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A mortar is a composite of inert sand grains surrounded by a porous cement paste matrix. We
investigate the electrical conductivity of model mortars that include enhanced electrical conduction
in the matrix—sand grain interfacial region. The electrical conductivity is evaluated by a
combination of finite element, finite difference, and random walk methods for periodic and
disordered models of mortar. Since the effective conductivity within the interfacial zone is often
much higher than the bulk matrix conductivity, the qualitative features of transport in these systems
is often controlled by the connectivity of the interfacial zone. Special attention is thus given to the
geometrical percolation of this zone. A family of effective medium approximations give a good
qualitative description of the disordered model’s electrical properties. A simple four parameter Padé
approximant is found to successfully describe the electrical conductivity of the periodic model over
the entire range of parameters studied. Finally, we show that our calculations can be used to obtain
a reasonable estimate of the permeability to viscous fluid flow. © 1995 American Institute of

Physics.

I. INTRODUCTION

The transport properties of porous media are of interest
in connection with a variety of environmental, infrastruc-
tural, and technological problems. Among the systems of in-
terest are heterogeneous catalysts, reservoir rocks, and
cement-based materials like mortar and concrete. Concrete is
a generic term describing a mixture of cement paste and inert
aggregate particles usually comprised of sand grains and
rock fragments. (Cement paste is, itself, a porous material
formed by the hydration of cement powder.) In a mortar, the
aggregate particles are limited to sand grains whose diameter
typically does not exceed a few millimeters.

The dc electrical conductivity of mortar and concrete is
important both as a means of probing the structure of these
materials and as a measure of ionic diffusivity,1 via the
Nernst—Einstein relation.? Diffusivity is of interest in con-
nection with a range of issues related to durability; examples
are sulfate attack and chloride ion-induced corrosion of steel
reinforcing bars.> These materials conduct electricity via the
electrolytic pore fluid*~® in the cement paste matrix. The
conductivity of paste depends on the original water-cement
mixing ratio, the cement chemistry, the curing conditions,
and the curing time. At a given time, however, the paste may
be viewed as a composite of water, unhydrated cement pow-
der, and the various chemical reaction products. Much recent
work has been done on understanding how the complex mi-
crostructure of cement paste determines its electrical
conductivity.*~’ However, relatively little work has been
done on how the conductivity of concrete depends on quan-
tities like the density and size distribution of aggregate par-
ticles and on the geometry and properties of the cement
paste-aggregate interfacial zone.
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This paper is concerned with the influence (on the trans-
port properties of the mortar composite) of the interfacial
zone that separates the aggregate grains from the bulk ce-
ment paste. We emphasize that interfacial effects are impor-
tant in a variety of different physical systems. One particu-
larly striking example involves random mixtures of ionic
conductors and ionic insulators.~'® Another example, closer
to the systems studied here, involves electrochemical effects
in clay rich reservoir rocks.!! In both these systems, as in the
mortars of interest here, the presence of the interface can
lead to enhanced electrical conduction. Thus, while all three
materials might naively be viewed as two phase composites,
a proper description of their transport properties requires a
three phase analysis in which the interface is treated on an
equal footing with the other two components.

Ii. THREE PHASE (HARD CORE-SOFT SHELL)
MODEL

A. General remarks

We emphasize at the outset that concrete is a random
composite material at many length scales,'? from the nanom-
eter scale of the calcium silicate hydrate gel to the microme-
ter scale of the cement paste to the millimeter and centimeter
scale of the aggregate particles. Thus, it is not practical to
describe the electrical properties from the material structure
by simultaneously considering all these length scales. In this
paper, we are concerned with the 10 um — 1000 xm scale
that describes a typical mortar.'>* Within this framework,
mortar can be viewed as a three-phase composite'>®: matrix
cement paste, aggregate sand grains, and interfacial zone ce-
ment paste (see Fig. 1), where all three phases can be thought
of as uniform continuum materials, characterized by a single
conductivity per phase. The thickness of the interfacial zone
can vary between 10 and 50 um.!” The volume fraction oc-
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FIG. 1. A slice through the four size random sphere parking model is
shown. The total volume fraction of sand is 54% and the distribution of the
four aggregate grain sizes is summarized in Table I. The 500 xm diameter
grains are shown as open circles, the 1000 gm diameter grains are shaded
horizontally, the 1500 wm diameter grains are shaded at 45°, and the 3000
pm diameter grains are shaded at 270°. The thickness of the interfacial
zone (unshaded) is 20 pm, a value that guarantees percolation of the inter-
facial shells (see Fig. 2). The bulk cement paste occupies the interstitial
region outside of all the interfacial zones. Note, that there are several in-
stances in which an interfacial shell intersects the plane of the image but the
associated sand grain does not. These appear as isolated (rather than con-
centric) circles.

cupied by the aggregate particles in a mortar is typically
50%—60% with the remaining volume comprised of bulk
and interfacial zone cement paste.

Since the interfacial zone can occupy a significant vol-
ume fraction, the physical properties of this phase will cer-
tainly have an influence on the overall behavior of the com-
posite. This would be true even if this phase were
discontinuous. However, recent modelling and mercury in-
jection experimental work showed that, even if the interfacial
zone thickness is no more than 10 wm, this phase can still
form continuous percolating channels.’*

For the purposes of electrical conduction, it is assumed
that the sand grains in the mortar are simply inert obstacles
to the flow of current. The basic model is then defined by
three input units:

(1) the structure of the interfacial layer,

(2) the electrical contrast between this layer and the bulk
cement paste, and

(3) the concentration and size distribution of the sand grains.

