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Air void spacing equations have been proposed in the literature by
a number of authors: Powers; Philleo; Attiogbe; and Pleau and
Pigeon. Each proposed spacing equation attempts to characterize the
true “spacing” of entrained air voids in concrete. While efforts have
been made to correlate these spacing equation calculations to
freeze-thaw performance, no test has been performed to assess the
geometrical accuracy of these spacing equations. Herein is a com-
puterized accuracy test of these proposed spacing equations. A
computer model of air void systems is used, and various “spacings”
are measured in the model system. The results of these measure-
ments are then compared to the appropriate spacing equation
prediction, along with equations developed by Lu and Torquato.
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Spacing equations
T for providing freeze-thaw durability has been
known since the 1940s [1]. However, their
exact role in freeze-thaw durability has not been estab-
lished definitively. There appears to be a connection
between the expansion of the water during freezing and
the proximity of the air voids. Regardless of which
particular physical theory of freeze-thaw degradation
might be correct, an undisputed fact is that good
freeze-thaw durability can be achieved through the
presence of many small entrained air voids distributed
throughout the cement paste phase of the concrete.
Therefore, one could characterize an air void system by
estimating some measure of air void “spacing,” with
the expectation that concretes with equal air contents,
but different air void spacings, should exhibit different
freeze-thaw performance.
One of the first attempts to characterize the “spacing”
of air voids was by Powers [2], which was the basis for

he efficacy of entrained air voids in concrete
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the American Society for Testing and Materials (ASTM)
C 457 [3] spacing factor (L). Since then, spacing equa-
tions have been proposed by Philleo [4], Attiogbe [5],
and Pleau and Pigeon [6]. Each of these equations
attempts to characterize the “spacing” of voids in
air-entrained concrete, even though the Attiogbe equa-
tion estimates the spacing among air voids, and the
other equations estimate the distance water must travel
to reach the nearest air void.

At present, evaluation of an air void spacing equation
consists of a comparison between the estimate of spac-
ing and the results of laboratory freeze-thaw experi-
ments {7,8]. The a priori assumption is that each equa-
tion is inherently correct in its estimate of spacing.
Unfortunately, each of these spacing equations pro-
posed for predicting freeze-thaw performance has in-
herent assumptions or simplifications built into its
development. Until now, no quantitative measure has
been made of the effects due to these assumptions.

This article quantifies the performance of the various
spacing equations using a computerized numerical ex-
periment. The computer experiment measures various
“spacing” quantities in a paste-air system. Systems are
composed of air voids with either monosized or lognor-
mally distributed radii. Since the size and the location
of each sphere are known exactly, the actual “spacings”
can also be calculated exactly. To achieve acceptable
statistics, the results from many system realizations are
used to estimate averaged quantities. These results,
along with the associated spacing equation predictions,
are reported for comparison.

Spacing Distributions

There are two classifications of spacing equations that
will be discussed here. Some equations estimate the
proximity of the paste to the voids, and others estimate
the proximity of the voids to one another. Although this
may seem a subtle distinction, it will be shown that the
mathematical relationships that characterize these con-
cepts have different behaviors.

Also, any reasonable concept of “spacing” should
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FIGURE 1. An idealized representation of a spacing cumula-
tive distribution function (CDF) and the associated probabil-
ity density function (PDF) for some distance s. The dashed
lines demonstrate how to determine the 50th and the 95th
percentiles from CDF data.

address the fact that there must exist a distribution of
distances that characterize the spacing. Clearly, some
regions of the paste are closer to an air void than other
regions, and some voids have nearer neighbors than
others. This characteristic can be represented by a
distribution of distances, as depicted in Figure 1 for a
distance s. In this figure, the probability density func-
tion (PDF) is a normalized function with unit area
under its curve. This function represents the fraction of

TABLE 1. Sorted list of 20 random normal deviates x with
mean zero and variance one, their rank, and their associated
cumulative probability y

x Rank y
—1.0730320 1 0.05
—0.8731335 2 0.10
~0.8409334 3 0.15
—0.7056352 4 0.20
—0.5254872 5 0.25
—0.4553703 6 (.30
-0.2430273 7 0.35
—-0.1967312 8 0.40
—0.1494667 9 0.45
—0.1038428 10 0.50
0.0321516 11 0.55
0.0340721 12 0.60
0.2339296 13 0.65
0.2635231 14 0.70
0.2697059 15 0.75
0.4185625 16 0.80
0.3730767 17 0.85
0.8981169 18 0.90
1.1908520 19 0.95
1.5878820 20 1.00
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spacings found in the interval [s, 5 + ds] for some
differential element ds. The associated cumulative dis-
tribution function (CDF) is the integral of the PDF. This
function increases monotonically from zero to unity
and represents the fraction of spacings less than s.

An illustration of using the CDF is also shown in
Figure 1. Two horizontal dashed lines intercept the
ordinate axis at the 50th and 95th percentiles. These
lines intercept the CDF at s values of 1.95 and 3.1,
respectively; 50% of the spacings are less than 1.95, and
95% are less than 3.1. In theory, the CDF only asymp-
totes to unity, and to capture all of the spacings, s must
increase to infinity. In practice, however, the quantity s
can only increase to the size of the system. Therefore,
the concept of a maximum spacing is an ill-defined
quantity. In this experiment, the 50th and the 95th
percentiles of the spacing distributions will be used to
characterize both the measured and the estimated val-
ues since these percentiles are intuitive to one’s concept
of spacing and protected paste.

Analytical Equations—Discrete Data

This numerical experiment is performed by collecting a
finite number of spacing values and comparing this
distribution of spacings to an analytical equation. The
most straightforward way to do this is to use all of the
data to create a discrete CDF for the data and compare
percentiles of this function to the same percentiles
computed for the analytical equations. As a simple
demonstration of this procedure, 20 normally distrib-
uted random numbers with a mean of zero and a
variance of one were generated by a computer program
[9] and sorted from smallest to largest. These data,
labeled x, are shown in the first column of Table 1. The
adjacent column contains the rank of the sorted x
values. A rank of 10 signifies that 10 of the 20 values are
equal to or less than x. The percentiles of the x values
are calculated by dividing the rank by the total number
of variates, 20. This percentile, or relative rank, is
labeled y and is shown in the last column of Table 1.
This value represents the numerically determined CDF
of the x values and is plotted in Figure 2. Since the
normal distribution is symmetric about zero, both the
mean and 50th percentile are also zero. From Table 1,
the 50th percentile of the data is approximately —0.104,
which differs from the true value of zero. The error is
due to the small sample size. Repeating this experiment
of 20 random variates and averaging the results would
vield a more accurate estimate of the 50th percentile.
Another way to increase accuracy is to increase the
number of random numbers. Figure 3 shows the CDF
created from a single experiment of 1000 normally
distributed random deviates, again with mean zero and
variance one. From these data, one could either estimate
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FIGURE 2. The cumulative distribution function for the 20
normal random deviates shown in Table 1.

percentiles of the distribution or estimate the PDF of the
data. The 50th percentile of the discrete CDF is 0.018,
which is a more accurate estimate than for the 20
variates. An estimate of the PDF for these data was
calculated by first extracting every 40th value in the
CDF data in order to reduce noise in the data. A
one-sided finite difference [10] algorithm was used to
calculate the slope at these points (the derivative of the
CDF), and these values for the PDF are shown as filled
circles in Figure 3. For a comparison, the true Gaussian
PDF is also shown in the figure. Even after smoothing
the CDF by selecting every 40th value, the resulting
PDF is still quite noisy. Therefore, a comparison be-
tween measured data and analytical estimates is best
done through estimating percentiles using the CDF.
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FIGURE 3. The cumulative distribution function (CDF) for the
1000 normal random deviates and the estimated probability
density function (PDF) (solid circles) for every 40th deviate.
The true Gaussian PDF is also given as a reference.
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Paste-Void Proximity L
Paste-void proximity equations estimate the volume
fraction of paste within some distance from the surface
of the nearest air void. There are two simple ways to
visualize this spacing. (1) Imagine surrounding each air
void with a shell of thickness s. These shells may
overlap one another, but may not overlap or penetrate
air voids. The volume fraction of the paste that is within
any shell is equivalent to the volume fraction of paste
within a distance s of an air void surface. (2) Given an
air void system, pick points at random throughout the
paste that lie outside the air voids. For each point, find
the distance to the nearest air void surface. The number
fraction of the points that fall within a distance s of an
air void surface is equal to the volume fraction of paste
within a distance s of an air void surface. This second
approach is the one used here to estimate the CDF of
the spacing distribution.

