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ABSTRACT

Extensions have been made to the NIST 3-D cement hydration and microstructure de-
velopment model to incorporate pozzolanic materials such as silica fume and fly ash. These
additions will enable the simulation of the hydration and microstructure development of
blended cements as well as conventional Portland cements. SEM and image analysis tech-
niques originally developed for differentiating the cement clinker phases present in a 2-D
image of cement particles have been modified and applied to equivalent images of fly ash
particles. Reactions have been proposed and the appropriate volume stoichiometries deter-
mined for the various components of fly ash. Some preliminary calibrations of reaction rate
constants and dissolution rates have been performed by comparison to experimental results
for the adiabatic heat signatures of a variety of concretes with various water-to-cement ratios
and fly ash contents. Further research needed to complete this calibration is outlined.

Keywords: Building technology, cement hydration, computer modelling, fly ash, microstruc-
ture, pozzolan, silica fume, simulation.
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1 Introduction o

This document describes the efforts to date for incorporating fly ash and silica fume into
the NIST 3-D Portland cement hydration and microstructure development model [1]. A
series of fly ashes (from the U.S. and France) have been imaged using a combination of SEM
backscattered electron and X-ray signals to distinguish the major phases present (silica, an
aluminosilicate, calcium chloride, tricalcium aluminate, a calcium aluminosilicate, anhydrite,
and inert material). Computational programs for distributing the cement and fly ash phases
amongst a size distribution of three-dimensional particles have been developed. The fly ash
components may be distributed randomly amongst a subset of the particles, or as individual
monophase particles. Reactions have been established for these starting materials and the
phases of ordinary Portland cement based on information available in the literature [2, 3].
Volume stoichiometries and heats of reaction have been postulated for these reactions, which
then have been included in a new version of the NIST 3-D microstructural model. Some
validation against adiabatic heat release curves has been performed for one of the French
fly ashes. The basic procedures are thus in place for modelling the hydration behavior of a
variety of blended cements (and concretes), but further validation and adjustment of some
constants (reactions rates, etc.) is still needed. A suggested approach for performing this
validation is also presented.

The new version of the hydration model and the auxiliary programs provided in Appendix
B are available via anonymous ftp from edsel.cbt.nist.gov (129.6.104.138). The user can log
in as “anonymous” and supply their e-mail address as the password. The new programs can
be found in the /ftp/pub/CEMHYD3D /flyash subdirectory. The programs have been
developed and executed on a UNIX-based computer system and should require no more than
16 Mbytes of memory for execution. In addition, a postscript version of this documentation
can be found in the /ftp/pub/CEMHYD3D /flyash/manual subdirectory. Complete
documentation for the 3-D cement hydration and microstructure development program has
been published previously [1] (also available in the /ftp/pub/CEMHYD3D/manual sub-
directory) and should be consulted along with this update.

2 Experimental Procedures

SEM and X-ray analysis provide a convenient and powerful means for examining the mi-
crostructure of fly ash particles [2, 4]. Here, the SEM/imaging techniques developed pre-
viously [5] for imaging Portland cements have been modified for the analysis of fly ash
samples. In addition to the backscattered electron (BSE) image, X-ray images are collected
for Al, Ca, Cl, S, and Si. Based on the intensities of these signals, a separation into the
following phases is performed: silica (S:0,), an aluminosilicate (SiAl;Os), calcium chloride
(CaCly), anhydrite (CaS0y), a calcium aluminosilicate (CaSi,Al,0g), tricalcium aluminate
(Ca3Al;0¢), and inert (other) material [2, 3]. The initial segmented image is typically pro-
cessed with a median filter [1] to improve the image quality by removing much of the noise
within individual phase regions. A series of final processed images for a variety of fly ashes is
provided in Appendix A of this document. These final images can be analyzed to determine
phase volume fractions, phase surface area fractions, and correlation functions to be used in
reconstructing representative three-dimensional images [1].



In reality, of course, the phase composition of the fly ash is more complex than being
simply composed of the compounds listed above. However, in approximating the fly ash to
be composed of these compounds, we are operating in much the same spirit as that which
utilizes the Bogue compounds (C3.5%, C,S, C3A, and C4AF) as a representation of a Portland
cement.

3 Three-Dimensional Reconstruction

Once the phase compositions, phase surface areas, and correlation functions have been deter-
mined, the same computational techniques developed for three-dimensional Portland cement
particles can be used to reconstruct three-dimensional fly ash particles following a specific
particle size distribution [1, 6]. In fact, using digitized spheres to represent the fly ash par-
ticles should in general be more realistic than in the case of cement particles, since fly ash
particles are generally much more spherical in shape than cement particles. In addition to
the computer programs for performing the reconstruction based on autocorrelation analysis,
two new computer programs for distributing the fly ash phases amongst the fly ash particles
have been developed. The first simply distributes the phases, in their appropriate volume
fractions, totally at random amongst all of the pixels initially identified as fly ash. The sec-
ond achieves this random distribution amongst the fly ash particles, so that all particles are
monophase, but the user-supplied appropriate phase volume fractions are nonetheless main-
tained. This program has been developed because it has been observed in SEM images that
the fly ash particles are often monophase. Listings for these two programs (distfarand.c
and distfapart.c) are provided in Appendix B of this document.

During the assignment of phases to the fly ash particles, the tricalcium aluminate con-
tained in the fly ash is assigned a different phase ID than that used for the tricalcium
aluminate present in the Portland cement. However, within the microstructural model, the
two are considered to be equivalent and participate in all of the same reactions, with the
same dissolution probabilities and diffusion rates. While fly ash often replaces cement on a
mass basis, for use in the model, this substitution must be converted to a volume basis. A
specific gravity of 2.2 is generally used for the fly ash particles for performing this conversion.
When using the program genpart3d.c (listing provided in Appendix B), the fly ash and
cement can follow different particle size distributions, but the user should be sure to place
all of the particles in order of largest to smallest, regardless of their phase identification.

4 Additional Reactions

The needed physical properties of the phases found in fly ash and the relevant hydration
products are summarized in Table 1. While specific gravities, molecular weights, and molar
volumes are readily available in the literature [3, 7], heat of formation data have yet to be
located for all of the phases. Figure 1 summarizes the proposed reactions between the fly ash
and the cement phases and their hydration products, such as CH. The numbers below each
reaction indicate the volume stoichiometries (on a pixel basis) which must be maintained
by the computer model. Based on these volume stoichiometries, all but one of the reactions

1Conventional cement chemistry notation 1s used throughout this document with C = Ca0O, § = SiOs,
A= A1203, F = F€203, H = H20, and S = SO3



in Figure 1 are seen to further contribute to the chemical shrinkage [6] occuring during
hydration, as the volume of the solid hydration products is less than that of the reactants
(solids and water). The only exception to this is the conversion of primary C—S—H to
“pozzolanic” C—S—H.

Table 1: Physical Properties of Proposed Components of Fly Ash

Compound Compound Density  Molar volume Heat of formation
Name Formula (Mg/m?) (cm®/mol) (kJ /mol)
Silica S 2.2 27. -907.5
Aluminosilicate AS 3.247 49.9

Stratlingite CzASHg 1.94 215.63

Anhydrite CcS 2.61 52.16 -1424.6
Gypsum CSH, 2.32 74.2 -2022.6
Calcium chloride CaCl, 2.15 51.62 -795.8
Friedel’s salt C3A(CaCly)Hyo 1.892 296.66

Calcium Hydroxide CH 2.24 33.1 -986.1
Calcium silicate hydrate  C,,;SH, 2.12 108. -3283
Pozzolanic C—S—-H Ci11SH3g 1.69 101.8 -2299.1
Tricalcium aluminate Cs;A 3.03 89.1 -3587.8
Dicalcium aluminosilicate C,AS 3.05 90.