Following previous models we will assume that the sand
grains are all spherical and that the interfacial zones are al-
ways spherical shells of constant thickness. While the thick-
ness of the interfacial zone, h, may be as large as 50 um,
mercury intrusion measurements and modelling results'®
suggest that k=20 wm is a more typical value. Within this
zone, both the pore size and the porosity of the cement paste
are larger than in the bulk.!” Accordingly the conductivity
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TABLE 1. Size distribution for aggregate sand grains in a typical mortar.
The second and third columns give, respectively, the volume and numerical
fractions of the four size populations.

Grain Volume Numerical
diameter (wm) fraction fraction
3000 0.354 0.00718
1500 0.232 0.0376
1000 0.224 0.1226
500 0.190 0.8324

and fluid permeability are higher. We assume that the con-
ductivity within the interfacial shell takes a constant value,
o, and that the conductivity of the cement paste, o, is also
constant. Assuming that the conductivity inside the interfa-
cial shell is constant is an approximation, since actually there
is a gradient of porosity and thus conductivity in this region.
Since there is no experimentally established value for
os/0,, we allow this parameter to vary freely in our calcu-
lations. Thus, for a given sand concentration, we study the
dependence of the composite conductivity on the value of
o,/o,. We also look at the conductivity as a function of
sand concentration for several fixed values of o, /0, .

B. Periodic models

The random arrangement of multi-sized aggregate par-
ticles in real mortars plays an important role in determining
the effective properties of the composite. However, ordered
periodic arrangements of aggregate grains are easier to
handle computationally and provide important qualitative in-
sight. The periodic model considered in this paper is a body-
centered-cubic (bcc) packing of spherical sand grains. The
edge of the unit cube is 500 xm, the sphere diameter is 400
wm, and interfacial zone thickness, %, is 20 pum. The sphere
diameter was chosen as being representative of the size dis-
tribution used in Ref. 14. Given these parameters, it can eas-
ily be shown that the sand volume fraction is 54%, the in-
terfacial zone occupies roughly 1/3 of the matrix, and that
the interfacial zones percolate.

C. Disordered models

To study a mortar with a more realistic random sand
grain arrangement, we use the model illustrated in Fig. 1,
based on the sand grain size distribution given in Table 1.
The models were generated by a three dimensional hard core
parking algorithm.'® (The sand grains were randomly placed,
largest first and smallest last, such that no sand grains over-
lapped.) The maximum grain concentration studied was
¢~0.55, based on a model with 6500 particles. Models with
5000 (c=0.42), 2000 (¢=0.17), and 1000 (c¢=0.09) par-
ticles were also generated to study systems with lower sand
concentrations. In Fig. 2 we show the fraction of the matrix
occupied by the interfacial zone, as a function of the interfa-
cial zone thickness. Results are shown for the several aggre-
gate concentrations used. As with the periodic model, inter-
facial shells of thickness 20 um were added to each grain, so
that the interfacial zone comprised about 28% of the total
matrix when ¢ = 0.55.
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FIG. 2. Given the experimentally determined size distribution (see Ref. 14)
of sand grains (assumed spherical), the fraction of the total cement paste

volume occupied by the interfacial zone cement paste

is shown as a function

of the interfacial zone thickness. Results are given for four aggregate con-

centrations.

The connectivity of the interfacial zones was computed
using a burning algorithm!* and is displayed in Fig. 3 as a
function of sand volume fraction. The interfacial layers first

percolate at a sand concentration of about
single spanning cluster at roughly ¢~0.51.

36%. and form a
The arrow marks

the prediction of the self-consistent effective medium theory
(SC-EMT) which will be discussed in Sec. ITI D. To illustrate
the interplay between sand volume fraction and interfacial
zone thickness, we also studied a simpler disordered model,
where the sand grains were all the same size, but the inter-
facial shell thickness, 4, was allowed to vmy.19’2° The con-
trolling variable is then b/a, where b is the sand radius and
a=b+h. For a given choice of b/a, suppose that we ran-
domly park spherical grains until their concentration, ¢, is
such that the shells form connected channels. The larger the
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FIG. 3. Percolation curve for the four size random sand grain model with a
20 gem thick interfacial zone. The x-axis is the sand volume fraction, and the
y axis is the fraction of the interfacial zone phase that is contained in the

percolating cluster.
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FIG. 4. The percolation properties of interfacial zone in the mono-sized
random parking mode] are illustrated by two curves. As functions of the
ratio of the sand grain radius, b, to the interfacial zone radius, a, we plot the
volume fractions occupied at the percolation threshold by (1) the interfacial
shell and (2) the aggregate grains. Also shown are the volume fraction
corresponding to the limit of dense random parking and the SC-EMT esti-
mates of the shell and aggregate fractions at percolation. The arrow indicates
the largest b/a value at which percolating shells can be achieved for dense
parking

value of b/a (i.e., the thinner the shells), the greater the
value of ¢ that will be required and the smaller the fraction
of space that will be occupied by the percolating shells. This
behavior is clearly shown in Fig. 4. Shown also are the value
of the limiting concentration ¢=0.38 for mono-size random
parking,'® and curves based on the SC-EMT (Sec. III D).
Note that there is a threshold value of #/a=~0.9615 above
which it is not possible to form connected percolating shells
based on the random parking algorithm.

