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CHOICE OF A PRIOR DENSITY

In Example 4, the prior distributions of
p1 and p2 were given for 17 different
values.

Note that 0≤ p1, p2 ≤ 1 and that there are
infinitely many possible values between
0 and 1.

When practically possible, we give prior
and posterior distributions in terms of
known densities, such as the Gaussian,
binomial, beta, gamma and others.
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A density is a smoothed bar chart that
shows how probability is distributed.

An example of a commonly used density
for proportions is the beta.

beta(a,b) =
Γ a + b( )
Γ a( )Γ b( )

pa−1 1− p( )b−1, 0 ≤ p ≤ 1�

Γ a( ) = t a−1e− tdt
0

∞

∫ �

�

Note that the posterior mean of the beta
is

a

a + b
,

the posterior standard deviation is
ab

a + b( )2 a + b +1( )
.
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Note that
beta(a,b) ∝ pa−1 1− p( )b−1, 0≤ p ≤ 1��

�

Page 201 of your text has examples of
several beta densities. There is a
different density for each (a,b).
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The posterior distribution of p1, for a
binomial likelihood when beta prior is
used:

Prior : Γ a + b( )
Γ a( )Γ b( )

p1
a−1 1− p1( )b−1

, 0 ≤ p1 ≤1�

���������������������������������� ∝ p1
a−1 1− p1( )b−1

, 0≤ p1 ≤ 1�

�

�

Likelihood:� 16!

x! 16 − x( )!
 

�  
�  

�  

�  
�  p1

x 1− p1( )16−x
�

���������������������������������������� ∝ p1
x 1− p1( )16−x

�

�

�

Bayes Result:� ∝ p1
a+x−1 1− p1( )16+b−x−1

�

�
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NOTE THAT THIS IS:

beta(a+x,16-x+b)

or beta(a+s, b+f)

where s = number of successes

f = number of failures

This is the updating rule for Beta. So we
see that a Beta prior updates to a Beta
posterior.
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CHOOSING BETA DENSITIES AS
PRIORS.

Selecting a beta – selecting a and b.

1. Assess the probability( r ) that a
randomly selected cigarette #529
will ignite. This probability will be
judged to be the mean of the beta
density – that isr = a

a + b
��

2. Given the information that the first
cigarette ignited, assess the
probability ( r+ )of the second
randomly selected cigarette #529
igniting. The updating rule says that
the updated density is beta(a+1, b)
so the assessed value isr + = a +1

a + b +1
�

3. Solve simultaneously to obtain:

������������������������������� a = r(1− r + )

r + − r
, b =

1− r( ) 1− r +( )
r + − r
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In Example 4:

Suppose that an expert says that he
agrees with the given prior mean thus r
= 0.057.

Also that given this information he
would say that his probability of the
second cigarette igniting is 0.1.

That means that r+ = 0.1 and that this
expert’s prior knowledge has

a = 0.057(1− 0.1)

0.1− 0.057
= 1.19,

b = 1− 0.057( ) 1− 0.1( )
0.1− 0.057

= 19.74
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Consistency check:

Ask the expert to give a value for r- , the
probability of ignition of the second
cigarette given that the first failed.

Using the values of a and b calculate:
�

������������������������������������������������� r − = a

a + b +1
���

�

Check to see if the calculated and
elicited values agree.
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In Example 4, suppose that an expert
thinks that r- is 0.01.

We calculate:

r − = 1.19

1.19+19.74+1
= 0.054.

Can the expert agree that r- is really
0.054?

If yes then the beta(1.19, 19.74) density
is a good prior.

If no, it is not.
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What to do if the beta(1.19, 19.74)
density is not a good fit.

• We can adjust the values of r and r+ or
r- to obtain a consistent result.

• We can use a more “open-minded
prior”. Also called less-informative. This
means smaller values of a and b.

•The beta prior with a = b = 1 is a flat
line. This gives all possible values of the
proportion equal probability and is in
that sense objective.
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The updating rule for betas:

a becomes a+s

b becomes b+f
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The following is a plot of a random
sample from beta( 1.19, 19.74):
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The following is a histogram plot of a
random sample from beta(2, 20) :
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The following is a histogram plot of a
random sample from beta(2, 30) :
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We will need a beta form of the prior
distribution for p2 also.

Again, suppose that an expert says that
he agrees with the given prior mean thus
r = 0.943. Also that given this
information he would say that his
probability of the second cigarette
igniting is 0.96. That means that r+ =
0.96 and that this expert’s prior
knowledge has

a = 0.943(1− 0.96)
0.96− 0.943

= 2.22,

b = 1− 0.943( ) 1− 0.96( )
0.96− 0.943

= 0.13

So we can use beta( 2.2, 0.13) for our
prior for p2.
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USING DATA FOR PRIORS

Recall our cigarette data for 10 layers.
We have data for years 1993 and 2000. If
the experiments are very similar, we
could decide to use the 1993 data to
obtain a prior for the 2000 data and thus
combine the information for the two
years.

