Biometric Web Services: Interoperability for Multimodal Biometric Sensors

Ross J. Micheals Supervisory Computer Scientist National Institute of Standards and Technology ross.micheals@nist.gov

Project Overview

- Design, develop, and implement a standard interface for interoperability of multimodal biometric sensors across heterogeneous IT environments.
- Universal control of any biometric device, from anywhere
- Previous work (including MBARK) focused on interoperability *within* a particular platform. The need for platform-specific *device drivers* leads to tight coupling between interface and *runtime*. (E.g., BioAPI & C, MBARK & .NET, Java BioAPI & Java)
- The World Wide Web can provide a rich interoperability platform

Web Services

- Same underlying protocol (HTTP), but instead of HTML (web pages), transfer XML (data)
- While HTML is meant for human consumption, XML is intended for machine (or application) consumption
- Simply consuming or generating XML does not guarantee interoperability. Standards are still necessary.

Impact of Web Services Interoperability

• Physical Connectivity

- Before: USB or IEEE 1394 connection & device drivers
- After: Ethernet or WiFi, no device drivers

• Logical Connectivity

- Before: Logical attachment to specific machine. No device sharing.
- After: Dynamic sharing from any Internet enabled device (different platforms, form-factors)

Technical Approach

- Conformance to the standard should imply a known-level of interoperability
- Support remote multifactor authentication and mobile identification applications
- Tiered levels of functionality
 - Level 1: Basic acquisition
 - Level 2: Live streaming
 - Level 3: Discovery, built-in asynchronous support
 - Level 4: Workflow?

Technical Approach

- Common approaches to Web services
 - 1. Simple Object Access Protocol (SOAP). Formal OASIS standard with remote procedure call (RPC) like functionality
 - 2. Representational State Transfer (REST). General architecture/guidance of using XML/JSON over existing protocols.
- Many "low-powered" devices do not have comprehensive SOAP processing libraries. WS-Biometric Devices Level 1 is REST based to facilitate use on lightweight devices (phones, tablets, etc.)

Issues & Challenges

- Web services are inherently multiuser, but a biometric sensor is not. *Built-in concurrent access is required.*
- Live preview may be challenging
 - Usability: How do technological constraints effect end users? (operators, presenters, examiners)
 - What is the optimal format (Sequence of images? H.264?)
- Multilayered security
 - Currently only one popular sensor on the market encrypts sensor to computer communications
 - Data link layer: WPA2
 - Transport layer: SSL (HTTPS). Client-side certificates might be used for point-to-point authentication
 - Should payloads be encrypted? (ACBio?)

Demonstration System

Announcement

New OASIS TC Discussion list **bws-discuss**

for evaluating the feasibility of creating a new OASIS Technical Committee for **biometrics & web services**

bws.nist.gov