Calcium aluminodisilicate CAS, 2.77 100.62

The new version of the model allows for the conversion of primary C—S—H to pozzolanic
C—S—H, for the case where there is an excess of silica due to the presence of fly ash or
silica fume. The user can select to have this reaction included with or eliminated from those
executed in the model through the use of a global input flag. This reaction allows for the
observed reduction in the C/S ratio of C-S—H over time in systems containing pozzolans [8].
When activated, the global parameter PCSH2CSH controls the probability of a primary
C—S—H pixel being converted to pozzolanic C—S—H during any given dissolution cycle of
the model. The calcium liberated by this reaction is converted to diffusing CH species which
can form solid CH or participate in further pozzolanic reactions with the available silica and
aluminosilicates.

For the purposes of incorporating fly ash, four new diffusing species [1] have been in-
troduced into the model: diffusing anhydrite, diffusing CaCl,, diffusing AS, and diffusing
CAS2. The silica itself does not dissolve, but diffusing CH species react at silica surfaces to
form pozzolanic C—S—H. The interactions between the new diffusing species and the phases
of the Portland cement are as follows:

diffusing CaCly: when a diffusing CaCl, species collides with either solid or diffusing
C3A, Friedel’s salt is formed. If it collides with solid CyAF, Friedel’s salt, C H, and
F H; are formed.

diffusing AS: when a diffusing AS species collides with either solid or diffusing CH,
stratlingite is formed.




Pozzolanic C—S—H Formation

1.1CH+ S +2.8H — 01,15H3_9
1.349 1 1.867 3.771

01_7SH4 + O5H — 01,15’H3.9 + 06CH
1 0.083 0.943 0.184

Calcium Chloride-Aluminate Reactions

C3A + CaC12 + 10H - C3A(CaClz)H10
1.7261 1 3.487 5.747

C4AF + CaCly + 14H — C3A(CaCl)Hy o+ CH + FH;
2.4797 1 4.882 5.747 0.641 1.3522

Anhydrite to Gypsum Conversion

CS+ 2H — CSH,
1 069 1423

Stratlingite Formation

1 0.7538 1.631 3.26

1 0.886 2.862 4.286

0.786 1 2.81 3.37 0.2586 0.5453

Figure 1: Cement-fly ash model reactions - numbers below reactions indicate volume stoi-
chiometries.



diffusing CAS2: when a diffusing CAS2 species collides with solid or diffusing CsA,
stratlingite is formed. If it collides with solid C4AF, stratlingite, CH, and FH; are
formed.

diffusing anhydrite: when a diffusing anhydrite species collides with either solid or dif-
fusing gypsum, it is converted into solid gypsum.

Globally, when the model is executed under adiabatic conditions, the activation energy
for the fly ash reactions (considered to be on the order of 80 kJ/mole), is used to update
both the probability of a diffusing CH species reacting at a silica surface and the probability
of dissolution of the aluminosilicate and calcium aluminosilicate components of the fly ash.
The reactivity of the fly ash should perhaps also be a function of pH, but this has yet to
be incorporated into the model. Perhaps using an exponential function to describe the pH
evolution over time or as a function of degree of hydration, such as:

—a

PH = pHini +7 X [1 — exp(;—]] (1)
would provide a basis for estimating pH during the course of the hydration. In the above
equation, pH;y,;; is the initial pH of the pore solution when the cement and fly ash are mixed
with water, v is the increase in pH during the entire course of hydration, and « is the degree
of hydration. The reactivity of the fly ash could then be adjusted based on the current pH
of the pore solution.

The new version of the model can be found in the programs disrealnew.c and hydreal-
new.c in the anonymous ftp directory as described in section 1. An example annotated
input datafile for the execution of disrealnew is given in Appendix C.

5 Comparison to Experimental Adiabatic Heat Sig-
nature Data

For one of the French fly ashes, an extensive experimental data set of adiabatic heat sig-
natures is available. For a variety of water-to-cement (w/c) ratios by mass, and fly ash
contents, concretes have been prepared and characterized by monitoring their temperature
rise over time when hydrating under adiabatic conditions. This data set can be used for a
direct comparison with model predictions. This fly ash is a relatively simple one, in that
it can be approximated as containing only three components: silica (S), an aluminosilicate
(AS), and inert material. In addition, from SEM and image analysis, it appears that for
this fly ash, most of the particles (unlike typical cement particles) are monophase. Thus, we
can use the program distfapart.c in Appendix B to distribute the fly ash phases randomly
amongst monophase particles to achieve the appropriate volume fractions (determined to be
0.33 for AS, 0.39 for S, and 0.28 for inert material based on the oxide composition deter-
mined for the fly ash). Computationally, this approach is much easier than using the detailed
autocorrelation analysis to distribute the phases, as is typically performed for a cement [1].

The dissolution probability of the aluminosilicate and the reaction probability of the silica
(parameter PPOZZ) were adjusted to provide a “best” fit to the experimental adiabatic heat
signature data at w/c=0.65 and 50% fly ash content. These values were then held constant in
simulations for other w/c ratios and fly ash content combinations. A heat of hydration value
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of 800 J/g AS reacted was used in the model for the aluminosilicate to stratlingite conversion.
This value was determined based on experiments in which the fly ash alone was hydrated in
a solution of lime (CH) and the system temperature rise monitored. An activation energy of
83.14 kJ /mole (the same as that determined for the pozzolanic reaction of silica fume [9, 10])
was used in the model for all of the reactions involving one or more components of the fly ash.
Example comparisons of the experimental and model temperature rise vs. time curves are
provided in Figures 2, 3, and 4. In general, the agreement between model and experiment
is always within a few degrees Celsius, as had been observed previously for systems with
and without silica fume additions [10]. The higher model temperatures at longer times are
perhaps due to more water being incorporated into the cement-fly ash hydration products
than that indicated by the stoichiometries in Figure 1. Since the hydration is being executed
under sealed curing conditions, it will effectively terminate when all remaining porosity is
empty (as opposed to water-filled) due to chemical shrinkage. Another possibility is that
certain hydration products (e.g., ettringite) are unstable at higher temperatures. If their
deterioration reactions are endothermic in nature, the predicted temperature rise based on
the computer model would exceed that observed experimentally. Because this fly ash is
rather simple in structure and contains only a few distinct phases, further validation of the
3-D microstructural model with other fly ashes will definitely still be needed, as outlined in
the next section of this report.
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Figure 2: Comparison of experimental (data points) and calibrated simulated (solid lines)
adiabatic heat signature curves for w/c=0.65 concrete with 50% fly ash content.

6 Needed Research

The best validation of the 3-D microstructural model incorporating fly ash would be a com-
parison of the evolution of the model volumetric phase fractions over time with the equivalent
experimental data. For crystalline phases, quantitative X-ray diffraction [11] would appear
to be the most straightforward means for obtaining phase quantification. This would be
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Figure 3: Comparison of experimental (data points) and simulated (solid lines) adiabatic
heat signature curves for w/c=0.45 concrete with 50% fly ash content.

particularly useful for the fly ash hydration products such as Freidel’s salt and stratlingite.
Alternately, SEM/image analysis may be useful in analyzing real microstructures at various
hydration ages. Thermogravimetric analysis provides data on the water released at different ..
temperatures, from which one can quantitatively estimate the CH content of cement/fly ash
pastes. For example, this technique has been successfully used to determine the appropriate
phase and volume stoichiometries for the reaction of silica fume with cement [12].