This definition of the paste-void proximity distribu-
tion is the same as that used by proponents of the
protected paste volume (PPV) concept [11-13]. The
material parameters of the concrete determine the lim-
iting spacing, and one wants to determine the fraction
of paste within this distance to the nearest air void.

Void-Void Proximity

Void-void proximity spacing equations can be further
classified into either nearest neighbor or mean free path
calculations.

NEAREST NEIGHBOR. Nearest neighbor void-void proxim-
ity equations estimate the surface-surface distance be-
tween nearest neighbor air voids. This is calculated by
starting from a given air void and finding the shortest
distance from the surface of that void to the surface of
any other air void. This is repeated for a number of
different air voids. This collection of random distances,
when sorted and plotted vs. its relative rank, forms an
estimated void-void proximity CDF.

As will be demonstrated subsequently, void-void
proximity spacings have a subtle complexity. For an air
void system composed of polydispersed sphere diam-
eters, the average void-void spacing originating from
large spheres is smaller than the average void-void
spacing originating from small spheres. Therefore, the
“mean void-void spacing” is an ill-defined quantity
when stated without additional qualifiers, since it var-
ies over the distribution of sphere diameters.

MEAN FREE PATH. The mean free path is the average length
of paste between adjacent air voids along a randomly
chosen line passing through the air void system. If an
ASTM C 457 [3] linear traverse was performed on a.
paste specimen containing entrained air voids, the,
mean free path would be equal to the average paste
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., ‘hord length. It is important to note that this distance is
neither the longest nor the shortest distance between air
voids in an air void system.

An important difference between the mean free path
and either the void-void or the paste-void proximity
spacings is that the mean free path is simply a number
and not a distribution. The advantage is that a single
number can be used *to characterize this measure of
spacing. The disadvantage is that a single number
yields no information about the expected variability in
the paste chord lengths.

Aggregate Effect

The effect aggregates have on the spacing distribution
has been neglected for each of the spacing equations.
The assumption is that the interaggregate paste regions
is large enough to contain a statistically significant
number of air voids. Based upon this assumption, the
statistics calculated for the air voids in these interaggre-
gate regions are unbiased estimates of the values calcu-
lated from the paste-air systems with the same number
density of air voids. However, measurements by Dia-
mond et al. [14] indicate that the average interaggregate
spacing on a plane section is on the order of 100 pm.
Since this spacing in three dimensions may be less, the
presence of aggregates may have a significant impact
on spacing since there may only be a few air voids
within many of the interaggregate regions. Although
further study is needed, this article neglects the effect of
aggregates, as do most air void spacing equations.

Spacing Equations

Nomenclature for air void quantities differs among
various authors. To express quantities with a common
notation here, the following definitions are given:

n:  number of air voids per volume
A:  air void volume fraction

p: paste volume fraction

a:  specific surface area of spheres
r: sphere radii

ftr):  sphere radii probability density function
(RY:  the expected value of R* for the radius distri-
bution
s: spacing distribution parameter.

For the paste-air svstems (no aggregate) considered
here, these quantities can be defined analytically in eqs
1, 2,3, and 4 [15,16]:

TR 1
3;1( ) (1)

1 - A (2)
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_ 4mn(R?)
T dmn o3 ©)
2R
(RYy = fx r*f(r)dr (4)
4]

The distinction has been made between the random
variable R and its possible values r (see reference [16],
Chapter 4).

Powers Spacing Factor

The most widely used paste-void spacing equation is
the Powers spacing factor [2]. Contrary to a popular
misconception, it does not attempt to estimate the
distance between air voids. Rather, it is an attempt to
calculate the fraction of paste within some distance of
an air void (paste-void proximity). The Powers equa-
tion approximates the distance from the surface of all the
air void surfaces that would encompass some large
fraction of the paste. However, the value of this fraction
is not quantified.

The second misconception is that the Powers spacing
factor represents the maximum distance water must
travel to reach the nearest air void in a concrete speci-
men [3,8,17]. From the previous discussion of the dis-
tribution of paste-void and void-void spacings, it
should be clear that there is no single theoretical max-
imum value for the paste-void spacings. One can only
quantify percentiles of the distribution to characterize
the fraction of paste within some distance to the nearest
air void surface. In practice, the maximum paste-void
spacing is the size of the sample.

The Powers spacing factor was developed using two
idealized systems. For small values of the p/A ratio,
there is very little paste for each air void. Powers used
the “frosting” approach of spreading all of the paste in
a uniformly thick layer over each air void. The thickness
of this “frosting” is approximately equal to the ratio of
the volume of paste to the otal surface area of air voids

(eq 5):

- ) )
[= 4"%{1}“(12_% =L A< (5)

For large values of the p/A ratio, Powers used the
cubic lattice approach. The spheres are placed at the
vertices of a simple cubic array. The air voids are
monosized, each with a specific surface area equal to
the bulk value. The cubic lattice spacing is chosen such
that the air content equals the bulk value. The resulting
Powers spacing factor is the distance from the center of
a unit cell to the nearest air void surface (eq 6):
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The p/A value of 4.342 is the point at which these two
equations are equal.

The intent was that a large fraction of the paste
should be within L of an air void surface. An acceptable

value of L for good freeze-thaw performance was
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L= p/A=4.342  (6)

Philleo Spacing Equation

Philleo [4] extended the approach of Powers by at-
tempting to quantify the volume fraction of paste
within some distance of an air void system (paste-void
proximity). Philleo started with an idealized air void
system composed of randomly distributed points, the
statistics of which are known. Using the Hertz [18]
distribution for the paste-void proximity distribution
for zero-radius points, Philleo then modified this distri-
bution to account for finite-sized spheres by renormal-
izing the cumulative distribution to account for the air
content. The result, although still only an approximation,
characterizes the paste-void spacings for finite-sized air
voids. For an air-paste system, the Philleo spacing
factor for the volume fraction of paste within a distance
s of an air void surface is:

F(s) =1 — exp[ —4.19x> — 7.80x*[In(1/p)]'/?
— 4.84x[In(1/p)]*/?] (7)

1/3

where the substitution x = sn'’~ has been made (eq 7).