While the model we pursue in the remainder of this pa-
per is highly simplified, we emphasize that its essential fea-
tures could be specified in detail if more experimental data
on the structure and transport properties of mortars were
available. Since the focus of this paper is electrical conduc-
tion, it would be particularly valuable to have such measure-
ments made in systems where both the conductivity of the
(bulk) cement paste and the porosity and thickness of the
interfacial zone were known. In addition, we feel that nuclear
magnetic resonance (NMR) studies would be of great value
in determining the model’s parameters. NMR results would
be especially useful if the larger pores in the interfacial zone
could be seen in relaxation studies as an independent contri-
bution to the pore size distribution.”!"?? In principle, similar
information is available directly from microscopy, but NMR
has the advantage of being a non-destructive, non-invasive
measurement.

lll. COMPUTATIONAL METHODS
A. Periodic model: Finite element calculations

To compute the overall conductivity of this periodic
composite, the bee unit cell, containing two sand grains, was
digitized into a 3-D array of pixels, typically 128 in size. A
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macroscopic electric field was applied in one of the principal
cubic directions. Each pixel is then treated as a tri-linear
finite element, which results in a set of 128° linear equations
that are solved with a conjugate gradient algorithm.?® A reso-
lution of 64> was also used, with only very small changes in
overall results, so the 1283 resolution was judged to be ad-
equate to represent both the sand grain, and more impor-
tantly, the thin interfacial zone volume. We have also carried
out finite difference calculations on identical 3-D grids. Gen-
erally, the finite element calculations lead to conductivities
that are between 2% and 8% higher than the corresponding
finite difference results. Physically, this difference is associ-
ated with the fact that the finite element calculations map
onto a resistor network with second and third neighbor cou-
pling, while the finite difference calculations map onto a re-
sistor network with nearest neighbor coupling only. A brief
comparison of these two methods is presented in the Appen-
dix.

B. Disordered model: Random walk calculations

The conductivity of the random sand grain mortar model
was computed quite differently from that of the periodic
model. The largest unit cell presently employed in our con-
jugate gradient-finite element bee calculations is 1283, Such
calculations typically require 300 megabytes of memory,
which scales as the third power of the system length. This is
not enough resolution to adequately represent more than a
few grains and their associated interfacial zones. To compute
the conductivity of statistically representative volumes of
disordered systems containing thousands of sand grains re-
quires a different approach.

Here we adopt a random walk algorithm, used exten-
sively in studies of disordered porous media®*~?® and com-
posite materials. For a system in which only one phase has a
non-zero conductivity, the algorithm is especially simple.
Random walkers are started at various positions in the con-
ductive phase, and allowed to take steps of fixed length, ¢, in
random directions at every time step. The mean-square dis-
tance traveled by each walker is computed as a function of
the number of time steps. If a projected step would take the
walker into the insulating phase, then that step is not al-
lowed, but the clock is still advanced one time step. Eventu-
ally, the mean squared distance versus number of time steps
is a straight line, whose slope is the diffusion coefficient of
the conductive phase. Multiplying by the volume fraction of
the conducting phase then gives the overall conductivity of
the composite, normalized by the conductivity of the pure
conducting phase.** More details of the method are available
in the Appendix.

When two or more phases are conducting, with different
conductivities assigned to each phase, then the algorithm is
somewhat more complicated. Within the framework of lattice
random walks this problem has been studied by Hong et al.?®
In the Appendix we discuss the extension of the methods
developed in Ref. 26 to the study of continuum systems. In
the present framework, the principle advantage of the
random-walk approach is that the aggregate and interfacial
structure can be stored as geometrical objects rather than
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FIG. 5. The effective diffusion coefficient is plotted as a function of time for
three systems based on the four size, c=0.54, packing shown in Fig. 1.
Results are shown for o,/¢,=1, o,/0,=0 (ie., insulating interfacial
zone), and o, /0,=* (i.e., insulating bulk paste). The inset highlights the
short time behavior of these three curves.

collections of pixels, so that the resolution is essentially that
of the step size used. The step size must be small compared
to the interfacial zone thickness 4, but this can be accom-
plished without any increase in the computational storage
required. Of course, run times will increase as the step size
decreases, because the walkers must cover several aggregate
grain diameters in order to properly estimate the overall con-
ductivity. It should be emphasized that the number of time
steps required in these calculations can be very large com-
pared to the corresponding number for calculations of bulk
(ie., single phase) conductivity. Thus, in Fig. 5 we compare
the behavior of the effective diffusion coefficient, D(¢), for
two bulk calculations with the limiting case of purely inter-
facial conduction. The longer times required in the latter cal-
culation reflect the more tortuous paths connecting the over-
lapping interfacial shells. At short times the behavior of D(t)
is controlled by the surface area to pore volume ratio,
$/V,, of the conducting phase.?” This ratio is largest for the
case in which the interfacial shells alone comprise the con-
ducting channels, as is seen quite clearly in the inset to
Fig. 5.

