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Goal & Objective

e Goal: to articulate "Grand Challenges” in
data-intensive research

L.« Objective: to identify differences
between measurement science for Little
Data and Big Data



: Concrete Application Domain

- j * Analysis of cell biology microscopy
i images

2 - NIST Project: Computational Science
in Biological Metrology

— CS-BIO-MET:
_ nist.gov/itl/ssd/is/computational-science-in-
. biometrology.cfm
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http://www.nist.gov/itl/ssd/is/computational-science-in-biometrology.cfm
http://www.nist.gov/itl/ssd/is/computational-science-in-biometrology.cfm

Basic Biological Questions

 What are the quantitative dynamic
characteristics of cell changes as a
function of their surrounding
environment, cell signaling, phenotype
and genotype?

— Parameter estimation
— Bayesian inference and learning methods
— Development of mathematical models
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Mission Oriented Results

e Big Data = Limited human input 2
Need for automation and measurements
of automation accuracy

e Automation Outcome

—> Quantitative cell measurements




Computational Science in
Biological Metrology

Biological Metrology Computational Science

e Specimen
preparation

* Image Quality
* Image Sampling

e Definition of
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e Estimation of accuracy
and sensitivity

e Extraction of cell
characteristics

e Statistical
significance
e Discovery and
decisions
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Central Problem:
Image Segmentation Accuracy

¥

_ ACCURACY/ERROR
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~ Image Segmentation Baseline

J What is the baseline for segmentation
results in cell microscopy?
— Disagreement between biologists,

statisticians, and computer vision researchers
on the baseline criteria

— Manual versus mathematically grounded
approach
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Data Quality

e I ]« How does data quality relate to
segmentation accuracy?

What data quality methods are =
appropriate for driving optimal |
microscopy settings? e
How does one detect and measure a

mismatch between segmentation method
assumptions and the input data? 4
|




g}‘Data Sampling (Image or Cell)
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 What sampling techniques and sample
sizes are appropriate for segmentation
accuracy evaluations of Big Data?

— Much work in the signal processing and
statistical domains

— Does the choice of sampling method bias
results?

— What uncertainty is acceptable to
biologists?
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Data Comparison

I | T * How does one compare two images?
- ¥

— Metrics: Euclidean versus Riemannian
spaces

— In general, any two digital data sets?

e How does one choose the most suitable
proximity metrics given application
requirements?
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Sensitivity Signatures of Similarity

Metrics
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The differentials are the 15t Frechet derivative of a similarity metric
C, along the direction of reference image content changes
(application dependent space of reference image content) and along
the direction of any possible modification of reference image content

(application task specific) at the referenced point (|f§f; h%o)




£) Image Similarity Metric Recommendation - Mozilla Firefox

Bookmarks  Tools

Help

»

:: Image Similarity Metric Recommendation 2 | + |

file:///C jPeterB /Presentations Versus fwebForm fimageSimilarityMetricRec. html & 'l"'v Inference learning

Image Similarity Metric Recommendation

Application Fequirements on Image Sunilanty Metric. USER INPUT:

Select below the sensitivity values from the drop-down menus:

- s LOoW MEDIUM HIGH
SENSITIVITY PARAMETER RANGE RANGE RANGE

Position Translation [ [20.90] »] [[80.50] > [[20.50] »|
Position Fotation (1010 el (010 »] [[01m) ]
Shape Scale (10 B 010 =] [ )
Shape Ellipticity [10 s ([0 =] [0 ]
Intensity Gamma (1010 ] (010 »] [[01m) ]
Intensity Blur [0 & [0 =) [0 &)
Texture Gramularity  [[010) o~ [[010) | [[10) ~]
Texture Orientation  [[0-10) > [[0-10) »] [[0-10) ]

EXAMPLE: Application specific input

Parameter Value Low Medium High

Position

Translation [0,10);
Rotation [0,10);
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Access, Access, Access

j What is the most efficient Big Data access
and retrieval protocol?

— RESTful web services, Web applications,

) Versus - Mozilla Firefox
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¥ Other ¥ Other Dumm,
Image Object Pixel to Signature Vector P Other
Bytes Pixels to Pixel Histogram Sq or X2 ia
Labeled Image Object Adapter PixelsZL abeledArray
Buffered Image Pixels to Grayscale Histogram = p———
Pixels to Vector
¥ Lp Minkowski family
¥ Dummy Pixels to RGB Histogram
Pixels to Array Euclidean Distance
< L

Image Object —  Pixelsto Array —  Euclidean Distance




Visualization

 How to visualize comparisons over Big
Data?

— Human Computer Interfaces for Big Data?
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computational provenance information?
— Repeatability

e How do we represent provenance
information?



Summary

e Big Data: Cell microscopy images

e Basic Challenge: automated
segmentation and its accuracy
evaluations over Big Data

* In general, the basic challenge applies
to other domains for other automated
processing operations




Summary

,—J * Accuracy evaluations of automated
processing over Big Data include at

least

— Data quality, sampling, and comparison
measurements

— Standards for accessing Big Data

- - remotely

e — Standards for computational provenance
. information representation
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Questions

e peter.bajcsy@nist.gov
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