	1000 c	-	-	24h
	40001	1	78°C	60°C	40%	1000 W/m ²	-	-	-	48h
Mod4	1000h =	2		85°C	85%	-	-	-	-	96h
	7 Cycles	3		60°C	-	-	-	Salt-mist	-	24h
	40001	1	78°C	60°C	40%	1000 W/m ²	-	-	-	48h
Mod5	1000n =	2		85°C	85%	-	-	-	-	96h
7 cycles	3		-40/+85°	-	-	-	-	50 c	300h	
		1		85°C	85%	-	-	-	-	250h
Alpine	2000h =	2	119°C	85°C	85%	1200 W/m ²	-	-	-	250h
	4 cycles	3		-	-	-	1000 c	-	-	24h

Test procedures:

 adaptation/advancement of existing standard procedures like e.g. PV module design qualification and type approval (IEC 61215-2), safety requirements (IEC 61730) or salt mist corrosion testing (IEC 61701)

 reliable testing for use in certain climatic conditions needs to induce climate specific material degradation, performance losses and failure modes

Characterization:

- NON-destructive
 - Electrical characterization: I-V curves and ele. parameters, electroluminescence imaging
 - Encapsulation analysis: UV-fluorescence (UV-F) imaging and UV-spectroscopy
 - Backsheet characterization: colour (ΔE) and FTIR spectroscopy
- DESTRUCTIVE material analysis of encapsulant:
 - FTIR-analysis and/or
 - thermodesorption GC/MS (additives and degradation products)

karl.berger@ait.ac.at

20

TEST RESULTS: A - TROPICAL

karl.berger@ait.ac.at

21

	real failures (24)	INFINITY accelerated ageing tests		
	Δ	Trop1	Trop2	
	tropical	Т&Н	High T & H	3
		85°C/85%	90°C/90%	
Glass	33%	-	-	
Cell	46%	A X	ХХХ	
Inter- connectors	4%	-	-	
Encapsulant	8%	x	Х	
Backsheet	-	-	XXX	
Junction Box	4%	-	-	
Other	4%	-	-	

3000h T+, H+ □

> Encapsulant (EVA) degradation Formation of acedic acid, acetates @ribbon/solder ↔ EVA

> > Cell corrosion → FF, R_s +

TEST RESULTS: B - ARID

	real failures (138)	INFINITY accelerated ageing tests	High Irradiation (1200 W/m ²)	27 26 25 25 26 25 25 26 25 26 25 27 26 25 27 26 25 27 26 25 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27
	D	Arid	High module temperatures (129°C)	
	arid	High T & I	Encapsulant (EVA) degradation	Measuring Instance
		T _{Module} 129 °C	formation of acedic acid	
Glass	22%	-		Intersity is
Cell	29%	X	Cell corrosion \rightarrow FF, R _S +	5
Inter- connectors	5%	X	Backsheet (PET) degradation	400 450 500 550 600 650 700 Wavelength (nm) 5 Colour Change (Arid1)
Encapsulant	11%	xx (JB)		4 - INFS003_060
Backsheet	9%	XXX		u a a a a a a a a a a a a a a a a a a a
Junction Box	15%	-		
Other	8%	-	50 1409 1175 595 ¥ 1175 1969 846 104 104 104 104 104 104 104 104 104 104	1 2 3 Measuring Instance

FTIR of inner layer of PET

karl.berger@ait.ac.at

Wavenuber (cm⁻¹)

V 1245¹¹²⁰1098

TEST RESULTS: C – TEMPERATE / WARM **MODERATE**

	real failures (107)	INFINITY ated agei	FINITY ed ageing tests		
		Mod1	Mod2	Mod4	
	C temperate	T,H & I	1) I 2)T & H	1) I 2) T & H 3) Salt	
		T _{Module} 113°C	78/85°C	78/85°C	
Glass	22%	-	-	-	
Cell	38%	Х	-	-	
Inter- connectors	3%	-	-	-	
Encapsulant	12%	Х	-	-	
Backsheet	1%	ХХ	-	-	
Junction Box	13%	-	-	-	
Other	7%	-	-	-	

Nearly no degradation! Saltmist without effect

Only @Mod1: Higher module temperatures (113°C)

> Beginning EVA degradation

Beginning Backsheet cracking

TEST RESULTS: D – CONTINENTAL / COLD

MODERATE

	real failures (21)	INF accelera te	INITY ited ageing ests	
	_	Mod3	Mod5	
	D continental	1) I 2) T & H 3) DML	1) I 2) T & H 3) TC	DML @1000 Pa
Glass	19%	-	-	
Cell	62%	x	-	TC @-40/+85°
Inter- connectors	-	-	x	Interconnector breakage → FF
Encapsulant	-	-	-	
Backsheet	5%	-	-	
Junction Box	-	-	-	
Other	14%	-	-	

TEST RESULTS: E – ALPINE / POLAR

	real failures (13)	INFINITY accelerated ageing tests	
		Alpin	
	E alpin/polar	1) T & H 2) T, H & high I	High Irradiation (1200 W/m ²)
		T _{Module} 119 ° C	EVA degradation
Glass	-	-	
Cell	15%	х	
Inter- connectors	15%	х	Backsheet (PET degradation, ∆E
Encapsulant	8%	xx (JB)	embrittlement, c
Backsheet	54%	ххх	
Junction Box	8%	-	
Other	-	-	

EVA degradation, AA

Backsheet (PET)

embrittlement, cracking

Cell corrosion

TEST RESULTS: IV-CURVE PARAM'S

karl.berger@ait.ac.at

26

• For better comparison, the x-axis is set to "cumulated time of ageing" = time in the climate chamber

- BUT: in the climate chamber stress conditions differing in T, r.H., I, were applied
- Starting point (1.0) of all parameters are the values measured after light stabilisation (BO-degr.)