C. Dilute limit

Consider next the limit of dilute sand concentrations.
The composite conductivity in this regime contains impor-
tant information about the conductivity and size of the inter-
facial zone. This is the case because exact analytical calcu-
lations can be made of the influence of a few sand grains
(each of which is surrounded by an interfacial shell) placed
in a matrix. For the composite to be considered to be in the
dilute limit, the volume fraction of spherical inclusions must
be small enough so that particles can be treated individually
and do not affect each other.

Consider mono-size spherical particles of conductivity
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o, and radius b, each surrounded by a concentric shell of
thickness # and conductivity o,, and all embedded in a ma-
trix of conductivity o . If the volume fraction of sand grains

is denoted by ¢, then the composite conductivity, o, will

satisfy an equation of the form o/o;=1+mc+0(c?),

where®

A{lo1=02) (20,4 03) + ([(b+R)/R]) (01 +207) (0~ 03)}

m

To make the connection to our mortar problem, let o) =0, A
= the interfacial zone thickness, o, =0, (interfacial zone
conductivity), and o3=o0, (bulk cement paste conductivity).
For the random mortar model, or indeed for a real mortar,
there is a size distribution of sand grain radii {#;}, while the
value of 4 is fixed. That implies that the slope m; for each
kind of particle will be a function of b;, because the param-
eter [(b;+h)/b;]® will be different for each particle. In a
system with N different sand particle sizes, each with vol-
ume fraction ¢; (2;c;=c), we have

N
-g—-=1+i21 mic;+0(c?)=1+{m)c+0(c?), (3.2)
» P
where the terms of order ¢? can be ignored in the dilute limit
and play no role in the formulation of effective medium theo-
ries. Using the sand particle size distribution given in Table I
(second column) we can find the value of {m) for the random
mortar model averaged over the appropriately weighted four
values of b;.

Figure 6 shows a graph of this average slope (m) as a
function of o,/0, . Note in the limit of o;/0,=1, the slope
{m)=—1.5, which is the known exact result for insulating
spherical inclusions of any size distribution.®* The marked
point on the graph is at o,/0,~8.26, which is the point at
which the slope {m)=0. At this value, to linear order in c,
adding a few sand grains would have no effect on the overall
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FIG. 6. The exact initial slope of the conductivity, in the limit of dilute sand
concentration, is shown as a function of o', /o, for the sand size distribution
(see Table I) of the random model.

5902 J. Appl. Phys., Vol. 78, No. 10, 15 November 1995

" {(o4205)(0,+20,) +2[b(b+h) (0, — 0,) (0, — a3)}.

(3.1)

conductivity. Here one has a perfect balance between the
negative influence of the insulating sand grains, and the posi-
tive effect of the enhanced conductivity in the interfacial
shells.

D. Effective medium theory

Strictly speaking, the only exact results available for
three dimensional composite materials with general proper-
ties are variational bounds® and the dilute limits presented
above. However, effective medium theory (EMT) can often
be employed to estimate composite properties at arbitrary
volume fractions of the phases.>? We consider only ex-
amples of EMT that describe properly the dilute limit, and
then build up approximate analytical equations via some sort
of averaging assumption. The two examples considered in
this paper are the self-consistent (SC-EMT)*! and the differ-
ential (D-EMT)*? methods.

The SC-EMT has roots going back to Bruggeman® and
Landauer.>* Following the presentation of Hashin®' we begin
with an isotropic inhomogeneous system in which the ap-
plied electric field has magnitude E,. In particular we are
interested in a three-phase composite with conductivity o;
and volume fraction c; in the ith phase. Then the effective
conductivity, o, of the entire composite can be defined by

1
o= 52 cio{En) (3.3)
0
where o; is constant in each phase and (...); denotes a
volume average over V;, the volume of the ith phase. Also,
we have the fundamental theorem? that the macroscopic
field must satisfy

Ey=2, c{E(r)),. (3.4)

4
Combining these two equations, we can then eliminate the
average over the matrix, i=3, phase and write the effective
conductivity as depending only on averages of electric fields
in the non-matrix or inclusion phases:

i +cl("l )M+c2(_(f_z_l) (E(r)),

= 2
3 Ey a3 Ey

(3.5

where phase 1 is the sand grain and phase 2 is the shell. The
above equation is exact. However, at arbitrary volume frac-
tions, the above field averages cannot be evaluated analyti-
cally. (In principle, the finite element method discussed
above could give these field averages numerically.) The SC-
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EMT is derived by making the assumption that the field av-
erages can be approximated by inserting the values obtained
from a modified dilute problem, in which the inclusions are
embedded, not in phase 3, but in a matrix having the effec-
tive conductivity o. This transforms Eq. (3.5) into an equa-
tion for @, which can then be solved.