Attiogbe Spacing Equation

Recently, Attiogbe [5] proposed a spacing equation that
estimates the “mean spacing of air voids” in concrete.
From the author’s figures, it appears as though the
Attiogbe spacing equation attempts to estimate one half
the minimum surface-surface spacing among neighbor-
ing air voids. An accurate numerical test of the equation
is complicated by the exact definition of what the
author’s spacing equation attempts to quantify. Figure 1
of reference [5] depicts the “spacings” considered. In
that figure, the author has chosen the nearest three
voids as neighbors. The author should have included
the other six voids that are “visible” to the central void
since, by the author’s definition, “d is defined by
considering only the distances, between adjacent air
voids, which are entirely occupied by paste” [5].

A definitive numerical test of the Attiogbe [5] spacing
equation is complicated further by the author’s ambig-
uous definitions of certain mathematical quantities. The
initial spacing equation proposed by Attiogbe [5], “val-
id for all values of p/A,” was:
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2

p=2 1 8

aA

(To avoid confusion with the other spacing equations
presented here, the variable t has been substituted for 5
in the author’s original equation.) Upon noting that eq
8 has peculiar properties for some values of p/A [19],
Attiogbe [8] has since been using eq 9:

2

YL
=26 — 9)

in more recent publications. (The variable G replaces
the author’s variable F to avoid confusion with the
Philleo spacing factor.) The author states that, “[G] . . . is
the fraction of the total paste volume within the dis-
tances of [t] from the edges of the air voids ... In this
regard, [G] is equivalent to the probability factor de-
fined in Philleo’s ‘protected paste volume concept’” [5].
In its simplest form, it is represented by the equation:

8
G = pw_/A'i'l p/A=7
1 p/A<7

(10)

However, the quantity G depends upon the air void
radius distribution. Fortunately, Attiogbe has recently
given an explicit equation for G for an air void diameter
distribution based upon the gamma function [20]:

a-1 ~x/h

X (4

= T (11

fix)

The parameters @ and b can be related to the mean
diameter D and the variance of the distribution ¢*:

D? b_02
1T "D

(12)

For any parameters (a, b), the equation for G is [21]:

+3

(18/17)[1+a }
- ‘40 <1
p/A+1 o

(13)

This result will be useful for the air void radii distribu-
tions used in this experiment. Additionally, since G is
an estimate of the fraction of paste within ¢ of an air
void, it will be compared to measured values.

Mean Free Path

The behavior of the Attiogbe equation (f) for voids of |

zero radius suggests a relationship to the mean free
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. path (A) between air voids. As stated previously, the

' mean free path is numerically equivalent to the average
paste chord lengths in a paste-air system. This quantity
has been studied for some time, and is known to an
acceptable level of accuracy (eq 14) [15]:

p

A= Em (14)

If the centers of the air voids remain fixed, as the radii of
the air voids decrease to zero, the mean free path diverges
toward infinity, like the Attiogbe equation for t.

This similarity is more than coincidental. In fact, the
Attiogbe equation for ¢t is directly proportional to \.
Expressing the Attiogbe equation for t as (eq 15):

t=2p & (15)

the quantity «A can be simplified using eqs 1 and 3 (eq
16):

p_r
2 nm(R?)

N

A (16)

Therefore, at low air contents the Attiogbe equation f is
approximately equal to one half the mean free path
between air voids in a paste-air system.

Pleau and Pigeon Spacing Equation
Pleau and Pigeon [6] have recently proposed a spacing
equation for the paste-void spacing distribution. Their
approach considered both the air void radii distribution
and the distribution of distances between a random
point in the paste and the nearest air void center. Let
h(x) represent the PDF of the distance between a ran-
dom point in the system and the center of the nearest air
void. As defined previously, let f(r) represent the PDF
of air void radii. The joint probability [16] that this
random point is a distance s from the surface of an air
void with radius r is (eq 17):
B(s, r) = h(r + s) fir) (17)
As an approximation for i(x), Pleau and Pigeon use the
PDF for the nearest neighbor distance between random
points (eq 18):

[EVARIE. STR S

(18)

h(x) = dmne

which is the Hertz distribution {18] used by Philleo.
However, the centers of air voids are not entirely
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random since air voids do not overlap one another. The
consequence of this choice for h(x) is discussed subse-
quently.

The joint PDF B(s, r) depends upon h(s + r). If a point
chosen at random throughout the entire system lies at a
distance x from the center of a sphere, the quantity s is
defined as x — r. Therefore, if the random point lies
within the sphere, the quantity s will be negative, but
the argument x of h(x) will be either zero or some
positive number.

The parameter r may be eliminated from the joint
probability B(s, r) by integrating over the possible radii
(eq 19):

k(s) = J’x h(r + s) f(r)®(r + s)dr (19)

0

where the Heaviside function ®(r + s) [22] ensures that
the argument of the function # remains positive. This
equation is the fundamental equation of Pleau and
Pigeon. The CDF is:

K'(s) = [ k(s')ds’ (20)

and corresponds to the volume fraction of the entire
system within s of an air void center (eq 20). The
volume fraction of the entire system that would lie
within an air void is K'(0), and corresponds to an
estimate of the air void volume fraction. The volume
fraction of paste within s of an air void surface would
then be:

] 5
K(s) = éf k(s')ds’

[}

(21

where Q normalizes the result by the volume fraction of
paste (eq 21).

The normalization factor Q should equal 1 — A, or the
paste volume fraction. By the authors’ development,
this is equivalent to:

Q=1-K'(0) (22)
which the authors use in their derivation (eq 22).
However, as demonstrated previously [23], for mono-
sized spheres the quantity K'(0) corresponds to the air
volume fraction for a system of overlapping spheres.
This is a consequence of using the Hertz distribution for
I{x).

In the subsequent numerical experiment, two results
will be reported for the Pleau and Pigeon equation
corresponding to the normalization factors 1 — K'(0)
and 1 — A.
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Lu and Torquato Equations
The paste-void and the void-void spacing distributions
have application both inside the field of cementitious
materials [24-29] and outside the field [30-32]. Using
various approximation techniques, the problems of the
paste-void and the void-void spacing distributions
have been solved for systems composed of monosized
spheres [33-39]. These approximations have been com-
pared to results of Monte Carlo simulations [36,37] and
they are in agreement. One method of approximation
relies upon n-point correlation functions, and Torquato
et al. [36] have obtained exact expansions for mono-
sized spheres. Lu and Torquato [40] developed a means
to map these correlation functions to systems of poly-
dispersed sphere radii, thereby making it possible to
extend the approximations for monosized spheres.
These approximations for polydispersed sphere radii
are given in Lu and Torquato [41] and are used here as
estimates for both the paste-void and the void-void
spacing distribution.

The results of Lu and Torquato [41] for both the
paste-void and the void-void proximity calculations
require the following defined quantities (see eqs 23-26):

£ = g n2%~1(Rky (23)
-5 2 (24)
d= l4<_R; i 1_22)2 (R?) (25)
3=3(14—A)+(1§§ZF<R) ’13‘6 (1_?%')-‘“@)
(26)

The value of B depends upon the exact way the system
is constructed. For the calculations performed here, B =
0. Also, there was an error in the published value for g
in reference [41], which has been corrected here.

Since Lu and Torquato were studying systems com-
posed of a matrix containing solid spheres they use the
terms “void” and “particle” to represent the matrix and
the spheres, respectively. Therefore, the authors’ “void
exclusion probability” is used here to estimate the
paste-void proximity distribution, and their “particle
exclusion probability” is used here to estimate the
void-void proximity distribution.

