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The ionic diffusivity of a concrete is a function of its microstructure
at many length scales, ranging from nanometers to millimeters. The
microstructure is largely controlled by the initial concrete mixture
proportions and the ultimate curing conditions. Linking a property
like ionic diffusivity to the microstructure then requires a multiscale
approach. A multiscale microstructural computer model for ionic
diffusivity has been previously developed. This model has been
developed specifically to compute the chloride diffusivity of concretes
with various mixture proportions and projected degrees of hydra-
tion. The three key parts of this model were dependent on large-scale
supercomputer-magnitude simulations to: (1) determine the total
volume of interfacial zones for a given aggregate distribution; (2)
simulate the hydrated cement paste microstructure around a typical
aggregate; and (3) compute the cffect of the aggregates and interfa-
cial zones on the overall diffusivity of the concrete. The key feature
of this model is that one can approximately take into account the
redistribution of cement paste between interfacial transition zomne
regions and bulk paste regions, and its important effect on overall
concrete diffusivity. In the present article, we review the previously
developed model and show how analytical equations can accurately
replace the large scale computer simulations of parts (1) and (3).
This accomplishment will make the model more usable by those who
do not have access to supercomputer computing power.
ADVANCED CEMENT Basep MATERIALS 1998, 8, 77—-88. Pub-
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KEY WORDS: Concrete diffusivity, Durability, Interfacial
transition zone, Microstructure, Modeling, Performance pre-
diction, Statistical geometry

ne of the properties contributing to the ser-
vice life of concrete structures is the resis-
tance the concrete provides to the diffusive
ingress of deleterious species such as chloride and
sulfate ions [1,2]. Prediction of the diffusivity of a
concrete based on its mixture proportions and expected
curing is needed to help predict its service life in its
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expected service environment. The availability of such a
prediction capability in terms of the initial mixture
proportions and expected curing of a concrete will
allow the rational development of durability based, in
addition to the current strength based, design codes. In
fact, durability specifications are already being issued,
even though there has not been quantitative theory
developed that can accurately predict the chloride ion
diffusivity of a given concrete [3]. The model described
in this article can help to overcome this barrier, even
though other types of transport mechanisms, like sorp-
tion, are also important for chloride ingress [4].

Because of the wide range of feature sizes in concrete,
from nanometer-sized pores to millimeter-sized aggre-
gates, it is impossible, because of memory limitations
on current computers, to simultaneously represent all
of these structural features in a single microstructure
model. For example, if in a three-dimensional (3-D)
digital image model we let the pixel size be one
nanometer, which would be barely adequate for the
resolution of the C-S5-H phase, then the minimum size
model that would incorporate enough aggregates to be
statistically valid would be at least 30 mm on a side, and
contain 2.7 - 10** pixels! Uniting multiple length scales
in a single model in a more sophisticated way then
obviously becomes necessary.

Multiscale modeling techniques offer a promising
solution to this restriction [5,6]. In this approach, prop-
erties computed at one scale, micrometers for instance,
are input into a model that is constructed at a higher
scale, such as millimeters. The present model combines
microstructure models for the cement paste surround-
ing a single aggregate (micrometers) and for a repre-
sentative volume of concrete (millimeters). These two
microstructure models are used, in association with
numerical techniques for computing the diffusivity of a
3-D microstructure, to compute the diffusivity of a
representative volume of concrete. This procedure has
been demonstrated previously for mortars [6]. The
equation used for diffusivity at the micrometer scale
also indirectly incorporates information from the nano-
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meter scale, so that 6-7 orders of magnitude of length
scale are actually contained in the model.

In reference [7], it was shown how to compute the
overall diffusivity of a concrete model, where the dif-
ference between bulk and interfacial transition zone
(ITZ) cement paste could be quantitatively taken into
account. In that article, it was mentioned that the
redistribution of cement between bulk and ITZ regions
could very well be important and would have to be
considered in future models. The main reason for this
particular multiscale approach being developed [8] was
to approximately handle this redistribution of cement
between ITZ and bulk cement paste. This effect does
indeed turn out to play an important role in predicting
concrete diffusivities, because it affects what diffusivity
values need to be assigned to the bulk and ITZ phases
in a concrete. Therefore, the results of reference [7] are
incomplete and, in general, by themselves, should not
be used to analyze an experiment.

In reference [8], this multiscale modeling approach
was extensively discussed, showing how different
length scales could be quantitatively linked to predict
the diffusivity of a concrete material. Because of the
complexity of the problem, several key steps used in
generating the model results had to be based on large-
scale computer simulations, using supercomputer-scale
computing power. Because of this approach, it was
hard to change parameters, because of the long run
times involved. Also, the computing power necessary
to solve the model would be unavailable for most
concrete technologists. In this article, we show how two
of the three key steps in the multiscale model can be
accurately replaced with analytical expressions. This
will make the results of this model much more accessi-
ble. Previous numerical results are used to check the
accuracy of this analytical replacement.

The multiscale model has some limitations. The
model applies to conventional (0.25 < w/c < 0.75),
saturated concretes. Diffusion/sorption in partially sat-
urated concrete is important in many field exposures
but is not addressed in this study. However, we do
allow for the presence of entrained air bubbles. In
addition, we are only considering ionic diffusion under
steady-state conditions, and so ignore the short time
effect of chloride binding.