The four sizes of sand grains used in our model are
simply treated as different phases. The shell volume fractions
are estimated by assuming that the shells do not overlap.
Numerical checks have shown that this is accurate to a few
percent in even the concentrated sand case. This means that
even though the shells percolate, the overlap volume is only
a few percent of the total shell volume. For a single size sand
grain embedded in a matrix of conductivity o, the field av-
erages for the sand grain and the shell are given by:

E o +20,\ E
(E()1 =77 <E(r>>2=(—‘3—0—2—2)g° (3.6)
where
=§—0?0'— (oy+20)(0+20,)
2b3 ) +7
+m(0'1_0'2)(0'2_0') ) 3.7

and the labels 1 and 2 denote the sand grain and shell, re-
spectively. Combining these with Eq. (3.5), and averaging
over the different size sand grains, gives the final result. For
the mortar problem, we take o,=0, o;=0,, and o3= op-
The structure of the SC-EMT leads to a natural division of
the possible behavior of the total conductivity for different
values of o/, . When the value of o/, is such that the
dilute limit slope, (m), is zero, then the SC-EMT continues
to give the matrix conductivity for any volume fraction of
sand [i.e., o=0, is a fixed point of the theory when
(m)=0 in Eq. (3.1)]. When o', /0, is greater than this value,
o=0,, while for lower o/ o, values, o< o, , for all sand
volume fractions.

In the D-EMT the dilute limit (3.1) is used in a different
way to generate an approximate equation that can be solved
for the effective conductivity.’>3 Suppose that a volume
fraction, c’, of sand has been placed in the matrix. This
system is treated as a homogeneous composite with conduc-
tivity o’ and matrix volume fraction, ¢’'=1—¢'. We then
suppose that a differential volume element, dV, of the com-
posite material is removed and replaced by an equivalent
volume of sand. The new conductivity, o' +do’, is assumed
to be given by the dilute limit

dv
o'+do’'=0"+m(c")—

v (3.8)

where V is the total volume and m (o ') is given by (3.1) with
o3—0’. When the volume element dV was removed, only a
fraction, ¢'=1—c¢’, of it was matrix material so that the
actual change in the matrix volume fraction, d¢', is given
by

(3.9)
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Equation (3.8) then reduces to do'/¢p'=—dao'/m(c’),
which can be integrated to yield

o do' ¢ do’
_f —'—,—,=f —-—;-=ln(¢)=1n(1—c), (310)
am(o’)o 1 @
where c=1— ¢ is the material’s final sand concentration. If
more than one size sand grain is used, then the function
m(co) must be viewed as an average over the size distribu-
tion of sand grains. In that case, the integral can be done
numerically for chosen values of ¢, with the sand volume
fraction c=1— ¢ then treated as being a function of o. For
a single size sand grain, the final equation can be found
analytically, and is given by:

o gle ko+e (gle—flk)
c=1-(0_—3) koite R (3.11)
where
3
g§=03(01+20,)+2 5h oo —03), (3.12a)
3
f=2(o+20,)-2 P (o)—03), (3.12b)

b+h\3
T 0'2(0'1+20'2) » (3.12(:)

e=3[20'2(0'1—02)+

. (3.12d)

b+h\?
k=3{(0']—0'2)+ T) (o1 +20,)

As for the SC-EMT, the D-EMT gives a fixed point
when the slope m (o), equals zero. This is easy to see in the
present (D-EMT) case, because the first step of adding inclu-
sions to the original matrix will produce a transformed ma-
trix with the same conductivity as the original bulk paste.
Successive iterations, again, lead to no change in o.

Both the SC-EMT and the D-EMT are correct in the
dilute limit. Another figure of merit for an EMT is how well
any percolation threshold is predicted.®® In particular, the
volume fraction of shells at which the shell phase first per-
colates is of interest, because of the possibility of having a
large conductivity in the shells. In the EMT equations, the
predicted percolation threshold may be found by allowing
the matrix conductivity to go to zero, and determine at what
value of the shell volume does the effective conductivity
become non-zero. If the matrix conductivity is zero, the only
way for the composite conductivity to be non-zero is if the
interfacial zone regions percolate. The D-EMT gives a per-
colation threshold only at a sand volume of 1, which is
clearly wrong (see Fig. 3). The SC-EMT for mono-size
spherical sand grains of radius, b, and shell thickness, 4,
predicts a critical threshold for the shell phase at a shell
volume fraction of (1/3)[1—(b3/(b+h)*], or, alternatively,
for a sand volume fraction of 5%/[3(b+h)*]. Figure 3
shows both these predictions plotted versus b/a (a=b+h)
along with the numerically determined percolation thresh-
olds. There is indeed reasonable agreement. The region of
interest is where b/a=0.7, since that is the typical lower
limit for &/(b+ h) because the smallest b found in mortar is
of the order of 50 xm, and 4 is usually of the order 20 um.
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In this region, the SC-EMT prediction is qualitatively correct
for the shell volume fraction, but does not give the correct
curvature. The prediction for the sand volume fraction is
increasingly off as A goes to zero, since the SC-EMT does
not correctly predict the volume fraction at the random park-
ing limit.'® Still, this shows that since the dilute limit is cor-
rectly predicted, and the percolation threshold is reasonably
well predicted, the SC-EMT might be expected to do fairly
well in between these two limits. Because of this difference
between the two methods, we expect that for o/ o,> 1, the
SC-EMT will work better than the D-EMT. This is because
the percolation threshold, at which the effective composite
conductivity will eventually diverge, is not properly ac-
counted for in the differential method.