PASTE-VOID PROXIMITY DISTRIBUTION. The approach of Lu
and Torquato [41] was to derive the probability that a
point chosen at random throughout the entire system
would have no part of an air void within a distance s
from it. The region of thickness s about the point
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constitutes a test sphere of radius s. This test sphere of
radius s constitutes the Lu and Torquato “void.” This:

void exclusion probability is given by eq 27 [41]:

ey(s) = [

with s < 0 corresponding to a sphere with radius (—s)
being entirely inside an air void. The averaged quantity
in eq 27 has the same definition as before:

1- 4?“ n{(s + r)*0(s + r)) s<0

(1 — A)exp[—wn(cs + ds? + gs*)] s> 0
(27)

x

(s + r)°O(s +r)) = f (s + R)?O(s + r) fr)dr

0
(28)

Again, the quantity &(s + r) is the Heaviside function
[22] and ensures that the argument (s + r) remains
positive (see eq 28).

This result can be recast into the air void problem.
Since ey(s) represents the probability of a random point
not being within a distance s of an air void surface, the
probability of finding the nearest void surface within a
distance s of a randomly chosen point is the comple-
ment of the void exclusion probability (eq 29):

EV(s) =1 —eyls) (29)
The probability of finding the nearest air void surface a
distance s from a random point in the paste portion
only is (eq 30):

Eyls >0)— A
1-A

Ey(s) = (30)

=1 —exp[—mn(cs + ds? + ¢s57)]

This gives the fraction of the paste volume within a
distance s of an air void surface, which is equivalent to
the definition of the paste-void proximity CDF.

VOID-VOID PROXIMITY DISTRIBUTION. The approach used by
Lu and Torquato [41] for the void-void proximity is
similar to that for the paste-void proximity. Given that
a point is located at the center of an air void with radius
R, the probability that the nearest air void surface is
farther away than w is [41]:

epliv, R) =

1 wsR
{ exp{—mn[clw = R) + dlw” = R + gta® — RH] w >R
(31)

’
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Lu and Torquato refer to eq 31 as the particle exclusion
" probability.
The probability that the nearest air void surface is
within a distance w from the center of an air void with
radius R is expressed by eqgs 32 and 33:

E(w,R)=1—e,(w>R,R) (32)

=1 — exp{—mn[c(w — R) + d(w? — R?)

+ gw® - RY))} (33)
Let s represent the shortest surface-surface distance
between two air voids. The probability that the nearest
air void surface is within s of the surface of the void
with radius R is:

Ep(s, R) = E(s + R, R) (34)
The function E(s, R) is equivalent to the void-void
spacing CDF.

The most important feature of eq 34 is that E (s, R)
depends upon the size of the sphere one starts from. For
monodispersed sphere diameters, R is simply a con-
stant. However, for a system composed of polydis-
persed sphere diameters, E (s, R) is a continuous func-
tion of R. Since a continuous distribution of sphere
diameters would have an infinite number of possible
diameters, there would exist an infinite number of
possible E.(s, R) distributions. This complicates an
evaluation of void-void spacing distributions for sys-
tems composed of polydispersed sphere radii.

One possible remedy is to simply calculate an ensem-
ble average. Ensemble averages can be calculated based
on either number density or volume density. This bulk
value can then be compared to measured values. Here,
the number density ensemble average was chosen:

(Epls)) = J' » Ens, r) flridr (35)
(

)

For a system of polydispersed sphere diameters one
can also calculate the mean nearest surface-surface
distance with eq 36 [41]:

I(R) = f ep(w, R)dw (36)

R

which gives the average distance to the nearest air void
. surface when starting from spheres of radius R. The
quantity I(R) decreases as R increases. Therefore, on
_average, the larger the sphere one starts from, the
shorter the distance one travels to reach the surface of
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the nearest air void. A technique is described to mea-
sure this quantity, and the results are given along with
this prediction.

Numerical Experiment

The computer program used in this experiment was
based upon one that was used previously in a similar
experiment [42]. The computer generates sphere radii
and sorts them in order of decreasing radii. Random
locations are generated for the centers of the spheres,
and they are placed inside a cube 10 mm long on a side.
As the spheres are placed, should a new sphere overlap
an existing one, new random locations for the center are
generated until it no longer overlaps an existing sphere.
This “parking” approach is used until all the spheres
are placed into the cube. For any portion of a sphere
protruding out from one face of the cube, there is a
virtual sphere of the same size placed outside the
opposite face such that its intruding portion exactly
compensates for the protruding portion of the original
sphere. This is the technique of periodic boundary
conditions and helps to eliminate finite-size effects.
Once all the spheres have been placed, the computer
knows the size and location of every sphere in the
system. From this, the computer can calculate any
desired measure of spacing.

Air Void Radii Distribution

Two sphere radii distributions are used in this experi-
ment: monosized and lognormally distributed radii.
The monosized sphere systems provide a means to test
the effects of varying either the size or the number
density of air voids. The zeroth-order logarithmic ra-
dius distribution (see eq 37) {43]:

_ Un(r/r.))*
ex p 2 0_3
flry =

= 37
\2ma.r, explo?/2) &7

represents an air void radii distribution typically found
in concrete containing air entrainment. For this distri-
bution (r, = 15 pm, o, = 0.736), and the specific surface
area is 300 mm ™" A plot of this distribution, and the
corresponding ASTM C 457 chord distribution, $(z)
[44], is shown in Figure 4. In this plot, the air void
distribution is shown as a diameter distribution, f{d),
rather than a radius distribution since sphere diameters
are more directly comparable to the observed ASTM C
457 chord distribution.

Paste-Void Proximity

After the spheres have been parked into the system,
1000 points throughout the entire system are chosen
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FIGURE 4. The zeroth-order logarithmic sphere diameter
distribution f{d), and the corresponding chord distribution
&$(z), used in this experiment.

along a uniform grid. The distance from an individual
point on the grid to the nearest sphere surface is
calculated; if the point lies within that sphere, the
shortest distance to the surface is made negative. These
-1000 distances are then sorted, from smallest to largest.
The relative rank of these distances, as a function of this
distance, is an estimate of the CDF for all the paste-void
spacings in the entire system.

Since the negative distances in this CDF correspond
to points lying within an air void, the 50th and 95th
percentiles of the paste-void proximity spacings for the
paste fraction alone are calculated from the positive
values in the list of distances.

Void-Void Proximity

Analyzing void-void spacings is more complicated than
the paste-void spacing measurements. As pointed out
by Lu and Torquato, the void-void spacing distribution
is a function of both s and r. For a lognormal distribu-
tion of sphere radii there exists a unique void-void
spacing distribution for each sphere in the system. Also,
estimating the average void-void spacing is difficult
since only one measurement exists for each sphere, and
that exact sphere diameter will not be duplicated in the
system. An indirect means to estimating the average
void-void spacing is presented and used here.

ENSEMBLE AVERAGE. The percentiles of the void-void spac-
ing distribution are calculated in the same manner for
both the monosized and lognormally distributed sphere
radii. One thousand spheres are chosen at regular
intervals from the sorted list of sphere radii that were
used to place the spheres. For monosized spheres, this
constitutes 1000 random air voids. For the lognormaily
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distributed radii, this is a statistical ensemble based on
the number density. For each of these 1000 spheres, the¢
surface-surface distance to the nearest air void surface
is calculated. This collection of distances is an estimate
of the averaged distribution given in eq 35. Once sorted
in ascending order, the 500th and 950th entries corre-
spond to the 50th and 95th percentiles of the void-void
spacing distribution, respectively.