Ideally, these experimental studies should be conducted under isothermal conditions at
several temperatures. This would enable the determination of activation energies and the
variation of reaction products with temperature. These studies could then be extended to
hydration under adiabatic conditions as presented in the previous section. If the phases
forming at high temperatures are significantly different from those at lower temperatures,
extensive modifications to the computer codes may be required. For example, ettringite is
known to be unstable at temperatures above 70 °C [3], so that the model could be modified
to make ettringite soluble whenever the system temperature exceeds 70 °C, in addition to
the current criteria for solubility based on the fraction of the initial gypsum remaining in
the system.
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9 Appendix A- Images of Fly Ashes

Figure 5: Initial BSE two-dimensional image of French fly ash. Image is approximately 250

pm x 200 pm.
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Figure fi: Final segmented two dimensional image of French Municipal Solid Waste Incin-

eration fly ash. Phases are color-coded as: red. §; blue, AS; mreen, 0 AS;: orange, Callly

aqua, anhydrite; and white, inert, Image 15 approximately 500 gm0 400

[ L8 B4
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Figure 7: Final segmented two-dimensional image of Class O fly ash containing €'y A. Phases

are color-coded as: red, S; Blue, AS; green, (A5, orange, {7a4: agua, anhydrite; and white,

inert. Image is approximately 250 pim = 200 jm.
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Freure & Final segmented two-dimensional image of Class IY fiy ash. Phases are color codend

s ped. 9 blue. AS: sreen. (7 AS;: orange, (UyA; agua, anhydrite; and white, inert. Image is

approximately 230 pm o= 200 g
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10 Appendix B- Computer Code Listings

10.1 ranl.c- Random number generation

/* Random number generator

ranl from Computers in Physics */

/* Volume 6 No. 5, 1992, 522-524, Press and Teukolsky */
/* To generate real random numbers 0.0-1.0 */
/* Should be seeded with a negative integer */

#define IA 16807

#define IM 2147483647
#define IQ 127773

#define IR 2836

#define NTAB 32

#define EPS (1.2E-07)
#define MAX(a,b) (a>b)?a:b
#define MIN(a,b) (a<b)?a:b

double rani(idum)
int *idum;
{
int j,k;
static int iv[NTAB],iy=0;
void nrerror();
static double NDIV
static double RNMX
static double AM =

if ((*1dum <= 0) I' (1y ==
*idum = MAX(-*idum,*idum);

1.0/(1.0+(IM-1.0)/NTAB);
(1.0-EPS);
(1.0/1M);

0)) {

for(j=NTAB+7;j>=0;j--) {

k = *idum/IQ;

*idum = IA*(*idum-k*IQ)-IRx*k;

if(*idum < 0) *idum += IM;

if(j < NTAB) iv[j] = *idum;

}

iy = iv[0];

}

k = *idum/IQ;

*¥idum = IA*(*idum-k*IQ)-IR*k;

if (*idum<0) *idum += IM;
j = iy*NDIV;

iy = iv[j];

iv[j] = *idum;

return MIN(AM*iy ,RNMX) ;
}

17




#undef IA
#undef IM
#undef I
#undef IR
#undef NTAB
#undef EPS
#tundef MAX
#tundef MIN

18




10.2 genpart3dd.c- 3-D particle generation

/************************************************************************/

/* */
/* Program genpart3d.c to generate three-dimensional cement */
/* particles in a 3~D box with periodic boundaries. */
/* Particles are composed of either cement clinker or gypsum, */
/* follow a user-specified size distribution, and can */
/* be either flocculated, random, or dispersed. */
/* Programmer: Dale P. Bentz */
/* Building and Fire Research Laboratory */
/* NIST */
/* Building 226 Room B-350 */
/* Gaithersburg, MD 20899 USA */
/* (301) 975-5865 FAX: 301-990-6891 */
/* E-mail: dale.bentz@nist.gov */
/* */

[ AR AR K AR K AR S Rk KA K ok ok ok AR KRk kR ks ko kK ko sk ok sk sk ok ok f

/* Modified 3/97 to allow placement of pozzolanic, inert and fly ash particles*/
#include <stdio.h>

#include <math.h>

#define SYSSIZE 100 /* system size in pixels per dimension */
#define MAXTRIES 15000 /# maximum number of random tries for sphere placement */

/* phase identifiers */
#define POROSITY 0O
/* Note that each particle must have a separate ID to allow for flocculation */

#define CEM 100 /* and greater */

#define CEMID 1 /* phase identifier for cement */

#define GYPID 5 /* phase identifier for gypsum */

#define AGG 6 /* phase identifier for flat aggregate */
#define POZZID 17 /* phase identifier for pozzolanic material */
#define INERTID 18 /* phase identifier for inert material */
#define FLYASH 25 /* phase identifier for generic fly ash */
#define NPARTC 12000 /* maximum number of particles allowed in box*/
#define BURNT 14000 /* this value must be at least 100 > NPARTC */
#define NUMSIZES 30 /* maximum number of different particle sizes */

/* data structure for clusters to be used in flocculation */
struct clusterq{
int partid; /* index for particle */
int clustid; /* ID for cluster to which this particle belongs */
int partphase; /* phase identifier for this particle (CEMID or GYPID)=*/

19




int x,y,z,r; /¥ particle centroid and radius in pixels */
struct cluster *nextpart; /* pointer to next particle in cluster */

};

/* 3-D particle structure (each particle has own ID) stored in array cement */
/* 3-D microstructure is stored in 3-D array cemreal */

static unsigned short int cement [SYSSIZE+1] [SYSSIZE+1] [SYSSIZE+1];

static unsigned short int cemreal [SYSSIZE+1] [SYSSIZE+1] [SYSSIZE+1];

int npart,aggsize; /* global number of particles and size of aggregate */
int *seed; /* random number seed- global */
int dispdist; /* dispersion distance in pixels */

int clusleft; /* number of clusters in system */
float probgyp; /* probability of gypsum particle instead of cement */
struct cluster *clust[NPARTC]; /+* limit of NPARTC particles/clusters */

/* Random number generator ranl from Computers in Physics */
/* Volume 6 No. 5, 1992, 522-524, Press and Teukolsky */
/* To generate real random numbers 0.0-1.0 */

/* Should be seeded with a negative integer */

#define IA 16807

#define IM 2147483647

#define IQ 127773

#define IR 2836

#define NTAB 32

#define EPS (1.2E-07)

#define MAX(a,b) (a>b)?a:b

#define MIN(a,b) (a<b)7?a:b

double rani(idum)

int *idum;

/* Calls: no routines */

/* Called by: gsphere,makefloc */

{
int j,k;
static int iv[NTAB],iy=0;
void nrerror();
static double NDIV = 1.0/(1.0+(IM-1.0)/NTAB);
static double RNMX = (1.0-EPS);
static double AM = (1.0/IM);

if ((*idum <= 0) || (iy == 0)) {
*idum = MAX(-*idum,*idum);
for(j=NTAB+7;3>=0;j--) {
k = *idum/IQ;
*idum = IA*(*idum-k*IQ)-IR*k;
if(kidum < 0) *idum += IM;
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if(j < NTAB) iv[j] = *idum;

}

iy = iv[0];
}
k = *idun/IQ;