If we consider the SC-EMT for the four sand grain radii
model, we can numerically determine what is the predicted
sand volume fraction at which the interfacial zones percolate.
The SC-EMT prediction is ¢=0.27, which is reasonably
near the result of Fig. 3, ¢~0.36.

E. Padé approximants

Padé approximants can be employed'"® to describe the
conductivity of porous sandstone rocks where the sand
grains have a thin clay coating that has a higher conductivity
than the electrolytic pore fluid. This is a situation analogous
to the mortar and concrete conductivity problem being stud-
ied here. The Padé approximant in this case is a ratio of a
quadratic polynomial to a linear polynomial,

o  b+tcx+dx?

=— (3.13)

o 1+ax

14

where x=0,/0,. The parameters a, b, c, and d are given
by combinations of four well-defined parameters F, A, f,
and A which are defined in terms of two limits of the effec-
tive conductivity."

The first limit, in which the interfacial zone is only
slightly more (or slightly less) conductive than the bulk ce-
ment paste matrix, ,/0,— 1, is given exactly by perturba-
tion theory as!!

o 1 2h(os/a,—1)

- =% 1+ A (3.14)
where 1/F is the ratio of the conductivity of the mortar to the
conductivity of the bulk paste when o /0, = 1, and A is a
pore scale length parameter calculated in terms of the electric
fields associated with the o,=o, problem.!" When
oylo,=1, o/ad,=1/F, and when o,/0, is close to 1, Eq.
(3.13) is linear in o,/0, with a slope given by the ratio
2hI(FA).!

The second limit is when the conductivity of the interfa-
cial zone is much larger than that of the bulk cement paste,
os/0,> 1. Assuming that the interfacial zones percolate, the
composite conductivity in this limit is given by perturbation
theory as'!

c 1
—=<[h(o,/o,—1)+1/2]

o, 7 (3.15)
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FIG. 7. Composite conductivity for the bcc model is plotted vs the interfa-
cial zone conductivity (both are normalized by the bulk paste conductivity).
The solid dots are the numerical data, the solid line is the Padé approximant
based on the parameters values: F=2.82, A=88.8 um, A=560.0 xm, and

f=20.0 pm.

where f and A are additional length parameters defined in
terms of the solutions of the ¢,=0 and o,=1 problem.!!
Fitting Eq. (3.13) to Egs. (3.14) and (3.15) gives the four
unknown coefficients a, &, ¢, and 4.

IV. CONDUCTIVITY RESULTS
A. Periodic model

We first present the results for the bce periodic model
described in Sec. II B. Figure 7 shows the normalized con-
ductivity of the composite; o/0,, as a function of /0.
The interfacial zone cement paste percolates in this model,
and so plays a strong role in the overall conductivity, as can
be seen from the graph. Three points are worthy of note.
First, the conductivity at o;/o, = 1 is that which would be
obtained if the interfacial zone cement paste had the same
porosity and therefore the same conductivity as the bulk ce-
ment paste. The presence of the insulating sand grains in this
case reduces the overall normalized conductivity from 1 to
0.35. This is consistent with a 3/2 power law found in sus-
pensions of spheres. In this case, (0.46)3’2 = (.31.2823
Second, as we noted in connection with Fig. 6, the composite
conductivity can be viewed as the result of a competition
between the insulating sand grains and the interfacial shells.
Figure 7 shows that when o, /o,~6, the composite conduc-
tivity first achieves a value equal to the matrix conductivity,
so for this microstructure, this value of o /0, causes the
greater interfacial zone conductivity to cancel out the effect
of the insulating sand grains. Third, the Padé approximant
provides an excellent fit to the computed data points in Fig.
7, so that this analytical curve could be used to accurately
predict the composite conductivity at other values of o,/0,
that were not numerically computed. (Here the four param-
eters F, A, f, and A were computed directly from the finite
element solutions for two limiting cases, o,=0, and
0,=0; their values are F =2.82, A=88.8 micrometers,
A =560.0 micrometers, and f=20 micrometers.)
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FIG. 8. Composite conductivity for the random model is plotted vs the
interfacial zone conductivity (both are normalized by the bulk paste conduc-
tivity). The solid dots are the random walk data; also shown are the SC and
D-EMT results.

B. Disordered models

In Fig. 8 we present the random walk simulation results
for the disordered four grain size model together with the
predictions of the SC-EMT and the D-EMT. We note that, as
in Fig. 7, the overall shape of the curves is concave down.
The simulation data could at most form a straight line. This
would be the case if the two conducting phases, interfacial
zone and bulk cement paste, were exactly in parallel. Then
the overall conductivity would be given by a simple linear
combination of the two phase conductivities, and as o, in-
creased, the overall conductivity would increase linearly.
Since the microstructure is such that these two cement paste
phases are not in parallel, the curve must be sub-linear, or
concave down. As o /o,— the curve will eventually be-
come straight as predicted by Eq. (3.15).

The data in Fig. 8 indicate that to achieve an overall
conductivity that is equal to the bulk cement paste conduc-
tivity, the value of o /o, must be equal to approximately 8.
This is higher than the corresponding value obtained in the
bee model, due to the greater tortuosity and smaller volume
fraction of the interfacial zone in the present case. Increasing
o /0, has therefore a somewhat smaller effect on the overall
conductivity. At o;/o, = 20, o/0,~1.8, which is signifi-
cantly less than the corresponding bcc value for the same
reasons. We have attempted to fit the simulation data shown
on Fig. 8 with a Padé approximant (not shown) similar to
that in Fig. 7. The fit is less satisfactory than in the bcc case
but is no worse than that offered by the two EMT curves.
Again, this is an indication of the greater complexity of the
random four grain size model.