MEAN NEAREST SURFACE. The mean nearest surface for poly-
dispersed sphere radii, /,(r), can be estimated from
multiple iterations of void-void spacing measurements.
As described in the previous section, 1000 spheres are
chosen at regular intervals from the original sorted list
of sphere radii. This list also corresponds to the CDF of
the sphere radii. If the void-void measurements are
repeated from many system iterations, averaging the
radii in the 500th entry, for example, will yield an
unbiased estimate of the 50th percentile of the sphere
radii distribution. Likewise, the corresponding nearest
sphere surface distance in the 500th entry can be
averaged, yielding an estimate of the mean nearest
surface for the 50th percentile.

This process is repeated for all 1000 entries of both
sphere radii and void-void distances. Upon averaging
over all system iterations, there are 1000 averaged radii
and 1000 averaged void-void spacings. The 1000 aver-
aged void-void spacings plotted against the corre-
sponding 1000 averaged radii represents an estimate of

1:(r).

Particle Dynamics

Strictly speaking, the Lu and Torquato equations are
meant for equilibrium systems in which the spheres are
allowed to mix and interact before coming into some
equilibrium state. The mixing does not alter the size
distribution of the spheres, only the locations of the
spheres. From this description, air voids in concrete
should also exhibit statistics of an equilibrium system,
although the effect of gravity and the presence of the
aggregates may not be ignored.

This computer experiment uses a parking approach
to the final placement of the air voids. Once placed,
the spheres do not move, nor do they interact with
one another. The spatial statistics of both an equilib-
rium and a parked system can be quantified using an
n-point correlation function, as was used by Lu and
Torquato [41]. Aithough the spatial statistics of an
equilibrium system and a parked system differ, they
are similar at low air contents. Therefore, if the
results of the computer experiment for monosized
parked spheres agree with the exact Lu and Torquato
results for monosized spheres, the spatial statistics,
over the range of air contents tested, must be suffi-

ciently similar between the equilibrium and the

R ¥
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TABLE 2A and B. Estimates of the paste-void spacing percentiles for monosized spheres

‘A

Diameter n F50 K50 Ky.50 E, 50 pvS0
(mm) {mm?) A K'(0) (mm) (mm) (mm) (mm) (mm)
0.000 20 0.0000 0.0000 0.202 0.202 0.202 0.202 0.205 = .006
0.025 20 0.0002 0.0002 0.190 0.190 0.190 0.190 0.191 = .003
0.075 20 0.0044 0.0044 0.165 0.164 0.164 0.164 0.165 + .003
0.150 20 0.035 0.035 0.130 0.124 0.124 0.125 0.124 = .003
0.225 20 0.12 0.11 0.099 0.078 0.079 0.087 0.086 = .003
0.300 20 0.28 0.25 0.072 0.024 0.028 0.053 0.052 = .002
0.150 10 0.018 0.018 0.182 0.178 0.178 0.178 0.179 = 003
0.150 20 0.035 0.035 0.130 0.124 0.124 0.125 0.124 = .003
0.150 50 0.088 0.085 0.079 0.068 0.068 0.072 0.071 = .002
0.150 100 0.18 0.16 0.051 0.033 0.034 0.042 0.041 = .001
B

Diameter n L F95 K,95 K95 E,95 pv95
(mm) (mm™?) A K'(0) (mm) (mm) (mm) (mm) (mm) (mm)
0.000 20 0.0000 0.0000 0.320 0.330 0.330 0.330 0.330 0.330 = .006
0.025 20 0.0002 0.0002 0.307 0.317 0.317 0.317 0.317 0.318 = .005
0.075 20 0.0044 0.0044 0.282 0.292 0.289 0.289 0.290 0.292 = .005
0.150 20 0.035 0.035 0.245 0.255 0.234 0.235 0.244 0.243 = .005
0.225 20 0.12 0.11 0.207 0.219 0.166 0.168 0.190 0.186 = .004
0.300 20 0.28 0.25 0.127 0.183 0.089 0.097 0.130 0.120 = .003
0.150 10 0.018 0.018 0.328 0.341 0.326 0.326 0.333 0.335 = .006
0.150 20 0.035 0.035 0.245 0.255 0.234 0.235 0.244 0.243 = .005
0.150 50 0.088 0.085 0.161 0.169 0.138 0.139 0.152 0.149 += .003
0.150 100 0.18 0.16 0.112 0.119 0.079 0.081 0.097 0.092 = .002
The estimates include results from Philleo (F); Pleau and Pigeon (K ,) and (K, ) using the normalization factors of 1 ~ A and 1 - K'(0), respectively; Lu and Torquato

(E\); and Powers (L). The measured values are labeled pv and have the one standard deviation uncertainties shown. The suffixes 50 and 95 indicate the percentile.

parked systems that the results are indistinguishable.
This would suggest that the results for parked log-
normally distributed air void radii are also a valid
approximation for an equilibrium distribution of air
void radii.

Statistics

In order to convey uncertainty in the reported values,
iterations of the experiments must be performed, yield-
ing statistical means and estimated standard deviations.
An iteration here requires discarding all previous infor-
mation about sphere locations and sizes. A completely
new list of sphere diameters is created, sorted, and
randomly parked within the system. From this new
system, the different measures of spacing are per-
formed and the results recorded. After this, the infor-
mation about sphere locations and sizes is once again
.discarded, and a new iteration begins. A mean and an
estimated standard deviation for each measure of spac-
ing are calculated from the values found for each
iteration and reported in the results.

Results

The results of the experiment are divided between the
results for the monosized and for the lognormally
distributed air void radii. The results of the monosized
spheres demonstrate the effects of changing the number
and the size of the spheres independently. The results
of the lognormally distributed spheres should be indic-
ative of most concretes containing entrained air.

All measured values reported here are represented
by their mean and estimated standard deviation from
100 system iterations. Three different spacing quantities
are reported: the paste-void (pv) and the void-void (vv)
spacing percentiles, and the ensemble average void-
void (vv) spacing. A suffix is added to pv and vv to
represent the percentile.

Monosized Spheres

The results of the monosized sphere experiments are
shown in Tables 2-5. In each table, the results are
divided between constant number density (n) and
constant sphere diameter experiments, with one pair
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TABLE 3. Estimates of the void-void spacing percentiles for
monosized spheres

Diameter n t tc EJ50 vv50
(mm) (mm™3) A (mm) (mm) (mm) (mm)
0.000 20 00000 = (0000 0.202 0211 *.004
0.025 20 0.0002 50.91 0.060 0.177 0.178 * .003
0.075 20 0.0044 5609 0.177 0.130 0.130 *.003
0.150 20 0.035 1316 0333 0.072 0.072 =+ .002
0.225 20 0.12 0488 0417 0.034 0.036 = .001
0.300 20 028 0.182 0182 0.013 0.014 = .001
0.150 10 0018 2.730 0346 0.117 0.118 = .003
0.150 20 0.035 1316 0.333 0.072 0.072 + .002
0.150 50 0.088 0.470 0.298 0.032 0.033 * .001
0.150 100 0.18 0.192 0.192 0.014 0.015 * .001
E,95 vv95
{mm) (mm)
0.000 20 0.0000 = 0.000 0330 0.378 = .007
0.025 20  0.0002 5091 0.060 0.304 0.320 * .006
0.075 20 0.0044 5609 0.177 0.254 0.260 * .006
0.150 20 0.035 1316 0.333 0.178 0.179 = .005
0.225 20 0.12 0488 0417 0.107 0.109 = .004
0.300 20 0.28 0.182 0.182 0.049 0.051 * 002
0.150 10 0.018 2730 0346 0.264 0.269 = .006
0.150 20 0.035 1.316 0.333 0.178 0.179 = .005
0.150 50 0.088 0.470 0.298 0.093 0.094 * .003
0.150 100 0.18 0.192 0.192 0.047 0.049 = 002