We could start with a beta(1,1) prior for
both p1 and p2 for the 1993 data. This
would result in a beta (1, 17) posterior
for p1 and a beta(17,1) posterior for p2.
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These distributions would now become
priors for p1 and p2 of the year 2000.

Combining with the data, i.e., 0/24
ignitions for #529 and 22/24 ignitions for
# 531, we get:

beta(1, 41) for p1 ,

beta(39, 3) for p2.

These posterior distributions combine the
data of the two years.

The posterior mean of p1 is 1/42 = 0.024,

the posterior variance is 0.0235.

The posterior mean of p1 is 0.0.928,

the posterior variance is 0.0393.
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What would happen if we simply
combined the data, that is say that we
have 0/40 ignitions for # 529 and 38/40
ignitions for #531. With a beta(1,1) prior
for p1 and p2 we would get beta(1,41)
and beta(39,3), i.e., the same result.

This shows that using prior in this way
simply combines the two sets of data
together.

An alternative approach to combining
datafrom different but similar sources:
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Hierarchical Models:

Let the probability of ignition of
cigarette #529 in year 1993 be p11, in the
year 2000 be p12.

As in the simple models, we will give pij

a beta prior. Let the prior of pij be
beta(a,b).

The a and b are now unknown random
quantities with their own prior
distributions. (THIS IS THE MAIN
DIFFERENCE)

NOTE: We are notsaying that the pij are
equal for the two years.
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The beta parameters are given
gamma(1,.001) priors. This particular
gamma distribution represents “vague”
or “objective” or “noninformative”
knowledge about these
“hyperparameters”.

Gamma distribution:

The probability distribution of the
parameter a is Gamma(α,β), i.e.,

1

Γ α( )βα aα−1e
− a

β ,a > 0

This kind of model, combines the data
from the two years in a way which lets
the data itself determine how much
combining is done. We call this
“borrowing strength” because related
data is used to increase the precision of a
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single experiment. When the data from
the two experiments is similar it is
combined to a high degree. When it is
different, it is not combined very much.

One disadvantage of this model is that it
does not have a closed form of the
posterior distribution. Thus we need to
use numerical methods to obtain the
posterior mean etc.
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PROBABILITY INTERVALS

In classical analysis we calculated 95%
confidence intervals for p1 and p2 to
make a judgement of how different they
are.

In Bayesian analysis we can make such
judgements based on probability
intervals based on the posterior
distribution of p1 and p2.
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Recall the posterior distribution of p1:

Value of
p1

Prior Likeli-

hood

Prior X

Likelihood

Poste-
rior

0 0.6 1.0 0.6 0.898

0.0625 0.15 0.3561 0.0534 0.08

0.125 0.1 0.1181 0.01181 0.017

0.1875 0.07 0.0361 0.002527 0.004

0.25 0.05 0.01 0.00051 0.0007

0.3125 0.03 0.0025 0.000075 0.0001

0.375 0 0.0005 0 0

0.4375 0 0.0001 0 0

0.5 0 0 0 0

Here, 0≤ p1 ≤ .0625 is a 0.978 highest
posterior density interval (HPD) for p1.
This means that it is the shortest
posterior interval of this probability.
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Alternatively, suppose that we use prior
beta(1,19) for p1 in our example. Then
the posterior distribution is beta(1, 35)
and

P(c1 ≤ p1 ≤ c2) = Γ 36( )
Γ 1( )Γ 35( )

1− p( )34
dp

c1

c2

∫ ��

We need to select� c1 and c2 so that this
probability is equal to some value, say
0.95.
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A random sample from beta(1,35) gives
the following histogram:
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Based on the sample, we can estimate
that c1 = 0.0 and c2 = 0.08. Note that this
interval is quite a bit shorter than the
classical 95% CI which was (0.0057,
0.2407).
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For p2, the posterior based on the
beta(2.2, 0.13) prior is beta(18.2, 0.13).

0.868280
0.881452

0.894624
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The interval (0.961, 1.0) is a 0.95
probability interval for p2. Again,
compare this to the 95% CI (0.759,
0.994)
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There is an approximate method of
obtaining c1 and c2 that is based on
Normal tables. This method is useful
when both a and b are “large”.

For this method, calculate:

r = a

a + b
, r + = a +1

a + b +1
,

t = r (r + − r )

Then the perc% probability interval for p
is

r ± zperct

where :
z90 = 1.65,

z95 = 1.96

z98 = 2.33
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Suppose that p has a beta(10,15)
posterior. Then

r = 0.4, r+ = 0.423 and t = 0.096.