^{10.12.2019} NIST / UL WS

TESTING SUMMARY & CONCLUSION

		INFINITY accelerated ageing tests							
Test protocol	A tropical		B arid		C temperate		D	continental	E alpine / polar
Component	1	2	1	1	2	4	3	5	1
Glass	-	-	-	-	-	-	-	-	-
Cells/Busbars	X	ххх	x	x	-	-	X	-	x
Interconnectors	-	-	x	-	-	-	-	x	x
Encapsulant	x	x	xx (JB)	x	-	-	-	-	xx (JB)
Backsheet	-	ххх	ххх	XX	-	-	-	-	ххх
Junction Box	-	-	-	-	-	-	-	-	-
Other	-	-	-	-	-	-	-	-	-

karl.berger@ait.ac.at 27

TESTING SUMMARY & CONCLUSION

Analysis of the performance and material characterization data **able to discover degradation pathways**, dependent on type and combination, duration and mode (sequential vs. constant) of the stresses applied

Most of the characteristic failure modes of each climate zone could be reproduced by the accelerated ageing tests under investigation. Some tests definitely added too much temperature stress

- With the PET backsheet type chosen for the test modules, increased temperature > 90°C seem to lead to drastically increased degradation rates, and sometimes to the onset of new degradation paths
- Glass breakage, often found in nearly all climate zones, in our accelerated tests never occurred. Possible reasons:
 - small test modules (6 cells) with 3.2 mm glass compact and very stable
 - the absence of singular environmental stress events like mounting on uneven substructure and rough handling, hail storms or tempests

Other test protocols closer to reality, provoking more similar failures than outdoors observed?

karl.berger@ait.ac.at 28

D. Philipp, K.-A. Weiss, and M. Koehl, "Inter-laboratory comparison of UV-light sources for accelerated durability testing of PV modules," in Proc. SPIE 8112, Reliability of Photovoltaic Cells, Modules, Components, and Systems IV, 81120G, 2011, vol. 8112, p. 81120G–81120G–5.

https://cordis.europa.eu/project/rcn/108132/reporting/en

https://www.ise.fraunhofer.de/en/rd-infrastructure/accredited-labs/testlab-pv-modules.html

P. Hacke & <u>Tadanori Tanahashi</u>: IEC TR: Combined and Sequential Accelerated Stress Testing for Derisking Photovoltaic Modules (IEC Spring meeting @ PTB, 2019)

karl.berger@ait.ac.at

29

P. Hacke & <u>Tadanori Tanahashi</u>: IEC TR: Combined and Sequential Accelerated Stress Testing for Derisking Photovoltaic Modules (IEC Spring meeting @ PTB, 2019) physical damage – cracked discoloring – browning or yellowing

TEST PROTOCOLS & FAILURES

10.12.2019 NIST / UL WS

 karl.berger@ait.ac.at
 31

For PV modules

- Analysis able to discover degradation pathways
- > Most characteristic known failure modes can be reproduced by accelerated ageing
- Balance of applying not too weak and not to hard stresses not an easy task
- Proposed combined stress tests provoke known outdoor failures, but (still) miss service life prediction because of often unknown accelerating factors
- Ideas, how to find climatic schemes reflecting better the real world µ-climate of different applications, as rack-mount, bifacial over highly reflective ground, floating, rooftop or building integrated? – for the temperature issues IEC TS 63126 Module Qualification for High(er) Temperature as a good start
- Service life prediction by use of multi-level & combined stresses how to?
- In IEC 61215 & 61730, 63092 drafts, "representative samples" will be allowed for testing to extrapolate from a set of tested modules to another cluster of modules OD applied, needs tested, certified models & an update of the retesting guideline

PV-system (BOS) parts – situation at present not better ...

- > Electronic components used in inverters don't come with climate & lifetime related data
- > Field conditions of inverter ambient often less linked to outdoor climate than for modules

MANY THANKS TO ALL THE PEOPLE INVOLVED, AND ...

THANK YOU!

Karl A. Berger

Parts of this work was conducted as part of the Austrian "Energy Research Program" project INFINITY (Project number 850.414). Funded by the Austrian Climate and Energy Fund and the Austrian Research Promotion Agency (FFG).

This work is also related to the challenges of bringing Building Integrated PV to the next level, and therefore with the European H2020 Project BE-smart, (ID: 818009), WP3, see also <u>www.thebesmartproject.eu</u>.

Both the Austrian as well as the European funding agencies are gratefully acknowledged.

