Subnanometric resolution profiling using ion scattering and narrow resonant nuclear reactions

> Israel Baumvol Porto Alegre

Outline

- Ion energy loss in solids
- Medium energy ion scattering
 - Modeling
 - Examples
- Narrow resonant nuclear reaction
 - Modeling
 - Examples

Working Team

MOSA

Stopping power and depth resolution

Maximum stopping power

Maximum depth resolution

~ 100 keV for protons on SiO_2

Outline

- Introduction to subnanometric resolution depth profiling (ion energy loss)
- Medium energy ion scattering
 - Modeling
 - Examples
 - Narrow resonant nuclear reaction profiling
 - Modeling
 - Examples

Medium energy ion scattering (MEIS)

Stochastic Modeling

$$N_{i}(E) = n_{0}\Omega\xi\sigma_{i}\int_{0}^{\infty}C_{t}(x)\sum_{n,l}K_{n}^{in}K_{l}^{out}f_{in}^{*n}*f_{out}^{*l}$$

R. P. Pezzi, et al., Submitted to Phys. Rev. B (2005).

$$K_n = \frac{(mx)^n}{n!} e^{-mx}$$

Stochastic vs. Gaussian Approximation

R. P. Pezzi, et al., Submitted to Phys. Rev. B (2005).

Sb in advanced metal gates

M. Copel, et al., Submitted to Appl. Phys. Lett. (2004).

Application for high-k dielectrics

J.-P. Maria, et al., J. Appl. Phys., 90, (2001).

E. Gusev, et al., Appl. Phys. Lett. 76 (2000) 1.

Outline

- Introduction to subnanometric resolution deph profiling (ion energy loss)
- Medium energy ion scattering
 - Modeling
 - Examples
- Narrow resonant nuclear reaction profiling
 - Modeling
 - Examples

Nuclear resonances

Depth profling with narrow resonanat nuclear resonances

Modeling

$$N(E_0) = c.\sigma_0(E) * h(E_0) * \sum_{0}^{\infty} K_n f^{*n}(E - E_0)$$

G. Amsel, et al., Nucl. Instr. Meth., v. 197, n. 1, p. 1 (1990).

$$K_n = \int_0^\infty \frac{(mx)^n}{n!} e^{-mx} C(x) dx$$

Oxygen profiling

C. Driemeier et al., submitted to Appl. Phys. Lett. (2005)

Al profiling - ²⁷Al(p,γ)²⁸Si

S. E. Hunt, et al., Phys. Rev., 89, 1283 (1953).

Al_2O_3/Si

E. Gusev, et al., Appl. Phys. Lett. 76 (2000) 1).

²⁹Si(p,α)³⁰P 414 keV

MEIS by M. Copel, Phys. Rev. Lett., **86**, 4713 (2001)

Samples

429 keV

As-deposited (dash) N_2+O_2 annealed (solid) O₂ annealed only (dash-dot)

Position of ¹⁵N layer

C. Driemeier et al., Appl. Phys. A, 80, 1045, (2005)

L. Miotti, et al., Appl. Phys. Lett., 85, 4460 (2004).

Si Profiling – ²⁹Si(p,γ)³⁰P

Any cooperation proposal is welcome ! Thank you

israel@if.ufrgs.br

Depth profiling by ion beams: limiting facts for depth resolution

- Stopping power of ions in matter
 - $e.g. \sim 120 \text{ eV/nm}$ for protons on SiO₂
- Energy analyzer resolution (MEIS) ~150 eV
- Appropriate simulation of the ion-matter interaction phenomena.
- Straggling
- Beam spread + Doppler effect ~ 100 eV

Depth profiling by ion beams: limiting facts for depth resolution

- Stopping power of ions in matter
 e.g. ~ 120 eV/nm for protons on SiO₂
- Resonance width (NRP) 40 120 eV Straggling
- Appropriate simulation of the ion-matter interaction phenomena.
- Beam spread + Doppler effect ~ 100 eV