

Probabilistic Genotyping: A Perspective from the Denver Crime Laboratory

MAY 28, 2014 SUSAN G. BERDINE

Why are we changing?

- 1/14/2010 SWGDAM Interpretation Guideline 4.6.3
- RMP, CPI, restricted CPI & 2p p²
- Many DNA profiles not suitable for CPI, no conclusions given
- Problem: how to give statistical weight to complex mixtures with dropout and drop-in?
- Other steps of DNA testing optimized for maximum sensitivity
- End product is data that may appear probative, but current tools don't allow statistical weight to be given

What prompted us to change?

- Communication with the NYC OCME laboratory about FST in late 2012
- April 2013 NIST webinar about DNA mixtures
- Examined the options available:
 - o Lab Retriever
 - o LRmix
 - o TrueAllele®
 - STRMix[™] was not available for purchase last year
- Downloaded the first two, which are both free and open source

Why Lab Retriever?

- Scientifically sound
- Produces quality results for single source, 2 & 3 person mixtures
- Availability and cost
- Supported by published scientific literature
- Formulas used are published & open source
- Ease of use
- Speed of analysis
- Training from developers
- Court admissibility support

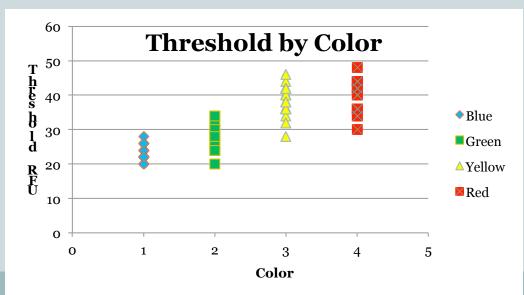
Training

- DNA analysts (9 of us) read the following:
 - 2012. Lohmueller and Rudin, Calculating the weight of evidence in low-template forensic DNA casework
 - 2009. Balding and Buckleton, Interpreting low template DNA profiles
 - 2009. Tvedebrink et al., Estimating the probability of allelic drop-out of STR alleles in forensic genetics
 - 2012. Mitchell et al., Validation of a DNA mixture statistics tool incorporating allelic drop-out and drop-in

Training

• Hosted 3-day on-site training with Norah Rudin, Keith Inman and by Skype Kirk Lohmueller

• Topics covered:

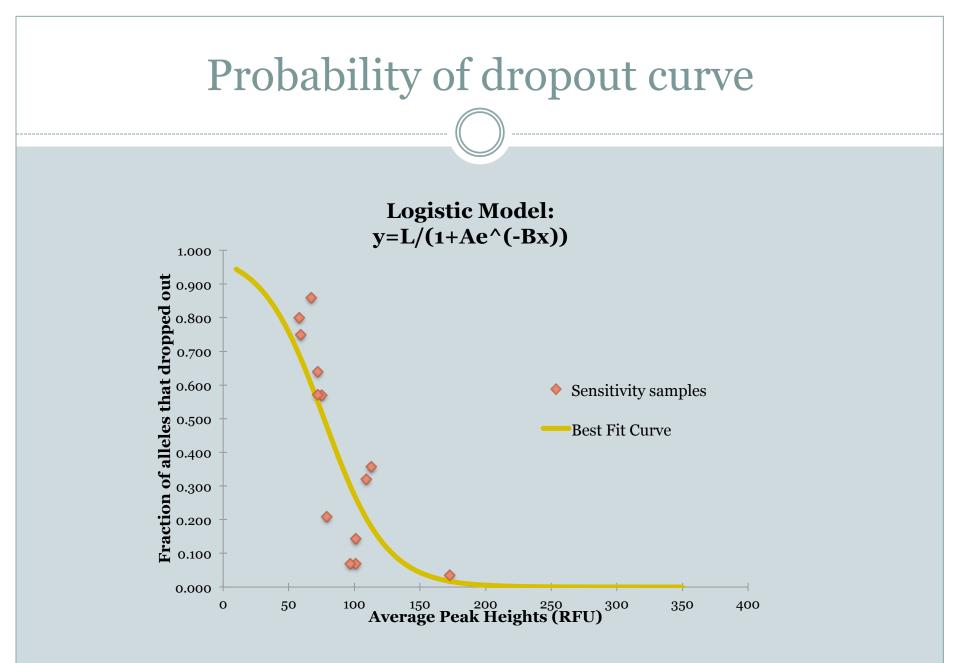

- Analytical thresholds
- Estimating probability of dropout
- Construction of an LR with dropout
- Preparing data and running Lab Retriever
- Performing the calculations by hand
- Stutter considerations
- Each of the 9 analysts brought a real case to work
- Internal validation
- Reporting, court testimony

Validation

1. New color specific analytical thresholds to maximize sensitivity

2012. Bregu et al., Analytical Thresholds and Sensitivity: Establishing RFU Thresholds for Forensic DNA Analysis

2012. Rakay et al., Maximizing allele detection: Effects of analytical threshold and DNA levels on rates of allele and locus drop-out



Validation

2. Create a probability of dropout curve using previous sensitivity validation data. Plot RFU of detected alleles against % dropout. Logistic regression in MS Excel.