*idum = ITA*(*kidum-k*IQ)-IR#*k;
if (*idum<0) *idum += IM;
j = 1iy*NDIV;
iy = iv[j];
iv[j] = *idum;
return MIN(AM*iy,RNMX);
}
#undef IA
#undef IM
#tundef IQ
#undef IR
#tundef NTAB
#undef EPS
#undef MAX
#undef MIN

/* routine to add a flat plate aggregate in the microstructure */
void addagg()
/* Calls: no other routines */
/* Called by: main program */
{
int ix,iy,iz;
int agglo,agghi;

/* Be sure aggregate size is an even integer */
dof{
printf("Enter thickness of aggregate to place (even integer) \n");
scanf ("%d",&aggsize) ;
printf ("/d\n",aggsize);
} while ((aggsizel2)!=0);

if(aggsize!=0){
agglo=(SYSSIZE/2)-((aggsize-2)/2);
agghi=(SYSSIZE/2)+(aggsize/2);

/* Aggregate is placed in yz plane */
for(ix=agglo;ix<=agghi;ix++){
for(iy=1;iy<=SYSSIZE;iy++){
for(iz=1;iz<=SYSSIZE;iz++){

/* Mark aggregate into both particle and microstructure images */
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cement [ix][iy] [iz]=AGG;
cemreal [ix][iy][iz]=AGG;

W N

¥

/* routine to check or perform placement of sphere of ID phasein */
/* centered at location (xin,yin,zin) of radius radd */
/* wflg=1 check for fit of sphere */
/* wflg=2 place the sphere */
/* phasein and phase2 are phases to assign to cement and cemreal images resp. */
int chksph(xin,yin,zin,radd,wflg,phasein,phase2)
int xin,yin,zin,radd,wflg,phasein,phase2;
/* Calls: no other routines */
/* Called by: gsphere */
{
int nofits,xp,yp,zp,1,j.k;
float dist,xdist,ydist,zdist,ftmp;

nofits=0; /* Flag indicating if placement is possible */

/* Check all pixels within the digitized sphere volume */

for(i=xin-radd; ((i<=xin+radd)&&(nofits==0));i++){
xp=i;
/* use periodic boundary conditions for sphere placement */
if (xp<1) {xp+=SYSSIZE;}
else if(xp>SYSSIZE) {xp-=SYSSIZE;}
ftmp=(float) (i-xin);
xdist=ftmp*ftmp;

for(j=yin-radd; ((j<=yin+radd)&&(nofits==0));j++){
yP=J;
/* use periodic boundary conditions for sphere placement */
if(yp<1) {yp+=SYSSIZE;}
else if(yp>SYSSIZE) {yp-=SYSSIZE;}
ftmp=(float) (j-yin);
ydist=ftmp*ftmp;

for(k=zin-radd; ((k<=zin+radd)&&(nofits==0)) ;k++){
zp=k;
/* use periodic boundary conditions for sphere placement */
if (zp<1) {zp+=SYSSIZE;}
else if (zp>SYSSIZE) {zp-=SYSSIZE;}
ftmp=(float) (k-zin);
zdist=ftmp*ftmp;
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}

/*
/*
/*
/*
/*
/*

/* Compute distance from center of sphere to this pixel */
dist=sqrt(xdist+ydist+zdist);
if ((dist-0.5)<=(float)radd){
/* Perform placement */
if (wflg==2){
cement [xp] [yp] [zpl=phasein;
cemreal [xp][yp] [zp]=phase2;
}
/* or check placement */
else if ((wflg==1)&&(cement [xp] [yp] [zpl !=POROSITY)){
nofits=1;
}

}
/* Check for overlap with aggregate */
if ((wflg==1)&&((abs(xp~-((float) (SYSSIZE+1)/2.0)))<((float)aggsize/2.0))){
nofits=1;

}
}
b
}

/* return flag indicating if sphere will fit */
return(nofits);

routine to place spheres of various sizes and phases at random */
locations in 3-D microstructure */

numgen is number of different size spheres to place */

numeach holds the number of each size class */

sizeeach holds the radius of each size class */

pheach holds the phase of each size class */

void gsphere(numgen,numeach,sizeeach,pheach)

/*
/*
{

int numgen;

long int numeach[NUMSIZES];

int sizeeach[NUMSIZES],pheach[NUMSIZES];
Calls: makesph, ranl */
Called by: create */

int count,x,y,z,radius,ig,tries,phnow;
long int jg;

float rx,ry,rz,testgyp;

struct cluster *partnew;

/* Generate spheres of each size class in turn (largest first) */

for(ig=0;ig<numgen;ig++){
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phnow=pheach[ig]; /* phase for this class */
radius=sizeeach[ig]; /* radius for this class */
/* loop for each sphere in this size class */
for(jg=1;jg<=numeach[ig];jg++){

tries=0;
/* Stop after MAXTRIES random tries */
do{

tries+=1;

/* generate a random center location for the sphere */
x=(int) ((float)SYSSIZE*rani(seed))+1;
y=(int) ((float)SYSSIZE*ranli(seed))+1;
z=(int) ((float)SYSSIZE*rani(seed))+1;
/* See if the sphere will fit at x,y,z */
/* Include dispersion distance when checking */
/* to insure requested separation between spheres */
count=chksph(x,y,z,radius+dispdist,1,npart+CEM,0);
if (tries>MAXTRIES){
printf("Could not place sphere %d after %d random attempts \n",npart,MAXTRIES);
exit(1);
}
} while(count!=0);

/* place the sphere at x,y,z */
npart+=1;
if (npart>=NPARTC){
printf("Too many spheres being generated \n");
printf("User needs to increase value of NPARTC at top of C-code\n");
exit(1);
)
/* Allocate space for new particle info */
clust[npart]=(struct cluster *)malloc(sizeof(struct cluster));
clust[npart]->partid=npart;
clust[npart]->clustid=npart;
/* Default to cement placement */
clust [npart]->partphase=CEMID;
clust [npart]->x=x;
clust[npart]->y=y;
clust [npart]->z=z;
clust[npart]->r=radius;
clusleft+=1;
if (phnow==1){
testgyp=ranl(seed) ;
/* Do not use dispersion distance when placing particle */
if (testgyp>probgyp){
count=chksph(x,y,z,radius,2,npart+CEM-1,CEMID) ;
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else{
/* Place particle as gypsum */
count=chksph(x,y,z,radius,2,npart+CEM-1,GYPID);
/* Correct phase ID of particle */
clust [npart]->partphase=GYPID;
}
}
/* place as inert or pozzolanic material */
else{

count=chksph(x,y,z,radius,2,npart+CEM-1,phnow) ;
/* Correct phase ID of particle */
clust [npart]->partphase=phnow;

clust [npart]->nextpart=NULL;

}

/* routine to obtain user input and create a starting microstructure */
void create()
/* Calls: gsphere */
/* Called by: main program */
{
int numsize,sphrad [NUMSIZES],sphase[NUMSIZES];
long int sphnum [NUMSIZES],invall;
int isph,inval;

do{
printf ("Enter number of different size spheres to use(max. is %d) \n",NUMSIZES);

scanf ("%d",&numsize) ;
printf("%d \n",numsize);

}while ((numsize>NUMSIZES) || (numsize<0));

doq{
printf("Enter dispersion factor for spheres (0-2) \n");
scanf (")d",&dispdist);
printf(")d \n",dispdist);

}while ((dispdist<0)||(dispdist>2));

do{ _
printf("Enter probability for gypsum particles (0.0-1.0) \n");
scanf (")f",&probgyp) ;
printf("%f \n",probgyp);