The estimates include results from Attiogbe (t) and (t;); and Lu and Torquato
(E,). The measured quantities are labeled vv and have the one standard
deviation uncertainties shown. The suffix 50 indicates the percentile.

of values in common for both. The constant number
density experiments have 20 voids per cubic millime-
ter. The first constant number density experiment
consists of voids with zero diameter. This is equiva-
lent to placing 20 points per cubic millimeter. Since
each point has no volume, the air content is zero.
However, both the paste-void and void-void spacing
distributions are still well-defined.
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POWERS EQUATION. Since the Powers spacing equation is -
an estimate of some large percentile of the paste-void -
spacing distribution, it is only included in the measure-
ments of the 95th percentile in Table 2. It is purely
coincidental that for monosized spheres, the Powers
equation is a good approximation of the paste-void
spacing 95th percentile. Throughout the entire experi-
ment, the error is never more than 22% for the 95th
percentile.

PHILLEO EQUATION. The results in Table 2 indicate that
the Philleo equation can make a reasonable estimate of
both the 50th and the 95th percentiles of the paste-void
spacing distribution. The maximum error was 24% for
the 50th percentile and 53% for the 95th percentile.

PLEAU AND PIGEON EQUATION. The results of the Pleau and
Pigeon equations for monosized spheres are shown in
Table 2. Even though the renormalization parameter
K'(0) was in error at a sphere volume fraction of 0.28,
there was negligible difference in the performance of K,
and K. in estimating the 50th percentile, for which, at
a volume fraction of 0.28, both equations are in error by
nearly a factor of two. At the 95th percentile, the
equation K., which uses the incorrect estimate of the
air content, performs noticeably better than K,, but is
still in error by nearly a third at a volume fraction of
0.28.

ATTIOGBE EQUATION. Fortunately, eq 13 can be used to
determine the correct value of G to use for monosized
spheres. The diameter distribution of eq 11 proposed by
Attiogbe can approximate a monosized distribution
when the variance goes to zero. From eq 12, this will be
true when the parameter a approaches infinity and b

TABLE 4. Estimates of the average void-void spacing and the mean free path () for monosized spheres

Diameter n A t te I, vV
(mm) (mm™?) A (mm) (mm) (mm) {(mm) {mm)
0.000 20 0.0000 x x 0.000 0.204 0.219 = 003
0.025 20 0.0002 101.84 5091 0.060 0.179 0.183 = .002
0.075 20 0.0044 11.27 5.609 0177 0.133 0.135 = .002
0.150 20 0.035 2.729 1316 0.333 0.079 0.080 =+ .002
0.225 20 0.12 1.108 0.488 0.417 0.042 0.043 =+ .001
0.300 20 0.28 0.507 0.182 0.182 0.018 0.018 = .001
0.150 10 0.018 5.559 2.730 0.346 0.125 0.127 = 002
0.150 20 0.035 2.729 1.316 0.333 0.079 0.080 = .002
0.130 30 0.088 1.032 0.470 0.298 0.038 0.039 = .001
0.150 100 0.18 0.466 0.192 0.192 0.018 0.019 = .001
The estimates include results from Attiogbe (1) and ), and Lu and Torquate ¢y The measured values are labeled 70 and have the one standard deviation.

uncertanties shown
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TABLE 5. Estimates of the fraction of paste within either f or #; of an air void surface for a monosized air void distribution

Diameter n t te

(mm) (mm™3) A piA (mm) (mm) G E. () E (t;)
0.000 20 0.0000 x x 0.000 0.000 1.000 0.000
0.025 20 0.0002 6111. 50.91 0.060 0.001 1.000 0.031
0.075 20 0.0044 2254 5.609 0.177 0.032 1.000 0.566
0.150 20 0.035 27.29 1.316 0.333 0.253 1.000 0.998
0.225 20 0.12 7.383 0.488 0417 0.854 1.000 1.000
0.300 20 0.28 2.537 0.182 0.182 1.000 1.000 1.000
0.150 10 0018 55.59 2.730 0.346 0.125 1.000 0.963
0.150 20 0.035 27.29 1.316 0.333 0.079 1.000 0.998
0.150 50 0.088 10.32 0.470 0.298 0.038 1.000 1.000
0.150 100 0.18 4.659 0.192 0.192 0.018 1.000 1.000

The estimates are based on the Attiogbe equation for G and on the Lu and Torquato equation for E,.

approaches zero. In the limit that a goes to infinity, the
value of G calculated from eq 13 is:

ing, all the spheres must be touching one another since
there can be no negative distances between voids.
However, as described previously, at zero air content in

5 this experiment the voids are simply point particles,

(18/'")[4] and they cannot be touching one another. Second, in the

G= —’7A—+T (38) §ame t‘able .the estimated spacing t. increases with
increasing air content, and then decreases sharply at

paste air content of about 12%, which corresponds to a

- 7.1620 concrete air content of about 4%. An increase in an
p/A+1 estimate of the average minimum spacing between

Note that eq 38 differs very little from the simpler form
of eq 10. This small variation is in complete agreement
with the results and conclusions of Attiogbe [21]. The
value of G in eq 39 is that used for the monosized
sphere experiment.

The performance of both Attiogbe spacing equations
is shown in Tables 3 and 4. Table 3 shows the estimates
of the 50th and 95th percentiles of the void-void spacing
distribution. Table 4 shows the estimates of the average
minimum spacing between voids. It appears as though
neither Attiogbe equation can accurately predict the
50th percentile, the 95th percentile, or the mean of the
void-void spacing distribution. However, as expected,
the Attiogbe equation t is consistently one half the mean
free path (\).

Table 5 shows the performance of G in predicting the
fraction of paste within either t or f; of an air void. Since
the Lu and Torquato equation for £, performed so well
for monosized spheres, it is used to represent the
correct value. From the results, it would appear as
though G is not an accurate estimator of the volume of
paste within either t or t; of an air void for monosized
spheres.

There are aspects of the equation f; in the constant

-number density experiment that warrant attention.
First, in Table 3 the estimated spacing using . at zero
air 1s 0.0000, which is unreasonable. If, as Attiogbe has
defined his spacing, this is the average minimum spac-

bubbles, with increasing air content, is unphysical for
identical air voids.

LU AND TORQUATO EQUATION. As shown in Tables 2-4, the
Lu and Torquato equations consistently estimate well
the parameters of both the paste-void and the void-void
distributions. The largest errors were 8% in the paste-
void percentiles, 7% in the void-void percentiles, and
5% in the mean spacing between air voids.

Lognormally Distributed Spheres

The results of the lognormally distributed sphere radii
are shown in Tables 6-8. The results for the average
void-void spacing /, as a function of radius are shown
in Figures 5 and 6, and include both the Lu and
Torquato estimate and the measured values.

POWERS EQUATION. As as in the experiment with mono-
sized spheres, the Powers equation is only compared to
the measurements of the 95th percentile of the paste-
void spacing distribution. As in the case of monosized
spheres, the Powers equation is directly proportional to
the 95th percentile. However, for this distribution of
lognormally distributed sphere radii, the Powers equa-
tion is a constant factor of 1.5 larger than the 95th
percentile.