Microstructure Models

In this section we describe the individual microstruc-
ture models that are used to build the multiscale model.
In the next section we show how these individual
models are fitted together to generate the multiscale
approach.
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TABLE 1. Aggregate particle size distributions for various
congcretes

Fraction of Aggregate Volume

Sieve Parameters Contained in Sieve

D, (mm) D, (mm) cfcc fffc ffcc cffc
0.075 0.15 0 0.04 0.04 0
0.15 0.30 0.02 0.08 0.08 0.02
0.30 0.60 0.08 0.12 0.12 0.08
0.60 1.18 0.1 0.1 0.1 0.1
1.18 2.36 0.12 0.09 0.06 0.15
2.36 4.75 0.06 0.06 0 0.12
4.75 9.525 0.26 0.33 0.24 0.35
9.525 12.7 0.3 0.18 0.3 0.18
12.7 19.05 0.06 0 0.06 0

Note: cfec = coarser fine particles, coarser coarse particles; cffc = coarser fine
particles, finer coarse particles; ffcc = finer fine particles, coarser coarse
particles; fffc = finer fine particles, finer coarse particles. D = particle diameter.

Concrete (millimeter scale)

For modeling concrete at the millimeter scale, the
computational volume, typically 8000-27000 mm?, is
filled with hard spheres, representing aggregates, each
surrounded by a constant thickness soft shell, repre-
senting the ITZ [9]. We assume that the ITZ thickness is
not a function of the aggregate size, but is rather
controlled by the median size of the much smaller
cement particles [10]. A recent article used quantitative
measurements of electrical conductivity to claim that
the thickness of the ITZ becomes smaller for smaller
aggregate particles [11]. This claim is discussed in
Appendix A, where it is shown that the use of an
approximate analytical equation for the concrete con-
ductivity in reference [10] can erroneously give this
result.

The aggregates are placed into the computational
volume in order from largest to smallest in size and
periodic boundaries are used. While the hard core
aggregates may not overlap one another, the 1TZs are
free to overlap aggregates and each other in the place-
ment process. A range of particle size distributions
(PSDs) for the coarse and fine aggregates was chosen
based on the recommendations found in ASTM (33
[12]. Sieve analyses of these four PSDs are shown in
Table 1. The designations for the aggregate PSDs are
cfce, cffc, ffece, and fffc. There are two (somewhat
arbitrary) parts of the aggregate PSD, the fine particles
and the coarse particles [12]. There are two limits of
each PSD, a coarser one and a finer one, which result in
four possible PSDs: cfcc = coarser fine particles, coarser
coarse particles; cffc = coarser fine particles, finer
coarse particles; ffcc = finer fine particles, coarser
coarse particles; and fffc = finer fine particles, finer
coarse particles. The sieve analyses reflect these desig-
nations, which can be seen upon inspection of Table 1.
The coarse aggregate was of nominal size 4.75-12.5 mm
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and the ratio of coarse to fine aggregate volume was
fixed at 1.5:1.

Air voids were also introduced into some of the
concretes. The air voids were considered to be equiva-
lent to aggregate particles in terms of their effects on
ionic diffusivity. They were assigned a diffusivity of 0
and an associated ITZ region like the aggregates [13].
We are assuming that the air voids were not filled with
water. Concrete exposed to water for a long period of
time may actually have the air voids filled with water.
For this study, a fixed air void size distribution was
used for all of the simulations based on a logarithmic
probability density function [14]. Air voids smaller than
100 pm in diameter were not included in the model, as
they are similar in size to the cement particles. Further
details of the aggregate/air void systems used can be
found in reference [8].

Cement Paste (micrometer scale)

The tricalcium silicate cement hydration model used in
this multiscale model has been described in detail
elsewhere [15,16]. The cement powder to be modeled is
represented by nonoverlapping digitized spheres fol-
lowing the PSD measured on actual cement samples.
Various PSDs can be used, although we have only
examined PSDs with median particle diameters of 10,
20, and 30 wm [17]. Based on previous modeling studies
[9], we take the ITZ widths equal to the median cement
particle size. To minimize finite size effects, periodic
boundaries are used during particle placement, such
that a particle that extends outside of one face of the 3-D
computational volume is completed into the opposite
side of the system. For the micrometer-scale model,
each pixel element represents 1 um’ in volume. The
system sizes needed ranged from 20-30 million pixels.
The cement particles are placed in order of size from
largest to smallest at random locations in the 3-D
microstructure such that they do not overlap each other
or the aggregate particle.

After initial particle placement, a simple cellular
automaton model is used to model the hydration reac-
tions between tricalcium silicate and water [18]. In this
model, cement pixels in contact with water dissolve at
random, diffuse within the pore space, and react to
form calcium hydroxide crystals in the pore space and
calcium silicate hydrate gel (CSH) on the surfaces of the
original cement particles and previously deposited CSH
(C = Ca0, S = Si0,, H = H,0). For these studies, the
aggregate is considered inert and does not participate in
the hydration reactions. At any degree of hydration, the
porosity can be determined as a function of distance
from the aggregate surface. Initially, after particle place-
ment, the ITZ region contains a higher w/c ratio (more
porosity) than the bulk paste due to the inefficient
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packing of the cement particles, the so-called wall effect
[19,20]. During hydration, the porosity is reduced
throughout the cement paste, but still remains higher in
the ITZ regions. Thus, these regions will typically have
a higher diffusivity than the bulk paste regions. Once
porosity has been quantified, the relative diffusivity,
D/D,, as a function of distance from the aggregate
surface, x, can be estimated using a previously estab-
lished relationship [21]:

D

5 (x) = 0.001 + 0.076(x)* + 1.8H(d(x) — 0.18)

X (p(x) — 0.18)2 (1)

where relative diffusivity is defined as the ratio of the
diffusivity D of ions in the material of interest relative
to their value in bulk water, D, $(x) is the capillary
porosity volume fraction at a distance x from an aggre-
gate surface, and H is the Heaviside function having a
value of 1 when ¢ > 0.18 and a value of 0 otherwise.
This equation comes from fitting the results of several
different w/c cement pastes at many different degrees
of hydration, where a value of diffusivity for the C-S-H
phase was used, which agrees with nanometer-scale
simulations of C-S-H nanostructure and properties [5].
The constant term in eq 1 comes from the limiting value
of diffusion through C-S-H gel pores, when the capil-
lary porosity is zero, the H term represents diffusion
through percolated capillary porosity, and the second
term in eq 1 is a fitting term that connects the two
limiting behaviors [21]. Equation 1 is not exact, of
course, but should give results accurate to at least a
factor of two for the absolute diffusivity, and better than
that for ratios of ITZ to bulk diffusivity, for the usual
range of capillary porosity encountered (10-40%). Ref-
erences [21,22] give experimental validation of this
model and the associated eq 1, although improvements
are possible.