Hence a 95% probability interval is:

0.4 ± 1.96 (0.096)

0.4 ± 0.188
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COMPARING TWO PROPORTIONS

In Bayesian analysis it is also of interest
to compare the two proportions p1 and p2

directly, using a probability statement
about the difference p1 – p2.

This requires that we obtain a joint
posterior distribution for p1 and p2.

A joint distribution gives probabilities
for pairs of values of p1 and p2. That is

P( p1 = � 1, p2 = � 2)

Is the probability that p1 = � 1 and at the
same time p2 = � 2.
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Bayes theorem is applied to joint prior
and joint likelihoods.

For independent samples, the joint
likelihood is obtained by multiplication
of the individual likelihoods.
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In example 4, the sample of cigarettes #
529 and the sample of # 531 were
independently drawn.

If x 1 = number of ignitions of #529,

x2 = number of ignitions of # 531

then

P( data =x1

16
,
x2

16
| p1 = π1, p2 = π2) =

16!16!

x1! x2! 16− x1( )! 16− x2!( )
 

�  
�  �  

�  

�  
�  �  π1

x1π 2
x2 1− π1( )16−x1 1− π 2( )16−x2

�
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The prior distribution needs to be elicited
jointly.

It is possible that an expert will consider
the prior knowledge of one proportion
not relevant when the prior knowledge of
the second proportion is being
quantified.

In that case, the prior distributions would
be independent and obtained as a product
of the two prior distributions.
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In Example 4, if the expert apriori
considered his knowledge of p1 and p2 to
be independent then he could use the
product of beta( 1, 19) and beta( 2.2,
0.13) densities.

Γ 20( )
Γ 1( )Γ 19( )

Γ 2.33( )
Γ 2.2( )Γ 0.13( )

1− p1( )18
p2

1.2 1− p2( )−0.87

for 0 ≤ p1 ≤ 1, 0≤ p2 ≤1.
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If the prior knowledge is not considered
independent then the prior has to be
elicited jointly, that is, we have to obtain
probabilities for pairs of values of p1 and
p2.

Again, the probability distribution could
be made discrete for simplicity.

An example of a possible joint
probability distribution is:

p1
0 0.06

25
0.12
5

0.18
75

0.25 0.31
25

0.37
5

0.4375

0.75

0.8125

0.875 0.1 0.05

0.9375 0.1 0.1 0.1 0.05

1 0.3 0.2
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Applying Bayes Rule to joint
distributions is straightforward.

If both priors and likelihoods are
independent then the posterior
distributions are also independent and
the two proportions can be done
separately.

In example 4, we get the posterior
distribution of p1 and p2 as the product of
beta(1, 35) and beta(18.2, 0.13)
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In cases when the p1 and p2 are not
apriori independent we apply Bayes Rule
to the joint distributions.

In example 4, we have

likelihood:

P( data =x1

16
,
x2

16
| p1 = π1, p2 = π2) =

16!16!

x1! x2! 16− x1( )! 16− x2!( )
 

�  
�  �  

�  

�  
�  �  π1

x1π 2
x2 1− π1( )16−x1 1− π 2( )16−x2

�

prior:
P1

P2

0 0.06
25

0.12
5

0.18
75

0.25 0.31
25

0.37
5

0.4375

0.75

0.8125

0.875 0.1 0.05

0.9375 0.1 0.1 0.1 0.05

1 0.3 0.2
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����������:

P1

P2

0 0.06
25

0.12
5

0.18
75

0.25 0.31
25

0.37
5

0.4375

0.75

0.8125

0.875 0.04
2

0.01
4

0.9375 0.35
61

0.12
7

0.04
2

0.01
3

1 1 0.35
61

Prior x Likelihood:

P1

P2

0 0.06
25

0.12
5

0.18
75

0.25 0.31
25

0.37
5

0.4375

0.75

0.8125

0.875 0.00
4

0.00
07

0.9375 0.03
56

0.01
3

0.00
42

0.00
06

1 0.3 0.07
1

�
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����
���������

�

Posterior:

P1

P2

0 0.06
25

0.12
5

0.18
75

0.25 0.31
25

0.37
5

0.4375

0.75

0.8125

0.875 0.00
9

0.01

0.9375 0.08 0.03 0.00
9

0.00
1

1 0.7 0.16

�

�

���������

T = {( p1, p2);0 ≤ p1 ≤ 0.0625,0.9375≤ p2 ≤ 1} ��

������������������������������ ��
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We can also obtain the posterior
probability distribution for the difference
p2 – p1.

�

p2 – p1 1 0.9375 0.875 0.8125 0.75

Prob. 0.7 0.24 0.03 0.02 0.01

�

So the interval

0.875≤ p2 – p1≤ 1

has posterior probability of 0.97.
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2.3 MODELS FOR MEANS

Recall the SRM 1946. For lab #1, the
data consisted of mean concentration of
PCB 101 calculated from 24
observations. This is a type of data for
which the likelihood function is usually
represented by the Normal distribution.