Consider next the behavior of the conductivity as a func-
tion of the sand volume fraction (Fig. 9). In Fig. 8 we saw
that, at a sand volume fraction of 55%, a value of
o,/0,~8 was required to make the composite conductivity
equal to the bulk cement paste conductivity. This is remark-
ably close to the dilute limit result o,/0,~8.26 found in
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FIG. 9. Composite conductivities (calculated by random walk simulations)
for the random model are shown as a function of sand concentration for four
values of the interfacial zone conductivity. The relevant values of o, /o, are
indicated in parenthesis on the right. Also shown are the corresponding
predictions of SC and D-EMT (normalization is as in Figs. 7 and 8).

Fig. 6 and is in agreement with the EMT predictions dis-
cussed earlier. Viewing o/0, as a function of sand concen-
tration, these results imply that for o,/0,<8.26, o/0, must
start out with negative slope and remain less than unity. By
contrast, for o/ o'p>8.26, the curve starts out with positive
slope and is always greater than unity. Because the dilute
limit defines the essential features of the overall curve, the
SC-EMT and D-EMT should correctly predict the essential
structure of the composite conductivity. This is clearly evi-
dent in Fig. 9. '

Figure 9 shows computed conductivity data for the ran-
dom mortar model as a function of sand volume fraction, for
o,/ o, = 100, 20, 5, and 1. The sand size distribution was
preserved at every volume fraction. The curves for o,/0,
=100 and 20 are concave up, with the o, /o, = 100 results
showing clear evidence of the interfacial zone percolation
threshold. The o, /o, = 5 and 1 curves have negative initial
slopes, and remain below one, as expected. The o,/0,=1
curve roughly follows a 3/2 power law in the total cement
paste volume fraction, as would be expected since there is no
difference between interfacial zone and bulk cement paste in
this case.

Two features of the SC-EMT and D-EMT predictions are
worth noting. First, for o,/0,=5, the SC-EMT is always
above the D-EMT prediction, while for o/ o,< 5, this situ-
ation is reversed. For very large values of the interfacial shell
zone conductivity, the SC-EMT is clearly much above the
data while the D-EMT is clearly well below the data. This is
due to the fact that the SC-EMT predicts the interfacial zone
percolation point at a lower volume fraction than is realistic,
while the D-EMT predicts too high of a sand volume fraction
at percolation. Second, there are several ways to take the
limit of EMT when O;—0,. One can take 2—0, or take
o,— 0, ; these limits give different results. For example, the
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D-EMT gives the well-known 1.5 power law when £ —0, but
does not when o,— o, with 27 # 0. Since the data clearly
follow this power law in this limit, we employ the £A—0
limit for both the SC and D-EMT to describe the o,=0,

system.

V. FLUID FLOW

The present model for interfacial transport can, approxi-
mately, be extended to include fluid permeability. The correct
way to calculate the permeability of a mortar would be to
solve the Navier-Stokes equations for the random pore
space,*®3 which would include bulk cement paste pores as
well as interfacial cement paste pores. However, since we are
considering mortar at intermediate length scales in this pa-
per, we can use Darcy’s law,*® with the appropriate perme-
abilities, for the three component composite: sand (K ), in-
terfacial zone cement paste (K;), and bulk cement paste
(K ). The relevant equation for such a description of systems

with spatially varying permeability is38:40
K(r)VP(r)
7

where V(r) is the macroscopic fluid velocity, K(r) is the
permeability, P(r) is the pressure at a position r, and 7 is
the fluid viscosity. If we identify V(r) with j(r), the electri-
cal current density, K(r)/» with the electrical conductivity,
and P(r) with the electrostatic potential, then this equation
reduces to the equation for steady-state electrical current
flow. The boundary conditions for the two problems are also
identical, so that all the results we have obtained for electri-
cal conductivity can be re-interpreted for fluid permeability,
albeit approximately.

Within this framework, an essential step is to estimate
the value of K /K,, the parameter analogous to o/0,.
Here we propose to use the Katz-Thompson equation,*’
which predicts the permeability of a porous medium in terms
of its electrical conductivity and a critical pore radius char-
acteristic of the largest connected pores in the material as
defined by a mercury intrusion experiment. The equation de-
rived in Ref. 41 has been shown to work reasonably well on
cement-based materials.*>** Neglecting constants of propor-
tionality, the relevant equation is k~d?/F, where F is the
formation factor defined in Eq. (3.14) and d is the critical
pore diameter. If we assume that the value of 4 for interfacial
zone cement paste is about 10 times larger than that for the
bulk cement paste, in rough agreement with the available
mercury intrusion data,'* and take the interfacial zone con-
ductivity to be about 10 times larger than that of the bulk
cement paste, as suggested by recent experiments on syn-
thetic interfaces,* the resulting estimate is K /K ,~1000.
The largest value of o, /o, computed in Fig. 8 was only 100,
but we can use either the fitted Padé approximant or the two
effective medium theories to obtain the result K/K, ~ 35 for
the effective permeability ratio. Data in Ref. 43 indicate that
the permeabilities of mortars with about 50% sand concen-
tration are between 20 and 60 times higher than that of the
bulk cement paste, in agreement with the above estimate.

