Innovations in Science, Technology, Engineering, and Math: NIST and US National Priorities

November 3, 2014

Susan Ballou

Manager, Forensic Research Program

<u>susan.ballou@nist.gov</u>

Providing research and measurement services such as validated test methods, Standard Reference Materials, and Reference Data.

National Call

The need for objective, numerical and statistically valid criteria

To address that call:

- We provide access to research, measurement science, and standards that make the forensic science community more successful
- We form the best teams to develop solutions to complex forensic science problems
- We create opportunities for success at NIST through trusted and reliable partnerships
- We connect NIST scientists with forensic practitioners to better use the full range of competencies that make NIST a unique agency

But

NBS Early Days of Forensic Science

The nation's first crime lab: from 1913 until 1932, National Bureau of Standards (NBS) expertise in firearms and document identification helped solve hundreds of crimes.

Wilmer Souder (precision length measurements): helped the Division of Investigation (now the FBI) establish its crime lab in 1932.

The Lindbergh kidnapping: In 1935, Souder's testimony on handwriting samples was key to convicting Richard Hauptmann in the kidnapping and murder of Charles Lindbergh's son.

Wilmer Souder NBS scientist, 1913-1954

History of Forensics at NIST

1966: The FBI turned to NBS for scientific and technical support for its first computerized scanning protocol to read and record fingerprint characteristics.

Forensics at NIST

2001 World Trade Center - support New York City's Office of the Chief Medical Examiner during the identification effort

2002 D.C. Sniper – support another federal agency; x-ray the tree stump used for target practice

2014 Digitally map 3D replicas of the ballistic evidence in the President John F. Kennedy Assassination.

Consists of:

- Digital
- 2. <u>DNA</u>
- 3. Firearms
- 4. Statistical Methods

Forensic Science Research Program 4 Focus Areas

1. Digital:

- Human Identity Biometric pattern matching technologies
- Computer Technology NSRL, CFTT, Mobile devices
- 2. DNA: Interpretation of complex DNA mixtures, SRMs, Testing and validation of new STR typing kits, Rapid DNA Typing

Forensic Science Research Program 4 Focus Areas

3. Firearms: An open-access research database of bullet and cartridge case reference data, Estimating error rates, Congruent Matching Cell methodology

4. Statistical Methods: Statistical measure of the uncertainty of the decisions made on the friction ridge evidence

Laser Scanning and Photography of Crime Scenes

Project Background	 Companies offer 360 degree laser scanning and photography of crime scenes Need a traceable independent scale or artifact
Process	 Determine accuracy, and possible factory traceability protocols for artifact developed NIST's Dimensional Metrology Group developed a calibration scheme using a Leica target
Outcome/ Impact	 Maintain calibration through NIST Increased confidence in the system as it is used in crime scene reconstruction and

preservation, and shooting scene

reconstructions

Technical Working Group on Biological Evidence Preservation

Project Background	 Direct request to develop best practices in evidence storage
Process	 Working group met approx. quarterly to develop outputs specified during initial meetings
Outcomes/ Impact	 Handbook published April 2013 http://www.nist.gov/oles/forensics/bioev.cfm Report on Legislative Issues (in production) Forensic Automated Identification Technology (AIT) Assessment (in publication)

Standard Reference Material – Bullet and Casing

Project Background	 Establish standardization for network and entry activities to establish and maintain quality assurance
Process	 NIST developed manufacturing processes and measuring methods for the SRM's and determining validated QC scores Partnered with ATF to assist in the entry and validation of benchmark network images
Outcome/ Impact	 Traceable method and SRM's used for Crime Laboratory quality programs. NIBIN units in crime labs have demonstrable data for lab accreditation. Better image acquisition

Human Factors Affecting Latent Prints

Project Background

 Human factors analysis can be used to advance our understanding of the true nature of errors in complex work settings.

Process

Convened a working group on Latent Print

Analysis –
forensic examiners, statisticians,
psychologists, researchers,
legal scholars, subject matter
experts

Outcome/ Impact

- Published a 230 pg report with 34 recommendations to reduce error
- Created a Process Map translated in 3 languages

Forensic Science Center of Excellence (COE)

Support NIST's efforts to strengthen forensic science to improve evidence interpretation and reporting.

Focus – Probabilistic Methods

- 1. pattern recognition
- 2. digital evidence

Thank You!

Questions?

Susan Ballou
Manager, Forensic Research Program
susan.ballou@nist.gov