Note 1: Can do all loci together or locus-specific curves Note 2: Can use quantitation value or input DNA (pg) into the PCR instead of RFU.

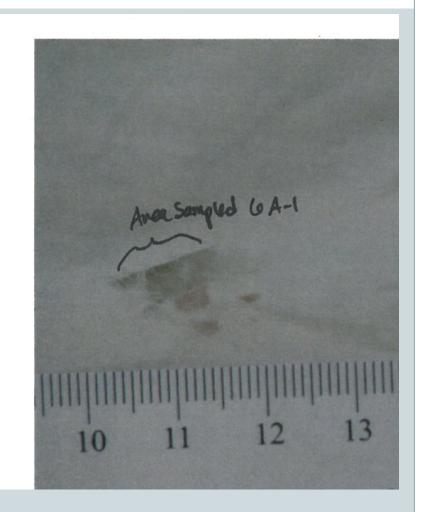
Note 3: 2012. Tvedebrink et al., Statistical model for degraded DNA samples and adjusted probabilities for allelic drop-out.

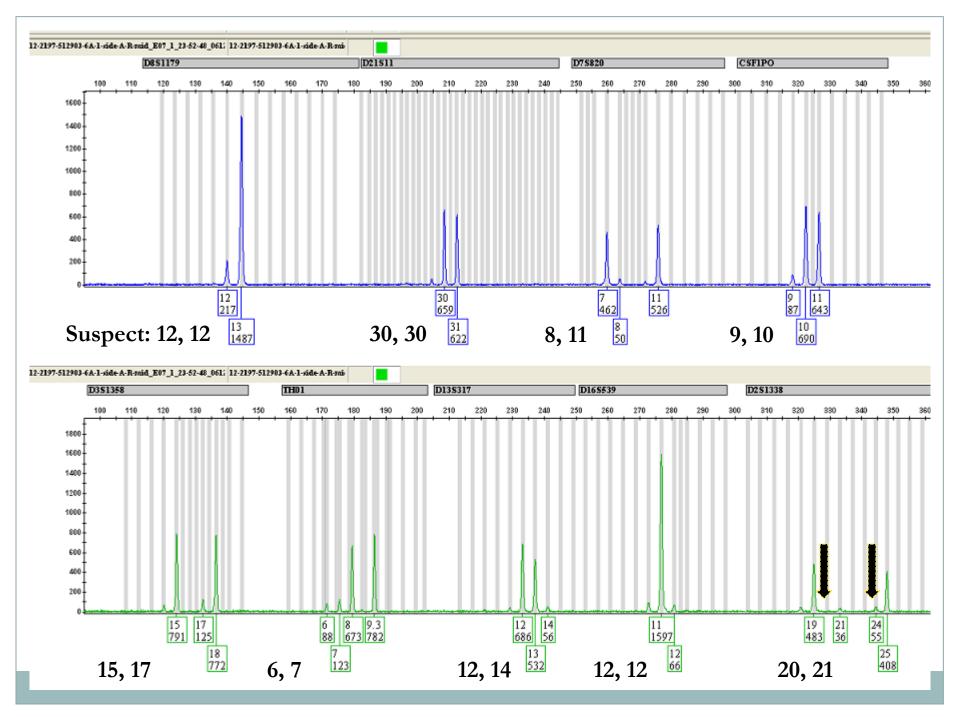
Validation

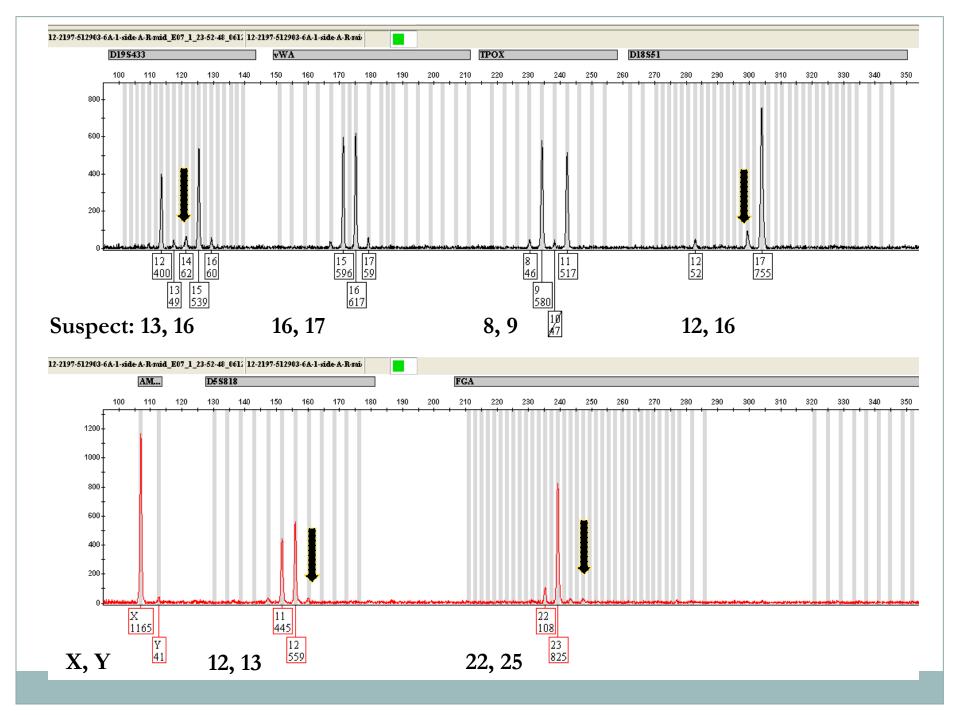
- 3. Validate drop-in rates (expected $\leq 1\%$)
- 4. Test DNA profiles in Lab Retriever to known contributors and <u>non</u>-contributors
- 5. Perform likelihood ratio calculations on 3-5 samples to verify calculations
- 6. Test major/minor mixtures with stutter filters on and off
- 7. Write SOP, reporting guidelines

Implementation

• Lab Retriever will be used


- By all DNA analysts
- For 2 & 3 person mixtures where major/minor cannot be interpreted
- For future cases
- Selecting hypotheses can be challenging


• Limitations to Lab Retriever


- Not currently capable of 2 simultaneous suspects, but can do 1 assumed, 1 unknown
- How to treat possible masked alleles in stutter positions
- Cannot calculate 4 & 5 person mixtures unless assumed contributor
- Does not analyze peak heights as fully continuous models do

Case example

- Burglary/sex assault 5/20/2012
- Victim's head covered with a sheet, bound, held at knifepoint
- DNA evidence bedding, scarf, stocking cap and nail scrapings

Lab Retriever Analysis

Locus	6A-1 Comforter (RFU)					
D8S1179	217					