} while ((probgyp<0.0) || (probgyp>1.0));

if ((numsize>0)&& (numsize< (NUMSIZES+1))){

printf ("Enter number, radius, and phase for each class (largest radius 1st)
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printf ("Phases are 1- Cement and gypsum, 17- Pozzolanic, 18- Inert 25- Fly Ash \n")

/* Obtain input for each size class of spheres */
for (isph=0;isph<numsize;isph++){

printf("Enter number of spheres of class %d \n",isph+1);

scanf ("%1d",&invall);

printf("%1d \n",invall);

sphnum[isph]l=invali;

do{

printf("Enter radius of spheres of-class %d \n",isph+1);
printf (" (Integer <=%d please) \n",SYSSIZE/S);
scanf ("%d",&inval);
printf("/d \n",inval);

} while ((inval<1)|]|(inval>(SYSSIZE/5)));

sphrad[isph]=inval;

do{

printf("Enter phase of spheres of class %d \n",isph+1);
scanf ("%d",&inval);
printf("%d \n",inval);

} while ((inval!=1)&&(inval!=12)&&(inval!=13)&&(inval!=25))

sphase[isph]=inval;

}

gsphere(numsize, sphnum, sphrad, sphase) ;

}

/* Routine to draw a particle during flocculation routine */
/* See routine chksph for definition of parameters */
void drawfloc(xin,yin,zin,radd,phasein,phase2)
int xin,yin,zin,radd,phasein,phase2;
/* Calls: no other routines */
/* Called by: makefloc */
{
int xp,yp,zp,1i,j,k;
float dist,xdist,ydist,zdist,ftmp;

/* Check all pixels within the digitized sphere volume */

for(i=xin-radd; (i<=xin+radd) ;i++){
Xp=i;
/* use periodic boundary conditions for sphere placement */
if (xp<1) {xp+=SYSSIZE;}
else if (xp>SYSSIZE) {xp-=SYSSIZE;}
ftmp=(float) (i-xin);
xdist=ftmp*ftmp;

for(j=yin-radd; (j<=yin+radd);j++){
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YP=];
/* use periodic boundary conditions for sphere placement */
if(yp<1) {yp+=SYSSIZE;}
else if(yp>SYSSIZE) {yp-=SYSSIZE;}
ftmp=(float) (j-yin);
ydist=ftmp*ftmp;
for(k=zin-radd; (k<=zin+radd) ; k++){
zp=k;
/* use periodic boundary conditions for sphere placement */
if(zp<1) {zp+=SYSSIZE;}
else if(zp>SYSSIZE) {zp-=SYSSIZE;}
ftmp=(float) (k-zin) ;
zdist=ftmp*ftmp;

/* Compute distance from center of sphere to this pixel */
dist=sqrt(xdist+ydist+zdist);
if((dist~0.5)<=(float)radd){

/* Update both cement and cemreal images */
cement [xp] [yp] [zpl=phasein;
cemreal [xp] [yp] [zpl=phase2;

S

}

/* Routine to check particle placement during flocculation */
/* for particle of size radd centered at (xin,yin,zin) */
/* Returns flag indicating if placement is possible */
int chkfloc(xin,yin,zin,radd)
int xin,yin,zin,radd;
/* Calls: no other routines */
/* Called by: makefloc */
{
int nofits,xp,yp,zp,1i,]j,k;
float dist,xdist,ydist,zdist,ftmp;

nofits=0; /* Flag indicating if placement is possible */

/* Check all pixels within the digitized sphere volume */
for(i=xin-radd; ((i<=xin+radd)&&(nofits==0));i++){
Xp=1i;
/* use periodic boundary conditions for sphere placement */
if (xp<1) {xp+=SYSSIZE;}
else if (xp>SYSSIZE) {xp-=SYSSIZE;}
ftmp=(float) (i-xin);
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xdist=ftmp*xftmp;

for(j=yin-radd; ((j<=yin+radd)&& (nofits==0));j++){

YP=Js

/* use periodic boundary conditions for sphere placement */
if (yp<1) {yp+=SYSSIZE;}

else if (yp>SYSSIZE) {yp-=SYSSIZE;}

ftmp=(float) (j-yin);

ydist=ftmp*ftmp;

for(k=zin-radd; ((k<=zin+radd)&& (nofits==0)) ;k++){

zp=k;

/* use periodic boundary conditions for sphere placement */
if(zp<1) {zp+=SYSSIZE;}

else if (zp>SYSSIZE) {zp-=SYSSIZE;}

ftmp=(float) (k-zin);

zdist=ftmp*ftmp;

/* Compute distance from center of sphere to this pixel */

}
}
¥

dist=sqrt(xdist+ydist+zdist);
if((dist-0.5)<=(float)radd){
if((cement [xp] [yp] [zp] !'=POROSITY)){
/* Record ID of particle hit */
nofits=cement [xp] [ypl [zpl;
}
}
/* Check for overlap with aggregate */
if ((abs(xp-((float) (SYSSIZE+1)/2.0)))<((float)aggsize/2.0)){
nofits=AGG;
}

/* return flag indicating if sphere will fit */
return(nofits);

¥

/* routine to perform flocculation of particles */
void makefloc()

/* Calls: drawfloc, chkfloc, ranl */

/* Called by: main program */

{
int
int
int
int
int
int

partdo,numfloc;

nstart;

nleft,ckall;
Xm,ym,Zm,moveran;
Xp,yYP,ZP,Tp,clushit,valkeep;
iclus,cluspart [NPARTC] ;
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struct cluster *parttmp,*partpoint,*partkeep;

nstart=npart; /* Counter of number of flocs remaining */
for(iclus=1;iclus<=npart;iclus++){
cluspart[iclus]=iclus;
}
doq{
printf("Enter number of flocs desired at end of routine (>0) \n");
scanf ("¥%d",&numfloc) ;
printf("%d\n",numfloc);
} while (numfloc<=0);

while(nstart>numfloc){
nleft=0;

/* Try to move each cluster in turn */
for(iclus=1;iclus<=npart;iclus++){
if (clust[iclus]==NULL){
nleft+=1;
}
else{
xm=ym=zm=0 ;
/* Generate a random move in one of 6 principal directiomns */ -
moveran=6.*ranl(seed);

switch(moveran){
case 0:
xm=1;
break;
case 1:
xm=(-1);
break;
case 2:
yn=1;
break;
case 3:
ym=(-1);
break;
case 4:
zm=1;
break;
case 5:
zm=(-1);
break;
default:
break;
}
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/* First erase all particles in cluster */
partpoint=clust[iclus];

while(partpoint !=NULL){
xp=partpoint->x;
yp=partpoint->y;
zp=partpoint->z;
rp=partpoint->r;
drawfloc(xp,yp,2zp,rp,0,0);
partpoint=partpoint->nextpart;

ckall=0;

/* Now try to draw cluster at new location */

partpoint=clust[iclus];

vhile((partpoint!=NULL)&& (ckall==0)){
xp=partpoint->x+xm;
yp=partpoint->y+ym;
zp=partpoint->z+zm;
rp=partpoint->r;
ckall=chkfloc(xp,yp,zp,rp);
partpoint=partpoint->nextpart;