Multiscale Model

An approach to computing the diffusivity of concrete
has been previously discussed [7,23]. This involved
using just the concrete microstructure model described,
along with random walker techniques, to compute the
ratio of the concrete diffusivity to the bulk cement paste
diffusivity as a function of the ITZ diffusivity and the
aggregate volume fraction. The value of diffusivity
produced was relative to the value assigned to the bulk
paste phase.

One might then naively think that an analogous
experimental measurement would be to measure the
concrete diffusivity as a function of the degree of
hydration and measure the diffusivity of the cement
paste from which the concrete was made (same w/c
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ratio). Normalizing the concrete diffusivity by the ce-
ment paste diffusivity at the same degree of hydration
would presumably then give a number that could be
compared to the model number [7,23]. As was pointed
out in reference [7], this approach is not entirely correct.
The main reasons are the way concrete is made and the
effect of the ITZ. The following example will serve to
illustrate this point.

Suppose a concrete was made by mixing a 0.5 w/c
cement paste with enough aggregates so that the final
volume fraction of aggregates is 60%. If the ITZ is 20 um
thick, then all cement paste within this distance from an
aggregate will, on average, have a higher porosity and
therefore a w/c ratio higher than 0.5. This is because
there is known to be less cement in the ITZ than in the
bulk paste [9,19]. But the only way this can happen is
for the cement paste outside the ITZ region to have a
w/c ratio that is less than 0.5 and therefore a lower
porosity, since the average w/c ratio has been specified
to be 0.5 by the initial mixing conditions. If the ITZ
volume fraction is small, then this effect is also small,
which would be the case for a small aggregate volume
fraction. However, as the amount of aggregate in-
creases, the ITZ volume fraction also increases, and this
effect becomes quite appreciable. So for this hypothet-
ical concrete, it would be incorrect to consider a 0.5 w /¢
ratio cement paste to be the matrix or bulk phase for the
concrete. The actual bulk paste, where “bulk” means
outside the ITZ region, would have a lower w /¢ ratio,
possibly as low as 0.4. Therefore, concrete is not a
simple two-phase composite of cement paste plus ag-
gregates, and not even a simple three-phase composite
of aggregates plus ITZ and bulk cement paste. Concrete
is rather an interactive composite, where the amount of
the aggregates influences the properties and amounts of
the cement paste phases. The multiscale model ap-
proach described in this article is designed to approxi-
mately take this effect into account, by combining
models to actually compute this redistribution of ce-
ment and w/c ratio.

The multiscale model works in three steps. It is not a
particularly simple model, as it is addressing a complex
interactive composite material.

(1) The first key step is, using the millimeter-scale
concrete microstructure model, to place aggregate par-
ticles, following the aggregate PSD of interest, into the
concrete volume. The cement PSD is used to establish
the interfacial zone thickness, t,r,. The value of t is
taken to be equivalent to the median cement particle
diameter, ignoring any effects of bleeding [10]. System-
atic point sampling is then used to determine the
volume fractions of ITZ (V,;,) and bulk (V,,,) paste
for this particular choice of aggregate PSD and value of
tirz [9]-

(2) The second key step uses the micrometer-scale
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ITZ

Aggregate

FIGURE 1. Breakdown, in the cement hydration computa-
tional volume, of aggregate, interfacial transition zone (ITZ)
cement paste, and bulk cement paste (not to scale).

cement hydration model. The shape of the model vol-
ume is shown in Figure 1, with aggregate, ITZ, and bulk
paste regions defined. We want to determine the local
microstructure near a single aggregate surface, in order
to be able to compute the contrast between ITZ and
bulk paste diffusivities. The dimensions of the model
box are chosen so as to match the ratio of V,./ Vi
(determined in step 1). By matching the ratio V,;,/ Vi
as determined in the concrete volume, we approximate
the microstructure that exists near a typical aggregate
surface.

Cement particles are placed into this computational
volume, following the cement PSD, to achieve the
specified total w/c ratio. Of course, the w/c ratios in the
two regions will be different, because of the wall effect
of the aggregate surface. The actual numerical differ-
ence is a prediction of the micrometer-scale microstruc-
ture model and is not specified by the user. The cement
particles are then hydrated, using the model, up to a
desired degree of hydration. After hydration, the po-
rosity ¢ is measured as a function of distance from the
aggregate surface. Using eq 1, which gives the cement
paste diffusivity as a function of the capillary porosity
¢, the diffusivity as a function of distance from the
aggregate surface is computed. This diffusivity is rela-
tive to the diffusivity of ions in the pore fluid [21]. These
diffusivity values are averaged in two subsets, those
lying within a distance f;7, of the aggregate and those
in the “bulk” paste, to give two values, D;r and D, .
Averaging in this way assumes that the diffusive flow
in the two phases is locally parallel to the aggregate
surface, and so each layer can be simply summed up.
By averaging over f,;,, the simplifying approximation
is made that the ITZ has a fixed width with fixed
properties. The average over the simulated local micro-
structure of the interfacial transition region is done to
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help make this approximation more accurate. Choosing
a different value of t;;, would of course give a different
value of ITZ diffusivity. Other ways of averaging over
the local microstructure are possible, such as matching
to an exact solution of a single specific size aggregate
with a gradient of properties around it [24]. Other
methods do not, however, seem to make a significant
difference in the final results [24].