The justification for this is the
following result:

Central Limit Theorem:

If X is an average of a large number (n)
of independent observations which
have the same mean m and standard
deviation h, thenX has the Normal
distribution with the same mean m and
standard deviation equal toh n.
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In fact, if n is large enough, we can use
an estimate for the standard deviation
(sample standard deviation s) and still
have the normal distribution. We use this
fact here:

In the SRM 1946 example, lab #1
produced a mean valueX = 38 .1. The
sample size for this lab was n = 24. So
it would be quite reasonable to assume
the Normal distribution with h= 0.7 for
the Likelihood function.

That is, given thatX = 38 .1,

the likelihood of m = m* is

24

0.7 2π
e

−
38.1−m*( )2

2(0.049)
24
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We can now use this formula to calculate
the likelihood for different values of m*.



45

PRIOR DENSITIES FOR MEANS

When no prior information about the
mean is available, it is common to use a
flat line. In this case, the posterior
density will be a normal with the mean
equal to the sample mean and the
standard deviation equal to sample
standard deviation over√n .

In the SRM example, this means that we
would use Normal( 38.1,0.7

24).



46

When we wish to use an informative
prior we generally use a normal density.

That is, we assume that

the function

1

2π h0

e
−

m−m0( )2
2h0

2

represents the prior probability. The
parameters m0 and h0 are the prior
mean and standard deviation of m.

The parameters m0 and h0 are generally
elicited from an expert.
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A noninformative form of this
distribution is to assume that m0 = 0 and
h0 is a very large number (100 times the
sample standard deviation).
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The Updating Rule for Normal Models:

For n observations from a normal(m,h)
distribution with averagex, if the prior
density is normal(m0,h0) then the
posterior is normal(m1, h1) where

m1 =
1

h0
2

1
h0

2 + n
h2

m0 +
n

h2

1
h0

2 + n
h2

x

h1 =
1

1
h0

2 + n
h2

.
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Probability interval for a normal mean:

A perc% posterior probability interval is

m1 ± zperch1.

For example, for lab # 1 in the SRM
1946 example with a flat prior:

95% posterior probability interval is

38.1 ± 1.96 (0.7
24 )
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Comparing two or more means

As with proportions, if there are several
means to be compared to each other then
we need to obtain joint likelihood and
joint prior distributions.

In most cases independence will be used
to justify multiplication of the individual
likelihoods and prior distributions. In
such a case the following result holds:

Rule for Differences:

If the posterior densities of mA and mB

are normal(mA1, hA1) and normal(mB1,hB)
respectively, then the difference mA – mB

has a normal( mA1 – mB1, hA1
2 + hB1

2 )
density.
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A perc% posterior probability interval
for the difference mA – mB is:

mA1 – mB1
± zperc hA1

2 + hB1
2

Example:

Suppose that you wish to compare the
means of the measurements from lab1 #1
and #6 of the PCB 101 data set. If we use
flat priors for both, we get posterior
normal(38.1,0.14) for lab #1 and

normal( 39.3,5.15) for lab #6.

Then the posterior distribution of the
difference between lab #1 and lab# 6
means is:

Normal( -1.2, 5.152).

The 95% posterior probability interval
for the difference is: -1.2 ± 1.96 (5.152) .
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Hierarchical Models for Means.

As in the case of proportions, it is
possible to build relationships between
different data sets by using hierarchical
form of the prior distribution.

Example: SRM 1946

PCB 101:

Lab ID Mean
Conc.

St. Dev. # obs.

1 38.1 0.7 24
2 34.5 0.3 3
3 31.5 0.5 6
4 30.8 1.69 6
5 32.5 2.59 6
6 39.3 23.04 20
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Hierarchical Model

Data:
for each lab i,xi , si , i=1,…,6

Likelihood:
for each lab i, the observations are
normally distributed with mean� i and
standard deviation� i .

Priors:
The means� i have normal prior
distributions, that is they are normal(m0,
h0). The m0 (the consensus mean) is the
common mean across the labs. It is
unknown and has a prior distribution,
that is normal( 0, 10000).
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This type of model combines the data
across labs.

The following table gives the results for
PCB101:

Summary of Results:

Type Consensus
mean

95% CI

Bayes 34.41 (30.95, 37.54)
Grand Mean 36.50 (30.86, 42.14)
Mean of
Means

34.45 (30.73, 38.16)

MLE 34.59 (32.05, 37.14)
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Some Comments about hierarchical
models:

They combine “alike” data more than
“different” data.

They will combine apples and oranges if
you set it up that way.

They borrow more, that is give more
weight to similar data when sample size
is small than when it is large.