)

if (ckall==0){

/* Place cluster particles at new location */
partpoint=clust[iclus];
while(partpoint !=NULL){

xp=partpoint->x+xm;
yp=partpoint->y+ym;
zp=partpoint->z+zm;
rp=partpoint->r;
valkeep=partpoint->partphase;
partdo=partpoint->partid;
drawfloc(xp,yp,2zp,rp,partdo+CEM-1,valkeep);
/* Update particle location */
partpoint->x=xp;
partpoint->y=yp;
partpoint->z=zp;
partpoint=partpoint->nextpart;

else{
/* A cluster or aggregate was hit */
/* Draw particles at old location */
partpoint=clust[iclus];
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/* partkeep stores pointer to last particle in list */

while(partpoint !=NULL){ '
xp=partpoint->x;
yp=partpoint->y;
zp=partpoint->z;
rp=partpoint->r;
valkeep=partpoint->partphase;
partdo=partpoint->partid;
drawfloc(xp,yp,2p,rp,partdo+CEM-1,valkeep) ;
partkeep=partpoint; .
partpoint=partpoint->nextpart;

3

/* Determine the cluster hit */

if (ckall!=4GG){
clushit=cluspart[ckall-CEM+1];

/* Move all of the particles from cluster clushit to cluster iclus */
parttmp=clust[clushit];
/* Attach new cluster to old one */
partkeep->nextpart=parttmp;
while(parttmp!=NULL){
cluspart [parttmp~>partid]l=iclus;

/* Relabel all particles added to this cluster */
parttmp->clustid=iclus;
parttmp=parttmp->nextpart;

¥

/* Disengage the cluster that was hit */
clust [clushit]=NULL;

nstart-=1;

}
}
}
¥ -
printf("Number left was %d but number of clusters is %d \n",nleft,nstart);
} /* end of while loop */

clusleft=nleft;
}

/* routine to assess global phase fractions present in 3-D system */
void measure()
/* Calls: no other routines */
/* Called by: main program */
{
long int npor,ngyp,ncem,nagg,npozz,ninert,nflyash;
int i,j,k,valph;

/* counters for the various phase fractions */
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npor=0;
ngyp=0;
ncem=0;
nagg=0;
ninert=0;
npozz=0;
nflyash=0;

/* Check all pixels in 3-D microstructure */
for(i=1;i<=SYSSIZE;i++){
for(j=1;j<=SYSSIZE;j++){
for(k=1;k<=SYSSIZE;k++){

valph=cemreal [i] [j] [k];

if (valph==POROSITY) {npor+=1;}

else if(valph==CEMID){ncem+=1;}

else if(valph==GYPID){ngyp+=1;}

else if (valph==AGG) {nagg+=1;}

else if(valph==P0ZZID) {npozz+=1;}
else if(valph==INERTID) {ninert+=1;}
else if(valph==FLYASH) {nflyash+=1;}

}
}
}

/* Output results */
printf("Porosity= %1d \n",npor);
printf("Cement= %1d \n",ncem);
printf ("Gypsum= %1d \n",ngyp);
printf("Aggregate= %1d \n",nagg);
printf ("Pozzolan= %1d \n",npozz);
printf("Inert= }1d \n",ninert);
printf("Fly Ash= %1d \n",nflyash);
}

/* Routine to measure phase fractions as a function of distance from */
/* aggregate surface */
void measagg()
/* Calls: no other routines */
/* Called by: main program */
{
int phase [24],ptot;
int icnt,ixlo,ixhi,iy,iz,phid,idist;

printf("Distance Porosity Cement Gypsum Pozzolan Inert Fly Ash\n");

/* Increase distance from aggregate in increments of one */
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for(idist=1;idist<=(SYSSIZE-aggsize)/2;idist++){
/* Pixel left of aggregate surface */
ixlo=((SYSSIZE-aggsize+2)/2)-idist;
/* Pixel right of aggregate surface */
ixhi=((SYSSIZE+aggsize)/2)+idist;

/* Initialize phase counts for this distance */
for(icnt=0;icnt<21;icnt++){
phase[icnt]=0;
}
ptot=0;

/* Check all pixels which are this distance from aggregate surface */
for(iy=1;iy<=SYSSIZE;iy++){
for(iz=1;1z<=SYSSIZE;iz++){

phid=cemreal [ixlo] [iy] [iz];
ptot+=1;
if (phid<21){
phase[phid]+=1;
}
phid=cemreal [ixhi] [iy] [iz];
ptot+=1;
if (phid<21){
phase[phid]+=1;
}

}
X

/* Output results for this distance from surface */
printf("4d %d %d %d %d Jd %d\n",idist,phase[0],phase[CEMID],phase[GYPID],p

X
¥

/* routine to assess the connectivity (percolation) of a single phase */
/* Two matrices are used here: one for the current burnt locations */
/* ' the other to store the newly found burnt locations */
void connect()
/* Calls: no other routines */
/* Called by: main program */
{
long int inew,ntop,nthrough,ncur,nnew,ntot;
int i,j,k,nmatx[29000],nmaty[29000],nmatz[29000];
int xcn,ycn,zcn,npix,x1,yl,z1,igood,nnewx[29000] ,nnewy[29000] ,nnewz[29000] ;
int jnew,icur;
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do{
printf ("Enter phase to analyze 0) pores 1) Cement \n");
scanf ("%d",&npix) ; :
printf("%d \n",npix);

} while ((npix!'=0)&&(npix!=1));

/* counters for number of pixels of phase accessible from top surface */
/* and number which are part of a percolated pathway */

ntop=0;

nthrough=0;

/* percolation is assessed from top to bottom only */
/* and burning algorithm is nonperiodic in x and y directions */
k=1;
for(i=1;i<=SYSSIZE;i++){
for(j=1;j<=SYSSIZE;j++){
ncur=0;
ntot=0;
igood=0; /* Indicates if bottom has been reached */
if(((cement [i] [j] [k]==npix)&&((cement [i] [j] [SYSSIZE]==npix) ||
(cement [i] [j] [SYSSIZE]==(npix+BURNT))))||((cement [i] [j] [SYSSIZE]>=CEM)&&
(cement [i] [j] [k]>=CEM)&&(cement [i] [j] [k]<BURNT)&&(npix==1))){
/* Start a burn front */
cement [i] [j] [k]+=BURNT;
ntot+=1;
ncur+=1;
/* burn front is stored in matrices nmat* */
/* and nnew* */
nmatx[ncur]=i;
nmaty [ncurl=j;
nmatz[ncur]=1;
/* Burn as long as new (fuel) pixels are found */
do{
nnew=0;
for(inew=1;inew<=ncur;inew++){
xcn=nmatx[inew];
ycn=nmaty[inew];
zcn=nmatz[inew] ;

/* Check all six neighbors */
for(jnew=1;jnew<=6;jnew++){

xl=xcn;

yl=ycn;

zl=zcn;

if (jnew==1){
x1-=1;
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if(x1<1){
x1+=SYSSIZE;

}
}
else if(jnew==2){
x1l+=1;
if (x1>SYSSIZE) {
x1-=SYSSIZE;
}
}
else if(jnew==3){
yi-=1;
if(yi<1){
y1+=SYSSIZE;
}
}
else if(jnew==4){
yl+=1;
if (y1>SYSSIZE){
y1-=SYSSIZE;
}
}
else if(jnew==5){
zl-=1;
}
else if(jnew==6){
zl+=1;
}

