Automating the Alignment of Crystals

Rohit Mandavia, Dr. William Ratcliff

Background

> The structure of crystals help scientist understand its properties
> Crystal must be aligned to determine its orientation
> These features can be hard to find for various reasons
$>$ Strontium Titanate $\left(\mathrm{SrTiO}_{3}\right)$, for example

- Simple cubic geometry
- Obtains a large dielectric constant at cold temperatures
- Becomes a superconductor at 0.35 K

Common Vocabulary

> Reflection: an instance of neutrons hitting the detector
$>$ Diffracting Position: a specific orientation of the crystal that results in a reflection
$>$ Rotation Axis: Phi (ϕ), Chi (X), Omega $(\omega) \rightarrow$ rotation matrix (R)
$>$ Detector Angles: TwoTheta (2O)
> HKL vectors and the UB matrix

- More on these later

HKLs and Miller Indices

> Reciprocat Space: A yector describesan infinite set of

(100)

(110)

$>d$ spacin ${ }^{(1111)} 1 / \mid$ HKL \mid heffice the name $e^{(17 \pi / 2)}$ reciprocal"
> Allows us to define which set of faces we are looking at

UB Matrix

> The UB Matrix allows scientist to figure out what motor angles $(X, \phi, \omega, 2 \Theta)$ are needed to hit any desired reflection
> In order to calculate the UB Matrix, you need to know lattice parameters and two reflections
> UB Matrix depends on the orientation of the crystal with respect to the instrument (Eulerian cradle)

UB Matrix

CHI-PHI SPACE
HKL SPACE

CHI (degrees)

웅

(h00)

Current Methods

> Set the crystal in Eulerian cradle
> Rotate "randomly" until a reflection is hit
> Assume where other reflections might be and search this area until a reflection is hit
$>$ Once a sufficient amount of reflections are hit, the UB matrix can be created
$>$ Tedious, time consuming, and requires attention

The Solution

> Automate the alignment process using machine learning
> Find the fastest and most efficient way to find reflections
> Make the process universal for all crystals, regardless of symmetry

Reinforcement Learning

> We can simulate the crystal and the instrument in a program
> If the crystal is moved to a diffracting position for a specific 2Θ :

- Give the agent a reward (reinforcement)
- The faster it gets there the more the reward
- Punish the agent by associating every move with a cost
> The agent will eventually be able to learn the fastest way to get into a diffracting position

$A g$ en t
- Tensorflow

Epsilon-Greedy

$>$ Once a reflection is hit, continue using this method as our go-to
> Every now and then, make a random move
> If the move results in less reward, don't make that move again
$>$ If the move results in more reward, this new path becomes our go-to
> Repeat

Reflection

Crystal Case

Hidden

General Case

Triclinic Wollastonite

Results

> Unfortunately, the simulations were unable to find reflections in a respectable time
> Advantages of automation are belittled by the amount of time needed
> Difference between learning to find a point and learning how to find a point
> More work to be done in order to take advantage of this technique

Acknowledgements ©

- CHRNS (Center for High Resolution Neutron Scattering)
- NIST SURF Program and Advisors
- Joe and Julie!
- NCNR SURFERS
- NCNR, Stephen Pheiffer
- Mentor: William Ratcliff

Any Questions?