PHILLEO EQUATION. The performance of the Philleo equa-
tion for lognormally distributed sphere radii is better
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TABLE 6A and B. Estimates of the paste-void distribution percentiles for lognormally distributed sphere radii
A
n F50 K,50 Ky-50 E,50 pv50
(mm™?) A K'(0) (mm) (mm) (mm) (mm) (mm)
20 0.016 0.012 0.146 0.172 0.173 0.163 0.162 = .003
40 0.033 0.022 0.105 0.131 0.131 0.120 0.120 = .002
80 0.066 0.039 0.073 0.098 0.100 0.085 0.085 = .002
160 0.131 0.065 0.048 0.071 0.075 0.056 0.057 * .002
240 0.197 0.082 0.037 0.058 0.063 0.042 0.043 + .001
B
n L F95 K95 K,.95 E\95 pv95
(mm™?) A K'(0) (mm) (mm) {mm) {mm) (mm) (mm)
20 0.016 0.012 0.450 0.272 0.302 0.304 0.290 0.290 = .005
40 0.033 0.022 0.337 0.204 0.231 0.236 0.220 0.219 * .004
80 0.066 0.039 0.247 0.150 0.173 0.185 0.162 0.162 = .003
160 0.131 0.065 0.175 0.108 0.125 0.143 0.114 0.114 = 002
240 0.197 0.082 0.136 0.087 0.099 0.123 0.089 0.090 = .002

The estimates include results from Philleo +F); Pleau and Pigeon (K \) and (K} using the normalization factors of 1 ~ A and 1 — K'(0), respectively; Lu and Torquato
(Ey); and Powers (L). The measured values are labeled pv and have the one standard deviation uncertainties shown. The suffixes 50 and 95 indicate the percentiic.

than that for the monosized sphere radii. The maximum
errors are 16% and 7% for the 50th and 95th percentiles,
respectively.

PLEAU AND PIGEON EQUATION. For lognormally distributed
sphere radii, the Pleau and Pigeon normalization factor
K'(0) is in error by 58% at an air volume of nearly 20%.
This error is reflected in the performance of K, and K.
For the case of lognormally distributed sphere radii, the

TABLE 7A and B. Estimates of the ensemble average {eq 35)
void-void distribution percentiles for lognormally distributed
sphere radii

equation K,, which uses the correct air content, per-
forms better than K,.. This is in contrast to the mono-
sized sphere case. Also, for lognormally distributed
sphere radii, the Pleau and Pigeon equation overesti-
mates percentiles, whereas the equation underestimates
percentiles of the monosized sphere radii.

ATTIOGBE EQUATIONS. The equation for G given in eq 13
for the sphere distribution of eq 11 can also be used to
approximate the correct value of G for the zeroth-order
logarithmic distribution used here. The parameters «
and b in eq 11 are chosen to yield a sphere diameter
distribution with the same modal diameter D,, and
specific surface a as the logarithmic distribution used

A here. The specific surface and the modal diameter are
n t te E,50 vv50 related to the parameters from the following equations:
(mm™?) A (mm) (mm) (mm) (mm)
20 0.016 3919 0.642 0.134 0.134 = 003 6
40 0033 1895 0621 0092  0.093 = .002 a=avny  PmTbla-1D (39)
80 0.066 0.884 0.580 0.060 0.060 = .002
160 0.131 0.382 0.382 0.035 0.035 = .001
240 0.197 0.218 0.218 0.024 0.024 = 001
B TABLE 8. Estimates of the fraction of paste within either f or
t of an air void surface for a lognormal air void distribution
n A t te  EG95 vv95
{(mm™?) A (mm) (mm) (mm)(mm) {mm) n t t;
{mm™?) A p/A  (mm) (mm) G Ey(t) E(ts)
20 0016 7969 3919 0642 0263 0.270 = .006
40 0.033 3918 1.895 0.621 0.194 0.196 = .005 20 0.016 59.84 3919 0642 0164 1.000 1.000
80 0066 1.892 0.884 0580 0.138 0.138 = .003 40 0.033 2942 1895 0.621 0328 1.000 1.000
160 0.131  0.880 0.382 0.382 0.092 0.093 = .002 80 0.066 1421 0884 0580 0656 1.000 1.000
240 0.197 0542 0218 0.218 0.069 0.069 = .002 160 0.131 6605 0.382 0382 1.000 1.000 1.000
240 4.197 4070 0.218 0218 1.000 1000  1.000
The estimates include results from Attioghe ¢) and (f, ) and Lu and Torquato

(£,.). The measured values are labeled vv and have the one standard deviation
uncertamnbies shown, The sulfives 50 and 95 indicate the percentile.

The estimates are based on the Attioghe cquation for G and on the Lu and
Torquato equaton tor
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FIGURE 5. Mean void-void spacing (/) for lognormally dis-
tributed sphere radii with a density of 20 mm ~>. Measured
values are shown as solid circles; the solid line is the estimate
by Lu and Torquato.

The corresponding values of the parameters are (eq 40):

a=1.529 b =56.67 pm (40)

The corresponding equation for G is (eq 41):

c - 9.9724 i
Tp/A+1 S

Note again that the value of the numerator differs very
little from that in eq 10. Since the distribution proposed
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" FIGURE 6. Mean void-void spacing (/,,) for lognormally dis-
tributed sphere radii with a density of 240 mm . Measured

-values are shown as solid circles; the solid line is the estimate
by Lu and Torquato.
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by Attiogbe is based upon the zeroth-order logarithmic
function used here, it is reasonable to expect that a
corrected form for eq 13 would differ very little from
the above result. It is this equation for G that is used in
Tables 6-8.

As in the case of monosized spheres, the Attiogbe
equation does not appear to accurately estimate any
reported statistic of the void-void spacing distribution.
In the data shown in Table 7, the Attiogbe equation t is
nearly an order of magnitude greater than both the 50th
and the 95th percentiles. As the paste air fraction
increases from 0.02 to 0.07, the value of t; only de-
creases by 10%, whereas the measured values decrease
by 50%.

Table 8 shows the performance of G in estimating the
fraction of paste within either t or f; of an air void
surface for lognormally distributed radii. Again, since
the Lu and Torquato equation performs so well for the
lognormally distributed spheres, it is treated as the true
value. As in the case of monosized spheres, the param-
eter G does not provide a useful estimate of the paste
volume fraction within either t or t; of an air void
surface. The value of G for the two greatest air contents,
although correct, is unremarkable since a cursory anal-
ysis would predict that the volume fraction of paste
within one half the mean free path should be nearly
unity.

LU AND TORQUATO EQUATIONS. As an estimate of the 50th
and 95th percentiles, the Lu and Torquato equation
performs better for lognormally distributed sphere radii
than for monosized spheres. For the lognormally dis-
tributed air void radii used here, the maximum associ-
ated errors are 2% and 1% for the 50th and 95th
percentiles of the paste-void spacing distribution, re-
spectively. The void-void spacing percentile estimates
for the lognormally distributed sphere radii have ap-
proximately the same performance as for the mono-
sized spheres.

In addition to estimating the percentiles of the void-
void spacing distribution, the Lu and Torquato equa-
tion is used to estimate the average void-void spacing
as a function of sphere radius. The results for particle
densities of 20 and 240 mm ™ are shown in Figures 5
and 6, respectively. The measured data (solid circles)
are the average of 100 system iterations. As can be seen
in the figures, the Lu and Torquato equation /,(r) is
accurate for paste air contents of nearly 20%.