After the first two steps, we now have a microstruc-
ture model of the concrete, using spherical aggregates
that follow the correct PSD, and we have values of
diffusivity for each of the three phases in the model
concrete: aggregate (D,,, = 0), bulk cement paste
(Dyur), and ITZ cement paste (D). It is crucial to
remember that the values of D, and D, were
determined interactively, since the amount and size of
the aggregates was used to determine the value of
Virz/ Vi that was used in the cement paste model,
which in turn helped determine the value of D/ Dy, .
In principle the ratio of D, /D, is a function of the
aggregate PSD and volume fraction and the degree of
hydration.

(3) The third key step is to finally use the ratio of the
bulk and ITZ cement paste diffusivities, D,/ Dy, ., as
an input back into the original concrete model [7,23].
Random walk numerical techniques are then used to
compute the diffusivity of the overall concrete system.
The random walker techniques used for this calculation
have been previously described [7,23]. These techniques
are quite computer-time intensive, but do not use huge
amounts of memory. The relative diffusivity of the
concrete, D.,../ Dy is calculated by this algorithm
[6,7,23]. This value can then be converted into an
absolute chloride ion diffusivity for the concrete, D,
by multiplying it by D,,;/D, determined from the
cement-level microstructural model [eq 1] and by D,
the diffusion coefficient of chloride ions in bulk water at
room temperature, given as 2.0 -+ 10~° m?/s [25]. By
changing the value of D, to correspond to that mea-
sured for the specific ion of interest, the techniques can
be generalized to other ionic species of relevance in
cement-based materials. This model does not address
chemical effects such as binding and reactions.

Analytical Methods

The main point of this article is to show how the first
and third key steps, as described, can be accurately
replaced by analytical equations. This will aid in further
applications of the multiscale model to other concrete
mixtures, by making the multiscale model usable by
those without access to large amounts of computing
power. This replacement will also make the model
easier to use for parameter studies, as run times for the
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random walker step, step (3), can take weeks of clock
time.

Interfacial Zone Volume: Step (1)

An analytical estimate for the total interfacial zone
volume around a collection of spheres of various sizes
can be obtained from the literature on the statistical
geometry of composites [26]. In this work, a collection
of spheres of various sizes are randomly placed in a
volume according to equilibrium statistics. These involve
treating the spheres as being dispersed in a liquid,
where the effect of gravity is neglected, and allowing
them to be “shook” sufficiently so as to achieve their
desired positions. This process is actually similar to
how a real concrete is mixed. In the case of our concrete
model, however, the particles are placed according to
nonequilibrium random parking statistics [27], as de-
scribed. Notably, the equilibrium and the random park-
ing statistics are essentially identical for single-size
spheres up to about 20% volume fraction of spheres.

It would seem that this analytical estimate could not
be applied to our model, which has randomly parked
aggregates. However, we were encouraged to do so by
results we obtained for monosize spheres, randomly
parked at 27% by volume [28]. Monosize spheres are
the worst case, where the most differences can be seen
between random parking and equilibrium distribu-
tions. However, the Lu and Torquato analysis worked
very well even for this system, so we have applied it as
well to these concrete systems. Why this should be is
not known at present, but is the focus of further
research.

There are many analytical results contained in the
article by Lu and Torquato [26] that are relevant to the
concrete problem. In this article we focus on the quan-
tity ey(r), the “void exclusion probability” as denoted in
reference [26] (note: in our case, “void” means outside
the aggregates). As formulated by Lu and Torquato, if
one adds a spherical shell of thickness r around each
one of the spherical particles, then the volume fraction
of material outside of both the particles and the shells is
just ey(r). The ITZ volume fraction, V,r, is then just:

Virg=1-eylt;rz) —m (2)

where 1 is the volume fraction of aggregates [26]. The
functional form of e(r) is:

ey(r) = (1 — m)exp[—mp(cr + dr* + gr?)] (3)

where p is the total number of aggregates per unit
volume, and the coefficients ¢, d, and g are given in
terms of averages ((...)) over the PSD of the aggre-
gates in terms of number, not volume. These averages
can be determined from the sieve analysis, using certain
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TABLE 2. Parameters of model systems used, including point-counting result for V,;,, and random walker results

for D/Dy,,nx
System Vage Vair PSD t;rz(mm) Dy Dy Virz DIDy,,.1
0.599 0 cfcc 0.03 2.24 0.0580 0.34
2 0.757 0 cfce 0.01 4.94 0.0208 0.23
3 0.754 0 fffc 0.03 2.54 0.1647 0.28
4 0.601 0 cffc 0.03 422 0.0595 0.42
5 0.594 0 fffc 0.01 5.00 0.0431 0.42
6 0.757 0.0948 cfce 0.03 448 0.1167 0.30
7 0.753 0 cffc 0.01 2.95 0.0242 0.20
8 0.752 0 ffce 0.03 3.31 0.1577 0.34
9 0.601 0.0948 cffc 0.01 2.15 0.0422 0.25
10 0.602 0 ffcc 0.01 2.84 0.0458 0.36
11 0.752 0.0825 ffcc 0.01 2.34 0.0655 0.16
12 0.754 0.0775 fffc 0.01 1.18 0.0744 0.11
13 0.599 0.0948 cfce 0.01 1.26 0.0421 022
14 0.594 0.0948 fffc 0.03 5.34 0.2008 0.69
15 0.753 0.0948 cffc 0.03 7.24 0.1214 047
16 0.602 0.0948 ffcc 0.03 8.34 0.2029 1.05
17 0.524 0 cfec 0.01 4.06 0.0164 042
18 0.824 0 cfec 0.01 4,14 0.0231 0.16
19 0.675 0 cfce 0.01 2.32 0.0190 0.26
20 0.675 0 cfec 0.01 7.53 0.0190 0.33
21 0.675 0 cfce 0.01 1.08 0.0190 0.23
22 0.675 0 cfee 0.01 1.88 0.0190 0.24