D7S820	50					
CSF1PO	87					
D3S1358	125					
TH01	88					
TH01	123					
D13S317	56					
D16S539	66					
D2S1338	36					
D19S433	49					
D19S433	60					
vWA	59					
ТРОХ	46					
D18S51	52					
FGA	108					
	81.5 AVE					

SCIEG									
	Load a	a file							
Sample ID		Detected	Unattributed	Assumed	Suspected				
Analyst	D8								
	D21								
Parameters	D7								
P(DI) 0.01	CSF	In	nuts int	o Lah F	Retriever	•			
P(D0)	D3		-			•			
Race All	TH0		robability	-					
	D13		robability	-					
BD Probabilities	D16	•E	vidence p	rofile					
Likelihood Ratio	D2	•Assumed contributor profiles (victim + CF							
H1 1 S, 0 UNK	D19	•Suspected contributor profile (suspect)							
	vWA		–		-	(suspect)			
H2 0 S, 1 UNK	TPO								
	D18	•H	2: Vic + (Consensu	ıal + Unk				
	D5								
	FGA								

Locus	Detected – 6A1 Comforter	Assumed - Victim + Consensual	Unattributed	Suspected - Suspect	AA	CAU	HIS
D8	12 13	13	12	12	9.2	5.9	8.2
D21	30 31	30 31		30	3.4	2.5	2.6
D7	7811	11 7	8	8 11	2.9	5.1	5.6
CSF	9 10 11	10 11	9	9 10	18.0	39.0	26.4
D3	15 17 18	15 18	17	15 17	3.8	3.3	3.6
TH0	6789.3	9.3 8	6 7	6 7	8.9	10.5	7.9
D13	12 13 14	12 13 14		12 14	1.2	1.6	2.1
D16	11 12	11 12		12	2.1	1.8	2.1
D2	19 21 24 25	19 24 25	21	20 21	1.0	2.9	3.2
D19	12 13 14 15 16	12 14 15	13 16	13 16	101.0	31.8	61.3
vWA	15 16 17	15 16 17		16 17	1.6	1.8	1.7
ТРО	8911	8911		89	1.5	1.2	1.3
D18	12 17	17	12	12 16	12.8	8.5	9.2
D5	11 12	11 12		12 13	0.4	0.2	0.3
FGA	22 23	23	22	22 25	1.0	0.9	1.4
	Fin		1.42E+08	1.10E+08	6.07E+08		