/* Nonperiodic in z direction so be sure to remain in the 3-D box */
’ if ((z1>=1)&&(z1<=SYSSIZE)){
if ((cement [x1] [y1] [z1]l==npix)||((cement [x1] [y1] [z1]>=CEM)&&
(cement [x1] [y1] [z1]<BURNT)&&(npix==1))){
ntot+=1;
cement [x1] [y1] [z1]+=BURNT;
nnew+=1;
if (nnew>=29000){
printf("error in size of nnew \n");
}
nnewx [nnew]=x1;
nnewy [nnew]=y1;
nnewz[nnew]=z1;
/* See if bottom of system has been reached */
if (z1==SYSSIZE){
igood=1;
}
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}
}
}
if (nnew>0){
nCur=nnev;
/* update the burn front matrices */
for(icur=1;icur<=ncur;icur++){ .
nmatx[icur]=nnewx[icur];
nmaty[icur]=nnewy[icur];
nmatz[icur]=nnewz[icur];

}

}while (nnew>0);

ntop+=ntot;

if (igood==1){
nthrough+=ntot;

X

}

printf("Phase ID= %d \n",npix);
printf("Number accessible from top= %1d \n",ntop);
printf ("Number contained in through pathways= %1d \n",nthrough);

/* return the burnt sites to their original phase values */
for(i=1;i<=SYSSIZE;i++){
for(j=1;j<=SYSSIZE;j++){
for(k=1;k<=SYSSIZE;k++){
if(cement [1] [j] [k]>=BURNT){
cement [i] [j] [k]-=BURNT;
}

“w

}

/* Routine to output final microstructure to file */
void outmic()
/* Calls: no other routines */
/* Called by: main program */
{
FILE *outfile,*partfile;
char filen[80] ,filepart[80];
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int ix,iy,iz,valout;

printf ("Enter name of file to save microstructure to \n");
scanf("¥%s",filen);
printf ("%s\n",filen);

outfile=fopen(filen,'"w");

printf ("Enter name of file to save particle IDs to \n");
scanf("Ys",filepart);
printf ("%s\n",filepart);

partfile=fopen(filepart,"w");

for(iz=1;iz<=SYSSIZE;iz++){

for(iy=1;iy<=SYSSIZE;iy++){

for(ix=1;ix<=SYSSIZE;ix++){
valout=cemreal [ix] [iy] [iz];
fprintf (outfile,"%1d\n",valout);
valout=cement [ix] [iy] [iz];
if(valout<0){valout=0;}
fprintf (partfile,"%d\n",valout);

}

+

}

fclose(outfile);

fclose(partfile);

}

main(){
int userc; /* User choice from menu */
int nseed,ig,jg.kg;

printf ("Enter random number seed value \n");
scanf ("%d" ,&nseed);

printf("%d \n",nseed);

seed=(&nseed) ;

/* Initialize counters and system parameters */
npart=0;

aggsize=0;

clusleft=0;

/* clear the 3-D system to all porosity to start */

for(ig=1;ig<=SYSSIZE;ig++){
for(jg=1;]jg<=SYSSIZE;jg++){
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for(kg=1;kg<=SYSSIZE;kg++){
cement [ig] [jgl [kgl=POROSITY;
cemreal [ig] [jgl [kgl=POROSITY;
}
}
}

/* present menu and execute user choice */

do{
printf (" \n Input User Choice \n");
printf("1) Exit \n");
printf("2) Add spherical particles (cement,gypsum, pozzolans, etc.) to microstructu
printf("3) Flocculate system by reducing number of partlcle clusters \n");
printf("4) Measure phase fractions \n");
printf("5) Add an aggregate to the microstructure \n");
printf("6) Measure single phase connectivity (pores or solids) \n");
printf("7) Measure phase fractions vs. distance from aggregate \n");
printf("8) Output microstructure to file \n");

scanf ("%d", &userc) ;
printf("%d \n",userc);
fflush(stdout);

switch (userc) {

case 2:
create();
break;
case 3:
makefloc();
break;
case 4:
measure{);
break;
case 5:
addagg() ;
break;
case 6:
connect () ;
break;
case 7:
if (aggsize!=0){
measagg() ;
}
elseq{
printf ("No aggregate present. \n");
}
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break;

case 8:
outmic();
break;
default:
break;

}

} while (userc!=1);
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10.3 distfarand.c- Random pixel distribution of fly ash

#ipclude <stdio.h>
#include <math.h>

[ *RERBRRERBERBRRRBRBRRRERBRBRRRBRRRBURRBURBRBRBERRERBGERERURBBB BB UR BB B>/

/* Program distfarand */
/* Purpose: To distribute fly ash phases randomly amongst particles */
/* Programmer: Dale P. Bentz */
/* */

[ FRARBRBBBBRRRRBRBRBRBRERBRBRERBRRRRBABRBRRR BB B BB BEREHBRERERBURB BB RSB U >/

/* Define phase IDs */
#define FLYASH 25
#define C3A 35
#define CACL2 12
#define ASGID 14
#define CAS2ID 16
#define INERTID 18
#define POZZID 17
#define ANHYDRITE 20
#define SYSSIZE 100

int *seed;
#include "ranl.c"

main()

{
FILE *infile,*outfile;
char filein[80],fileocut(80];
int ix,iy,iz,valin,valout;
float probasg,probcacl2,probsio2;
float prph,probanh,probcas2,probc3a;
int nseed;

printf ("Enter random number seed value (<0)\n");
scanf ("%d",&nseed);

printf ("%d\n",nseed) ;

seed=(&nseed);

printf("Enter name of file for imput \n");

scanf ("Ys",filein);
printf ("%s\n",filein);
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printf("Enter name of file for output \n");
scanf ("Ys",fileout) ;
printf("%s\n",fileout);

/* Get user input for phase probabilities (volume fractions) */
printf("Enter probability for fly ash to be aluminosilicate glass \n");
scanf ("/f",&probasg) ;

printf ("%f\n",probasg) ;

printf("Enter probability for fly ash to be calcium aluminodisilicate \n");
scanf (") f",&probcas2); :

printf ("%f\n",probcas2);

printf("Enter probability for fly ash to be tricalcium aluminate \n");
scanf ("%f",&probc3a) ;

printf("%f\n",probc3a);

printf("Enter probability for fly ash to be calcium chloride \n");
scanf ("%f",&probcacl2);

printf("%f\n",probcacl?);

printf ("Enter probability for fly ash to be silica \n");

scanf ("%f",&probsio2);

printf ("%f\n",probsio2) ;

printf ("Enter probability for fly ash to be anhydrite \n");

scanf ("%f",&probanh) ;

printf("%f\n",probanh);

infile=fopen(filein,"r");
outfile=fopen(fileout,"w");

/* Convert to cumulative probabilties */

/* Order must match that used in for loops below */
probcacl2+=probasg;

probsio2+=probcacl2;

probcas2+=probsio2;

probanh+=probcas2;

probc3a+=probanh;

/* Scan each pixel and convert all fly ash pixels to some */
/* component phase */

for(ix=0;ix<SYSSIZE;ix++){
for(iy=0;iy<SYSSIZE;iy++){
for(iz=0;iz<SYSSIZE;iz++){

fscanf (infile,"%d",&valin);

valout=valin;

if (valin==FLYASH){
valout=INERTID;
prph=rani(seed) ;
if (prph<probasg){
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else

else

else

else

else

}

valout=ASGID;

if (prph<probcacl2){
valout=CACL2;

if (prph<probsio2){
valout=P0ZZID;

if (prph<probcas2){
valout=CAS2ID;

if (prph<probanh){
valout=ANHYDRITE;

if (prph<probc3a){
valout=C34;

fprintf(outfile,"%d\n",valout);

3
}
}

fclose(infile);
fclose(outfile);
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10.4 distfapart.c- Random particle distribution of fly ash