Note: PSD = particle size distribution; cfcc = coarser fine particles, coarser coarse particles; cffc = coarser fine particles, finer coarse particles; ffec = finer fine particles,
coarser coarse particles; fffc = finer fine particles, finer coarse particles. D = particle diameter.

reasonable assumptions, as shown in Appendix B. The
coefficients ¢, d, and g are:

2
. 4(R%) @
I-m
MR 126,(RY
S R g ®)
4 8ex(R)  16AexR?) .
=50 -m T a-m? " a0 -7 ©

where €, = 2mp(R?)/3, and A is a parameter that can
have different values (0, 2, or 3) depending on the
analytical approximation chosen in the theory [26]. The
actual choice used may be fixed by experiment. In all
the work on concrete, the actual value of A used did not
make much difference, but A = 0 was always slightly
better than A = 2 or 3, as judged by comparison to the
exact (numerical) values listed in Table 2. Note that
there is a misprint in eq 4.27 in Lu and Torquato [26],
which is corrected in the present eqs 4-6.

It should be noted that eqs 2 and 3 can be used to map
out the volume fraction of cement paste that is within a
distance r of an aggregate surface. The accuracy of eq 2,
as will be demonstrated, might very well allow it to be
used to help theoretically analyze a phenomenon like
alkali-silica reaction, where cement paste constituents,

namely alkalis in the pore solution [29], must diffuse to
an aggregate surface in order for the alkali-silica reac-
tion to take place. Another possibility might be the
reactivity of calcium hydroxide with fly ash, where
calcium from the calcium hydroxide particle must dif-
fuse to the silica-rich fly ash, because of the higher
mobility of calcium in solution compared to silica. The
distance of the cement paste to the nearest aggregate
surface or of a calcium hydroxide crystal to the nearest
fly ash particle then must obviously be important for
the kinetics of these processes.

Differential Effective Medium Theory

Most kinds of “effective medium theories” for two or
more phase composites are derived in two steps. In the
first step, the dilute limit of the composite, where the
inclusion phases are present in small amounts in the
matrix material, is solved exactly. The second step takes
this exact solution for the dilute limit and uses a
statistical approximation of some kind to get an analyt-
ical form for the case of arbitrary amounts of the phases.

The type of effective medium theory (EMT) that we
have found useful for this kind of conductivity problem
uses the differential scheme to generate the EMT,
hereafter referred to as D-EMT. The mathematical ba-
sics are found in McLaughlin [30] and have been
previously discussed in the context of concrete [23]. The
first step in generating the D-EMT equation is to solve
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the dilute limit properly. In this case, the dilute limit is
given by a single spherical aggregate particle, with D,
= 0, surrounded by a spherical shell of thickness f;,, of
diffusivity D;;,, embedded in a matrix with diffusivity
D, Diffusivity or electrical conductivity can be used
interchangeably for this problem, as the mathematical
structure is identical. If there is a very low volume
fraction of such particles, then the diffusivity of the
composite is described by the expansion:

D 2
1+ (m)yc + O(c?) (7)
Dhulk

where (im),, means that the slope is averaged over the
volume distribution of the aggregates, since the expan-
sion eq 7 is in terms of the aggregate volume fraction,
not the number fraction. The slope m for a single-size
particle is given in Appendix A.

To generate the D-EMT equation, the dilute result is
used in the following way. Suppose that a volume
fraction ¢’ of aggregate has been added to the cement
paste matrix, so that the total diffusivity is now D’. The
current matrix volume fraction is &' = 1 — ¢’. We have
“smeared” out the aggregates so that the concrete is a
uniform material. Suppose that a differential volume
element of volume fraction dV is now taken out and
replaced with aggregate. The new actual volume frac-
tion of aggregate is not just ¢’ + dV, since some of the
material that was removed was also aggregate, but is
equal to ¢’ + dV — c’dV. The change in aggregate
volume fraction is then just dc’ = dV(1 — ¢'). The dilute
limit is used to get the new diffusivity D' + dD’ (eq 8):

D" +dD" =D’ + D'(m)ydV (8)
or, using the relation between ¢" and dV:

D’ dc’
D'{m), 1-c¢"

()

Equation 9 can be integrated on the left from D, the
diffusivity when no aggregates are present, to D, the
diffusivity when the aggregates have volume fraction c,
and on the right from 0 to the desired aggregate volume
fraction ¢, with the final result:

b ap’
—J D,im;;; = lil(] - C). (10)

Dk

In eq 10, D, has been replaced by D’ in the expression
for (m), (see Appendix A). To obtain the predicted
value of D for any value, ¢, of aggregate volume
fraction, one simply varies the value of D until the
left-hand integral equals the desired value of In(1 — ).
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There is one complication of this three-phase model,
compared to two-phase models [30]. In two-phase
models, in the D-EMT process, the diffusivity of the
inclusion would remain invariant, while only the ma-
trix diffusivity would change. In this three-phase case,
there is the question of whether the ITZ diffusivity,
D7z, is also renormalized in the D-EMT process, or
whether it should stay invariant. The ITZ phase is
outside the aggregate volume, and so must be consid-
ered part of the matrix phase. Intuitively and physi-
cally, there are two extremes that are worth consider-
ing. One is that the actual value of D,;, remains
invariant. The other is that the value of D,,/D’ re-
mains constant at what the original value, D,y /Dy,
was chosen to be. If the concrete diffusivity is being
reduced with the addition of aggregates, then the first
choice will clearly give a larger result. If the overall
concrete diffusivity is going up with the addition of
more aggregate, then the second will clearly give the
larger value. Theoretically, it is not possible to choose
between these ways of carrying out the D-EMT process,
as the value of D, is essentially a free parameter when
solving the D-EMT problem for ¢ > 0. In the next
section, we will show how the numerically exact ran-
dom walker calculations of D/D,,; can show us how to
make a choice between these two limits.