Paste-Void Probability Density

A graphical performance comparison of the Philteo, the
Pleau and Pigeon, and the Lu and Torquato estimates of
the paste-void proximity probability density function is
shown in Figure 7. The sphere radii are lognormally
distributed with a number density of 240 mm . The
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FIGURE 7. Estimates of the paste-void probability density
function by Philleo, Pleau and Pigeon, and Lu and Torquato
for lognormally distributed sphere radii with a number den-
sity of 240 mm ~>. Measured values are shown as filled circles.

Philleo estimate terminates at s = 0 since it is already
normalized for the fraction of paste within s of an air
void surface. The Lu and Torquato estimate is virtually
exact at the resolution of this experiment. The Philleo
estimate is fairly accurate for s > 0, while that of Pleau
and Pigeon is noticeably in error. These qualitative
differences are born out in the previously reported
results.

Discussion

These results suggest that the Powers spacing factor
approximates some large percentile of the paste-void
spacing distribution, as it was intended. However, the
exact percentile is unknown and appears to vary with
the air void radii distribution.

The Philleo equation performed much better for
lognormally distributed sphere radii than for mono-
sized sphere radii. It is not clear why this should be so.
Philleo did not consider any air void radii distribution
in the development of his equation.

Although the Pleau and Pigeon equation works well
at very low air contents, the performance of the equa-
tion worsens with increasing air content, especially for
the lognormally distributed sphere radii. This is a
consequence of using the Hertz distribution for h(x). It
is interesting to note that, for lognormally distributed
air void radii, although the Pleau and Pigeon equation
is a function of the sphere radii distribution, it does not
perform as well as the Philleo equation, which is
independent of the sphere radii distribution.

It should be mentioned that Pleau and Pigeon have
pointed out that the deficiencies in their equation may
be an advantage in real concretes contained entrained
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air voids. When the fact that K'(0) represents the air
content of overlapping spheres was pointed out in"a
discussion of their work [23], Pleau and Pigeon argued
that, “overlapping of air bubbles is frequently seen
during the ASTM C 457 microscopical examination,
especially for concretes having high air contents” [23].
Further research is needed to determine the extent of
this effect, and its subsequent impact on estimates of the
paste-void proximity distribution.

The performance of the Attiogbe equations in esti-
mating percentiles of the void-void spacing distribution
was quite poor. The original equation t is completely
disconnected from the void-void spacing distribution,
which is expected since it is proportional to the mean
free path. The equation ¢ has unphysical behavior for
monosized spheres with constant number density and
increasing void radius. For lognormally distributed
sphere radii, it is clear that neither equation has any
relevance to any reported statistic of the void-void
spacing distribution.

There is one quantitative aspect of the equation f
that warrants further discussion. Based upon eq 10, the
quantity t; has a maximum value of 16/a as the
number density » of air voids approaches zero, regard-
less of the air void radius distribution. This suggests
that there is a finite distance between air voids when
there are virtually no air voids present, which is com-
pletely unphysical.

The performance of the Lu and Torquato equation is,
by far, the most accurate estimate for every statistic
considered. Not only does it predict these statistics well,
it also predicts the average void-void spacing as a
function of radius for polydispersed sphere radii. It
appears as though the Lu and Torquato equation is
accurate to the level of precision required for investiga-
tions of air void spacing. These results also suggest that,
at the air volume fractions investigated here, an air void
distribution approximated by a collection of parked
spheres has very similar spatial statistics to an equilib-
rium distribution of spheres, which has relevance to
numerical tests of air void equations. It is also interest-
ing to note that the Lu and Torquato equations do not
require information about the entire air void radii
distribution. Rather, only the values (R}, {R?, and (R™
are needed. This has significant importance for stereo-
logical practices [15].

Alternative Attiogbe Equation

Studying the results of the monosized air voids exper-
iment, there may remain confusion as to which At-
tiogbe equation to use. Here, an explicit form for G was
used, while Attiogbe has previously used the equation:
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8(a/a;)
T p/A+1 (42)
where, “a, [is] the specific surface of the air voids for
G = 1" [19]. It was this equation that Attiogbe has used
to compare systems with different air voids distribu-
tions.

It can be argued that eq 42 is completely incorrect
based upon Attiogbe’s own calculations. Equation 42
shows that G is directly proportional to a. By compar-
ison, the equation derived by Attiogbe for the air void
distribution in eq 11 can also be expressed as a function

of a:
g 6+ ab

G_'rr daba 3
T /AT (43)

Although eq 43 for G is a function of «, it is not
proportional to a.

Another argument for why the application of eq 42 is
erroneous can be demonstrated from the experimental
data for monosized air voids. This experiment was
reported in two parts: constant number density and
constant diameter. For the constant diameter portion of
the data, the sphere diameter distribution remains
constant. Since a, refers to the system of 150-pm
diameter spheres when G = 1, the ratio (a/«a,) remains
constant throughout the 150-um diameter experiment.
Therefore, for a system of 150-um diameter spheres at a
number density of 20 mm ™, the correct numerator for
G, based upon eq 10, is 8. Since the volume fraction of
paste within ¢ of an air void surface must be indepen-
dent of how one conducts an experiment, the corre-
sponding numerator for G in the constant number
density data with a diameter of 150 pm and a number
density of 20 mm ? must also be 8, based upon eq 10.
By similar arguments for experiments conducted for other
sphere diameters, the numerator for the constant number
density experiment should be 8, based upon eq 10.

Summary

A computer program can serve as an effective means to
evaluate the mathematical performance of various spac-
ing equations. The computer allows one to monitor
both the size and location of every sphere in the system,
for any air void radii distribution. This computerized
approach helps to assure that the successful freeze-
thaw prediction performance of an equation is due, in
.part, to the successful geometrical performance of the
equation. Without this, one has no basis for correlating
[freeze-thaw performance with the prediction of an
equation.

Air Void Spacing Equations 43

Four air void spacing equations were considered:
Powers, Philleo, Pleau and Pigeon, and Attiogbe. In
addition, an equation by Lu and Torquato that also
estimates the same spacing characteristics was consid-
ered. For the lognormally distributed radii used, the
Powers equation is within a factor of 1.5 of the 95th
percentile of the fraction of paste within an air void
surface. The Philleo equation estimated the 50th and
95th percentiles of the paste-void spacing distribution
fairly well. The Pleau and Pigeon equation also esti-
mated these percentiles, but their equation did not
perform as well as the Philleo equation for lognormally
distributed sphere radii. The original Attiogbe equation
is approximately a factor of two less than the paste
mean free path and an order of magnitude greater than
the 95th percentile of the void-void spacing distribu-
tion. The Attiogbe equation for f; estimates an increas-
ing spacing between monosized air voids as the num-
ber remains fixed and the diameter increases.

The Lu and Torquato equations performed quite well
for both paste-void and void-void spacing distribu-
tions. Not only can their equations predict arbitrary
statistics of both the paste-void and void-void spacing
distributions, they also accurately predict the average
void-void spacing as a function of void radius.

Due to the accuracy of the Lu and Torquato equation,
it would appear as though additional spacing equations
are not needed. The Powers equation can be tested
further for various air void radii distributions and
compared to the Lu and Torquato equation. If the
Powers equation fails to consistently predict the same
percentile of the paste-void spacing distribution, it
could be replaced with either the Lu and Torquato
equation or a simplified approximation. Regardless, as
the material properties of concrete continue to change,
effort must also address establishing an appropriate
limit of allowable spacing in concrete.
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