V(r)=— (5.1
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V1. CONCLUSIONS

We have developed a model for interfacial transport in a
class of three phase composite materials that provides a rea-
sonable starting point for the description of mortar and con-
crete. Assuming that the interfacial zone has a well-defined
thickness and conductivity, we have shown how its presence
influences the overall conductivity of the composite material.
Although the aggregate size distribution used in our numeri-
cal calculations was typical of a mortar the same general
behavior is expected in concrete. Since the interfacial zone
cement paste occupies a significant fraction of the total ce-
ment paste phase (up to one quarter or one third) and often
forms a percolating channel, the higher conductivity of this
phase will cause the overall conductivity of the mortar to be
significantly higher than the value that would be obtained
from a simple two-phase (bulk cement paste plus aggregate)
composite model. The essential parameters of our model are
the ratio o, /0, , the thickness, h of the interfacial zone, and
the aggregate concentration, c. For small values of ¢ we have
shown that the overall conductivity can be predicted analyti-
cally, for any given sand size distribution. For larger values
of ¢, numerical calculations on three dimensional models are
required and we have shown that random walk techniques
can perform this task accurately.
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APPENDIX: TWO PHASE RANDOM WALK
CALCULATIONS

In all random walk calculations, our objective is to esti-
mate the mean squared displacement, {(r2(¢)}, of a collection
of walkers as a function of time, 7. At long times this quan-
tity varies as (#%(¢)) ~ Dt, where D is the effective diffusion
coefficient of the pore space only. D is related to the mea-
sured diffusion coefficient of the entire sample, Dy, which is
referred to the entire cross-sectional area of the sample, by a
factor of porosity (D7 = ¢D). The conductivity is then given
by

ol D (AD)
o, =9 D,
where o, and D, are the pure phase coefficients of phase p.

Consider a two phase medium in which the conductivity
in one phase is unity and in the other phase is # < 1. The
simplest random walk is sometimes referred to as a blind
walk. Within a given phase, the walker takes steps of length
€, but the time increment associated each step is inversely
proportional to the conductivity. Operationally, in the high
conductivity phase the walker takes steps of length € and the
clock advances by a unit increment, 7.[If the proposed step
would take the walker into an insulating region (e.g., a sand
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FIG. 10. The effective conductivity is shown for the bec lattice of spherical
grains with overlapping shells. We compare finite element and blind random
walk calculations and note that better accuracy is achieved as the random
walk step size is reduced.

grain) then the walker is returned to the attempt position but
the clock is advanced by 7.] In the low conductivity phase
the step length is again € but the walker accepts each pro-
posed step only with probability A, thus spending a certain
fraction of the time simply standing still. If walker steps
from the high to the low conducting phase (or vice versa) the
probability for accepting the step is 2h4/(1+h), as if the
corresponding bond was a series connection between high
and low conductivity bonds. This approach is straightforward
although computationally rather inefficient because the walk-
ers spend a certain amount of their time at rest. In Fig. 10 we
compare the results of blind random walk calculations with
finite element calculations for the bec lattice described in
Sec. IIT A. Generally the agreement is quite good, although
the differences between the two techniques can be as large as
10%.

In a more efficient implementation of the random walk
method the walkers are referred to as being myopic. The
rules in the high conductivity phase do not change. Within
the low conductivity phase the walker always accepts each
proposed step, but the clock is advanced by an amount 1/A.
To this point it does not matter whether we are working on a
lattice or in a continuum representation. The distinction be-
tween lattice and continuum systems arises only when we
consider steps that take the walker from one phase to the
other. Here we find that the following rules lead to quite
reasonable results:

(1) if the proposed step takes the walker from the high to the
low conducting phase the step is accepted with probabil-
ity # and the clock is advanced by an amount (14 h)/
(2#) if the step is accepted and by a unit amount if the
step is rejected;

(2) if the proposed step takes the walker from the low to the
high conducting phase the step is always accepted and
the clock is again advanced by (1+h)/(2h).

With these rules we have consistently obtained results
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TABLE II. Comparisen of finite element, finite difference, and random walk
calculations for the bec lattice described in Sec. II B. The finite element and
finite difference calculations were executed on grids of the same size. The
blind and myopic walker calculations were done with step size €=0.01la
where a is the length of the unit cell. Some additional calculations (shown in
parenthesis) were done with e=0.005a.

Conductivity Finite Finite Blind Myopic
ratio element difference walkers walkers
1 0.355 0.349 0.340 0.350
2 0.508 0.495 0.476 (0.491) 0.486
5 0.921 0.885 0.855 (0.868) 0.866
10 1.53 1.46 1.41 (1.46) 142
20 2.63 2.49 2.38 (2.46) 245
50 5.60 522 5.02 (5.149) 5.13
100 10.25 9.48 9.06 (9.30) 9.40

that are in general agreement with blind walker calculations.
In the case of the bcce lattice, a comparison of finite element,
finite difference, blind walker, and myopic walker calcula-
tions is summarized in Table IL.
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