Results

Table 2 lists the numerical point counting and random
walker results for the interfacial zone volume fraction
and D/D,,,, respectively, for 22 systems studied pre-
viously [8]. The parameters listed are enough, along
with the sieve data in Table 1, to allow the analytical
equations listed previously to be used to calculate the
interfacial zone volume and the value of D/D,, ;.

Figure 2 shows the ITZ volume fraction, calculated
from eq 2, plotted against the exact numerical ITZ
volume fraction as given by point counting. Equation 2
is evaluated for v = f,,, the interfacial zone width.
Clearly there is excellent agreement, within a few
percent, over a large range of ITZ volume fractions. At
the low volume fractions, there is very little overlap of
the interfacial zones, so that an accurate prediction of
the total ITZ volume can be made simply by adding up
the interfacial zone volume of each aggregate particle
and assuming there is no overlap. Equation 2 does
correctly reduce to this limit and so still works well. In
the higher volume fractions in Figure 2, there is sub-
stantial ITZ overlap, and so the close agreement of eq 2
with the numerical results is even more impressive.
Further investigations of this equation applied to con-
crete models can be found elsewhere [28].

Figure 3 shows the D-EMT result for D/D,, ;. plotted
against the random walker numerical result. The
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FIGURE 2. Interfacial transition zone (ITZ) volume fraction,
as computed by eq 2, plotted against the exact (numerical)
results of point counting, for each of the 22 concretes listed in
Table 2 [6]. The abscissa values are given in Table 2. The solid
line is the line of equality.

D-EMT result takes a weighted average of the two
possible choices for solving the D-EMT equation, as
discussed in the previous section. If choice number one
is that of fixing the value of D,r, resulting in the value
D,/Dy. and choice number two is fixing the value of
D7/ Dy resulting in the value D,/Dy,y, then the
average used is:

D,
—EMT _ 0.78D, + 0.22D,. (11)

bulk

The dashed lines in Figure 3 correspond to the line of
equality and the =20% error boundaries. All the D-EMT
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FIGURE 3. D-EMT value of D/D,, .y, plotted against the exact
(numerical) myopic walker results, listed in Table 2. The
dashed lines consist of the line of equality, bracketed by lines
of =20% error.

Advn Cem Bas Mat
1998;8:77-88

results, using eq 11, stay within the +20% lines, and
most stay well within. This choice of weighting of these
two extremes agrees well with the results of direct
simulation for a wide range of concretes and is expected
to be quite robust and apply to other concretes as well.
Choosing a weighted average is the mathematical anal-
ogy of saying that in a real concrete, the interfacial zone
diffusivity becomes partially blended in with the rest of
the matrix phase due to the action of nearby aggregates.

We note that, a priori, there is no reason to expect an
EMT to work well for a particular problem. The dilute
limit used in the development of an EMT is exact, but
the approximation used to produce predictions for
larger volume fractions of aggregate is essentially un-
controlled. Having numerically exact diffusivity calcu-
lations available makes it possible for us to quantita-
tively evaluate the D-EMT predictions and optimize
them for practical use. The D-EMT results can now be
used to replace the random walker numerical results,
but the validity of this replacement could only have
been determined by having the random walker tech-
niques available in the first place.

Discussion

It has been shown that two fairly simple analytical
formulas can give a quite accurate description of nu-
merical results on a wide range of concrete mixtures.
These formulas must be evaluated numerically, using
numerical quadrature techniques like Gaussian integra-
tion, but these kind of integration techniques are easily
available. The numerial integrations can easily be done
on a workstation or a fast personal computer. There-
fore, the supercomputer simulations inherent in two of
the three key steps in the multiscale model of concrete
diffusivity can be replaced with simple analytical for-
mulations. It is also encouraging to note that the second
key step, that of numerically hydrating cement grains
around an aggregate, is the easiest step computation-
ally, since it uses only integers. The system sizes used in
this article and in reference [8] were of the order 30 - 10°
pixels. For the hydration code necessary for this model,
only one byte per pixel is needed to keep track of the
phases before, during, and after hydration, so that
approximately 30 MB of memory are needed for this
part of the multiscale model. This much memory is
even becoming common for modern personal comput-
ers and has long been common for low-end engineering
workstations, so that even without an analytical re-
placement, this part of the model should be accessible
to many concrete designers, at least in principle. Of
course, run times on a personal computer will be slow,
on the order of probably tens of hours, but quite faster
on low-end workstations.

The largest difference between this multiscale model
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and previous work [7,23], as was mentioned in the
Introduction, is the ability to take into account, even in
an approximate way, the redistribution of cement due
to the presence of the aggregates. This gives more
accurate values of Dy, and D, . This step appears to
be crucial, especially at the high volume fractions of
aggregate common in concrete, as this redistribution of
cement plays an important role in determining the bulk
properties of the concrete. The procedure used in the
multiscale model to determine this ratio, step (2), is still
approximate, since the gradient of properties in the
interfacial zone is treated as being equivalent to a fixed
width, fixed property interfacial zone surrounded by
fixed property bulk cement paste. This matching of
gradient to interfacial zone can be done more accu-
rately and has been the subject of further research
[24]. Tt turns out that the end results are not signifi-
cantly affected [24].