#include <stdio.h>
#include <math.h>

[ *BRRRRBRBRBBRERBRBRIBBRRLR G RERBRRRR AR RRRRBRBEBRBRRRRBRBRBRRBRBRBRBE* ]
/* Program distfapart to distribute fly ash phases randomly amongst */

/* monophase particles x/
/* Programmer: Dale P. Bentz */
/* Date: May 1997 x/
/* */

/¥R RRRBRBRBERRRBRERERUBR BN RARERER BRI R BRBBRRRERRRBRBRRRBRBBRRBBERBER S/

/* Define phase identifiers for fly ash components */
#define FLYASH 25
#define C3A 35
#define CACL2 12
#define ASGID 14
#define INERTID 18
#define POZZID 17
#define ANHYDRITE 20
#define CAS2ID 16
#define SYSSIZE 100
#define NPARTC 12000

int *seed;
#include “"rani.c"

main()
{
FILE *infile,*partfile,*outfile;
char filein[80],fileout[80],filepart[80];
int ix,iy,iz,valin,valout,partin;
float probasg,probcacl2,probsio?2;
float probc3a,prph,probcas2,probanh;
static int phase[NPARTC],partid [NPARTC];
int nseed,count,cl,phnew;
long int‘totcnt,ascnt,cac12cnt,pozzcnt,inertcnt;
long int anhcnt,cas2cnt,c3acnt;
long int markc3a,markas,markcacl2,markpozz,markinert,markanh,markcas?2;

ascnt=cacl2cnt=pozzcnt=inertcnt=0;

cas2cnt=anhcnt=c3acnt=0;
printf("Enter random number seed value (<0)\n");
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scanf ("%d4",&nseed) ;
printf("%d\n",nseed) ;
seed=(&nseed);

printf("Enter name of file for input \n");
scanf("%s",filein);

printf("%s\n",filein);

printf ("Enter name of file for particle IDs \n");
scanf ("%s",filepart) ;

printf("%s\n",filepart);

printf("Enter name of file for output \n");
scanf ("Ys",fileout);
printf("%s\n",fileout);

printf("Enter total number of fly ash pixels \n");
scanf ("%1d" ,&totcnt); '
printf(""%1d\n",totcnt);

/* Get user input for phase probabilities (volume fractions */

printf ("Enter probability for fly ash to be aluminosilicate glass \n");
scanf ("), f",&probasg) ;

printf ("%f\n",probasg);

printf ("Enter probability for fly ash to be calcium aluminodisilicate \n");
scanf (") f",&probcas2);

printf ("%f\n",probcas2);

printf ("Enter probability for fly ash to be tricalcium aluminate \n");
scanf ("/f",&probc3a);

printf ("%f\n",probc3a);

printf ("Enter probability for fly ash to be calcium chloride \n");
scanf ("%f",&probcacl2);

printf ("%f\n",probcacl2);

printf("Enter probability for fly ash to be silica \n");

scanf (") f",&probsio2);

printf ("%f\n",probsio2);

printf ("Enter probability for fly ash to be anhydrite \n");

scanf ("%f",&probanh) ;

printf ("%f\n",probanh);

/* Determine goal counts for each phase */
markas=(long) (probasg*(float)totcnt) ;
markpozz=(long) (probsio2*(float)totcnt);
markcacl2=(long) (probcacl2*(float)totcnt);
markanh=(long) (probanh*(float)totcnt);
markcas2=(long) (probcas2*(float)totcnt);
markc3a=(long) (probc3a*(float)totcnt);
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markinert=(long) ((1.-probasg-probsio2-probcacl2-probanh-
probcas2-probc3a)*(float)totent);

/* Convert probabilities to cumulative */

/* Order must be the same as in for loop below */

probcacl2+=probasg;

probsio2+=probcacl?2;

probanh+=probsio?2;

probcas2+=probanh;

probc3a+=probcas2;

infile=fopen(filein,"r");
partfile=fopen(filepart,"r");

for(ix=0;ix<NPARTC;ix++){
phase[ix]=partid[ix]=0;
}

count=0;

/* First scan-- find each particle and assign phases */
for(ix=0;ix<SYSSIZE;ix++){

for(iy=0;iy<SYSSIZE;iy++){

for(iz=0;iz<SYSSIZE;iz++){

fscanf(partfile,")%d",&partin);
fscanf(infile,"%d",&valin);
if ((valin==FLYASH)&& (partid[partin]==0)){
count+=1;
partid[partin]=count;

valout=INERTID;

do{

prph=rani(seed);

if ((prph<probasg)&&(ascnt<markas)){
valout=ASGID;

Yoo

else if ((prph<probcacl2)&&(cacl2cnt<markcacl2)){
valout=CACL2;

else if ((prph<probsio2)&&(pozzcnt<markpozz)){
valout=P0ZZID;

else if ((prph<probanh)&&(anhcnt<markanh))q{
valout=ANHYDRITE;

else if ((prph<probcas2)&&(cas2cnt<markcas2)){
valout=CAS2ID;
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}

else if((prph<probc3a)&&(c3acnt<markc3a)){

}

valout=C34;

}while((valout==INERTID)&& (inertcnt>markinert));
phase[count]=valout;

b

if (valin==FLYASH){
cl=partid[partin];
phnew=phase[cl];
if (phnew==ASGID){

}

else
else
else
else
else

else

}
3
}

fclose(infile);
fclose(partfile);

ascnt+=1;

if (phnew==CACL2){
cacl2cnt+=1;

if(phnew==PDZZID){
pozzcnt+=1;

if (phnew==ANHYDRITE){
anhcnt+=1;

if (phnew==CAS2ID) {
cas2cnt+=1;

if (phnew==C34){
c3acnt+=1;

if (phnew==INERTID){
inertcnt+=1;

/* Now distribute phases in second scan */
infile=fopen(filein,"r");
partfile=fopen(filepart,"r");
outfile=fopen(fileout,"w");
for(ix=0;ix<SYSSIZE;ix++){
for(iy=0;iy<SYSSIZE;iy++){
for(iz=0;iz<SYSSIZE;iz++){
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fscanf(partfile,")d",&partin);
fscanf(infile,"%d",&valin);
valout=valin;
if(valin==FLYASH){
count=partid[partin];
valout=phase[count];

}

fprintf(outfile,"%d\n",valout);

}

}

}

fclose(infile);
fclose(partfile);
fclose(outfile);
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11 Appendix C- Example input datafile for disreal-

new.c

-283

0
cimwfalOlg.img
1342656
35
pcimwfall.img
0

5000

1

500

0.01 9000.

0.0002 100000.

0.2 2500.
200
5002
6.0

25.
45.7
83.14
0.00127
0.000

0

0

random number seed

flag indicating that final microstructure is not to be saved
filename for file containing input 3-D microstructure
phase IDs assigned to C3S, C2S, C3A, C4AF, gypsum, and agg.
phase ID assigned to C3A in fly ash particles

filename for file containing particle ID microstructure
number of one pixel particles to add

number of cycles of hydration model to execute

flag indicating hydration is to be under sealed conditioms
maximum number of diffuion steps per cycle

parameters for CH nucleation

parameters for C3AH6 nucleation

parameters for FH3 nucleation

frequency in cycles to check pore space percolation
frequency in cycles to check total solids percolation
induction time in hours

initial temperature in degrees Celsius

activation energy for cement hydration in kJ/mole
activation energy for pozzolanic reactions in kJ/mole
conversion factor to go from cycles to time

mass fraction of aggregates in mixture proportions

flag indicating hydration is under isothermal conditioms
flag indicating primary to pozzolanic CSH comnversion is off
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