One consequence of this cement redistribution is a
sort of “negative feed-back” loop, in the following
sense. Suppose the ITZ is made wider, perhaps by using
a coarser cement. This would tend to drive up the value
of D, and lower the value of D, so that the ratio of
the two is larger, implying a larger value of D/D,,,,, [7].
However, the actual value of D will not be as much
higher as one would think, since the higher value of
D /D, must be multiplied by the lower value of Dy,
to get the overall concrete diffusivity. So just increasing
the diffusivity of the interfacial zone by thickening it
will not increase the overall concrete diffusivity as
much as one would think [8]. Increasing the surface
area of the aggregate by reducing the average aggregate
diameter results in similar behavior. Other interplays
between the variables of the problem are discussed in
reference [8].

The proper experimental validation of the multiscale
model remains to be done. In order to be able to use the
model to compare with experimental results, one can-
not just prepare concretes at various aggregate volume
fractions, including the zero volume fraction of aggre-
gate cement paste matrix, and then simply normalize
the concrete measurements by cement paste measure-
ments taken at equal times. The redistribution of ce-
ment in the concrete makes the value of D, in the
concrete not the same as the plain cement paste sample,
even at equal degrees of hydration.

What must be done experimentally is the following.
The degree of hydration of the concrete must be deter-
mined, along with the volume fraction and particle size
distribution of the aggregates, and the particle size
distribution of the cement, or at the very least its
median particle size. The diffusivity or electrical con-
ductivity of the concrete can then be measured. If the
experimental measurements are taken in this manner,
then the model can be quantitatively tested and im-
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proved, making it a useful tool for designing the ionic
diffusivity of concrete at the mix design stage. This
procedure is now being carried out for mortars with
various amounts of sand, and results will be reported in
the near future [31].

Summary

This article has described a multiscale model for pre-
dicting concrete diffusivity based on the amounts and
sizes of the concrete components. This model has three
key steps, using: (1) a millimeter-scale concrete micro-
structure model; (2) a micrometer-scale cement paste
microstructure model; and (3) a diffusivity calculation
of the concrete microstructure model. The two main
results of this article are that the large computer simu-
lations that were previously necessary for steps (1) and
(3) can now be accurately replaced with simple analyt-
ical equations, making the multiscale model easier and
faster to use.

Appendix A

Discussion of Dependence of ITZ Thickness
on Aggregate Size

In reference [9], it was found that the ITZ thickness
decreased with aggregate radius, in contradiction to our
assumption that the ITZ thickness is independent of
aggregate size, at least for aggregates larger than a few
times the median cement particle size. This conclusion
in reference [9] was reached by making electrical con-
ductivity measurements, equating the data to an equa-
tion for the composite conductivity that had as param-
eters the aggregate volume fraction, the thickness and
conductivity of the interfacial zone, the bulk paste
conductivity, and the average radius of the aggregates,
taken to be spheres. The value of the interfacial zone
thickness, normalized to some arbitrary value, was then
found from this matching process. The trouble with this
procedure is, as will be shown below, that the equation
used was only an approximate one. Its dependence on
the interfacial zone thickness, for example, is only
approximate and so will not give correct results in the
above procedure.

A simple test is in the dilute limit, where the diffu-
sivity is known exactly. In this limit, as was discussed in
the text, the diffusivity, normalized by the bulk diffu-
sivity, is (eq A.1):

(A1)

where ¢ is the volume fraction of aggregates placed. The
exact result for m, for a spherical aggregate of radius r,
with zero aggregate diffusivity, is:
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2(B - 1y Doz _ +2B)
o Do~
m = (38) (A.2)

D,
2B - 1) -4+ 201 + 2p)
thtlk

where the parameter B = [(r + t;,)/r]® contains all of
the dependence on the particle and interfacial zone
dimensions [7]. (There is a typographical error in refer-
ence [7], in the equation equivalent to eq A.2. In the
numerator, the term that reads (b + h)/h should really
be (b + h)/b, in accordance with the definition of the
parameter B).

The equivalent value for m, derived from the equa-
tion in reference [8], with s = D,/ D, is:

3 t 3 tirz\?

Moy = —E+3(s—l) ’:Z+i(s—1)('7r7> (A.3)
where 1 is the aggregate radius. All the aggregate must
be of the same size for this equation to apply to a
concrete. In eq A.2, if we treat ¢,;,/7 as a small param-
eter, and expand the exact result of eq A.2 to second

order in this parameter, then the following equation
results:

3.9 trz 9 trrz\?
Mo = _2+§(5_1)1;z_2(5_1)<r:z) :
(A4)

Comparison of eq A.3 to eq A.4 shows that only the
—3/2 term agrees. So eq A.3 is not correct, in the dilute
limit, in either the first or the second order term in
tirz/T.

If we set eq A3 equal to eq A2, simulating the
matching of eq A.3 to an “experimental” result, then we
can solve for the “effective” value of t,r,/r needed in
order to match up eq A.3 to the correct value of eq A.2.
This equation (eq A.5) is:

3s + 2m]1/?
(tlTZ/r)vff- -1+ [m):l (A.5)

where m is the exact slope from eq A.2. In this way, we
can generate a graph of the perceived value of t,
measured as a function of the particle radius, in a case
where the actual value of t;1; is fixed. We take t,, = 20
pm, and the ratio s of the ITZ diffusivity to the bulk
diffusivity to be 4 and 10. Figure 4 shows the results of
this process. Clearly, using the equation from reference
[9], the ITZ thickness is perceived to be sharply decreas-
ing with particle radius, when in fact it is staying
constant, as indicated by the horizontal line. Even
though the measurements in reference [9] were made at
aggregate volume fractions well beyond the dilute
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FIGURE 4. “Effective” value of t;;,./r, as determined from
matching the approximate formula of eq A.3 to the exact
formula of eq A.2 (see eq A.5), plotted against the radius of the
aggregate particle 7, for two different values of s = D, /D,
(solid line s = 4, dashed line s = 10).

limit, the same result will almost certainly hold. There-
fore, the conclusion of reference [9] that the ITZ thick-
ness decreases with aggregate radius was based on a
formula that was not correct in accounting for the effect
of the ITZ, and so when used to “back out” a value for
D15/ Dy, gave incorrect results. This would be the
case even if eq A.3 gave reasonable results for m for a
concrete, since the specific dependence on D, /D, is
not correct. The error occurs when trying to extract a
small quantity out of an experimental measurement
using an inexact equation that does not have the correct
dependence on the small quantity, in this case the ITZ
thickness.

Appendix B

Using a Sieve Analysis to Compute Statistical
Quantities Needed

A typical sieve analysis of an aggregate can be ex-
pressed in terms of d;, M, and c¢;, where ¢; is the fraction
of the total volume of aggregate that has a diameter
between d; and d, 1, d; < d,,;, and M is the total number
of sieves used. The units of the particle diameters are
millimeters. The sum of ¢, over the M sieves = 1. A
typical sieve analysis is expressed in terms of the mass
fraction passing or retained by a certain sieve size,
which can easily be converted to the form given here. If
aggregates of different size have all the same density,
then mass fractions are the same as volume fractions.
Now, in the ITZ volume formulas, averages appear of
powers of the aggregate radii, averaged over the num-
ber distribution density of the aggregates. Here we
show how this can be carried out using the sieve
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analysis, followed by formulas for performing volume
averages using the sieve analysis, which is necessary to
be able to evaluate the D-EMT formulas for a given
aggregate PSD.

In order to carry out these averages, we need to make
an assumption as to how the aggregates are distributed
within each sieve. That information is not given by a
sieve analysis. Many assumptions are possible, but two
that are easy to handle analytically, and are physically
reasonable, are that either the aggregates are distrib-
uted, within a sieve, uniformly by volume or uniformly
by diameter. We show the analysis for both assump-
tions, although in all the simulation work, the former
assumption was used. We could, of course, also assume
that all the aggregates in a sieve have the same radius,
perhaps equal to the average of the endpoints of the
sieve range, but it is probably more accurate to assume
some kind of distribution within the sieve.

ASSUMPTION 1: UNIFORM DISTRIBUTION BY VOLUME. In this
case, the fraction of the total aggregate volume repre-
sented by particles with volumes in the range (V, V +
dV), contained in the ith sieve, is given by:

ch

dv =-
PV =y vy

(B.1)

so that the integral over the interval (V,, V;,;) will be
equal to ¢;. If N is the total number of aggregate particles
used per the total concrete volume V oy, so that p =
N/Vror, Vag, is the total aggregate volume, c,,, =

Viaeo/ Vror, then the fraction of the total number of
aggregate particles with volumes in the range (V, V +

dV), contained in the ith sieve, is given by (eq B.2):

AV
a(V)dV = Cage

PV Vs = V) (B:2)

where V is the volume of a particle in this range. If we
now convert to radius, using V = 473 /3 and dV =
4mr’dr, the equivalent expression in terms of the particle
radius is:

-1
Dageir_ A1

4Tl'p( 1+1 - r ) (83)

n(rydr =
Integrating over each sieve’s endpoints and summing
over each sieve must give 1 for this expression:

(B.4)

i=1

M Finn
1= f n(rdr.

This normalization determines the value of p (eq B.5):

p= % gcangv_ 1 (VH 1>.

i=1 47{(’1+1 q)

(B.5)
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Therefore, the average of R" over the particle number
density, as shown in eq B.3, is then (eq B.6):

M 9¢

C; Yiiy
RH — o ”'s& i n—1 .
(R = 121 dmp(ry,, — 1) f rdr

vy

(B.6)

ASSUMPTION 2: UNIFORM DISTRIBUTION BY RADIUS. In this case,
the fraction of the aggregate volume represented by
particles with radii in the range (r, r + dr), contained in
the ith sieve, is given by:

cdr
p(l’)d T

(rivy =) ®7)
so that the integral of p(r)dr over the interval (r, #,.,)
will be equal to ¢, Similar to the previous case, the
fraction of the total number of aggregate particles with
radii in the range (v, r + dr), contained in the ith sieve,
is given by:

3C 0,0, T

dr =
n(r)d P477r3(”i+1 — 1)

(B.8)

where V = 4wr’/3 is the volume of a (spherical) particle
in this range. Equation B.8 must obey the normalization
eq B.4, implying that the value of p is then (eqs B.9 and
B.10):

Mo fra 3¢ “3dy
= s B.9
P lE]J 4TT(7’,+] rz) ( )
or
& 3¢ it
nqq 1( - l+]) (BlO)

P i=1 8 (ryr; |-1)

Therefore, the average of R” over the particle number
density is {(eq B.11):

o N Y agghi e n—37.,
(R i; dwp(r,q — 1; J rtodr. (B.11)

vi

AVERAGES OVER THE VOLUME DISTRIBUTION. For averages over
the volume distribution of the particles, either assump-
tion can again be used. The starting points are the same
for each assumption. Assuming a uniform distribution
by volume within a sieve of the particles, the volume
average (... ), is (eq B.12):

i 3¢; LR
(f(r))v = i; —;7“73) f r‘f(r)dr (812)

1 (17
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which uses eq B.1, but with V = 4w*/3 and dV = 4wr?.
The equation for the assumption of a uniform distribu-
tion, within a sieve, of the particles by radius, is (eq
B.13):

(SIS 0.5

=1 (i - 7 (B.13)

M C: it
Fryy =2 f frydr
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