AUTOMAP/AUTOLINK
USERS MANUAL

Olivier NICOLAS

Guest Researcher at NIST
E-mail : ol i vi er. ni col as@i st. gov

May 15, 2000

Contents

1 Downloads
2 Installing the software

3 Using the software
3.1 UsageontheWeb
3.2 Theinstalledversion e

3.2.2 AutoMapwith AutoLink

The blocking version functions o L
The non-blocking version functions
Other AutoLink functions
Compiling an AutoLink program
Want to have a look at the sourcecode?,
SumMmary ..o
Want to see more examples of AutoLink? oL

4 More things you need to know

00 0000 ~N~N~ 010101010101 Ol

©

Chapter 1

Downloads

Goto http://math._nist.gov/savg/parallel/auto/v3.00/download.html

The latest version of this users’ manual, can be found at :
http://math.nist.gov/savg/paral lel/auto/papers/AutoMapAutolL inkUsersManual .

ps.gz

You can also get the latest version of the examples at :
http://math._nist.gov/savg/parallel/auto/Download/Examples_Latest.tar.gz

Chapter 2

|nstalling the software

To install the version of AutoMap and Autolink you downloaded, you just need to uncompress the .tar.gz
files in a directory of yours (Using “gunzip -dc *.tar.gz | tar xvf -”) rexpecting the kind of following archi-
tecture :

MPIdtt_v3.00b1
MPIdtt_v3.00b1/AutoLink
MPIdtt_v3.00b1/AutoLink/Src
MPIdtt_v3.00b1/AutoMap
MPIdtt_v3.00b1/AutoMap/Src
MPIdtt_v3.00b1/AutoMap/Exec
MPIdtt_v3.00b1/Examples
MPIdtt_v3.00b1/Examples/commonFiles
MPIdtt_v3.00b1/Examples/AutoLink
MPIdtt_v3.00b1/Examples/AutoMap
MPIdtt_v3.00b1/Examples/commonFiles
MPIdtt_v3.00b1/Examples/Docs

NOTES

1. AutoMap

The AutoMap executable file will be in AutoMap/Exec/, in the directory corresponding to your archi-
tecture (SGI, Solaris, Linux, etc.).

2. AutoLink

When using AutoL.ink, you need to set a define called ALHOME, in the Makefile of your program, to
the directory where the autolink.inc file is (AutoLink/Src/).

TROUBLESHOOTING

Some versions of MPI happen to have what we called the Padding problem (a bug fixed in the latest
versions of the MPI software). AutoMap/AutoLink can work correctly with this problem anyway, if you
inform them your version of MPI has the problem.

After installing the software, you will have to perform a test on each machine you intend to use :
for each machine, compile and run the test in Examples/AutoMap/paddingBug with 2 processes.

If the result of the test is :

1. padding compliant
You don’t need to do anything.

AutoMap/AutoLink Users' Manual

2. padding problem present
The problem can be fixed as shown with the example in Examples/AutoMap/paddingTest

(a) Compile and run the example with 2 processes.
(b) You should have as a result :

[ch12]

1

saying that the string “ch12” sent hasn’t been correctly received.
(c) Now, edit the MakeFi e to uncomment the “FLAG define” line, re-compile and re-run.
(d) You should then have as a result :

[ch12]

[ch12]

saying that the string “ch12” sent has been correctly received.

Summary : include the “FLAG = -DAM_PC” in your Makefiles (on the systems tested as non com-
pliants) to avoid the Padding problem.

3. padding problem persistant
Contact martial.michel@nist.gov

Chapter 3

Using the software

3.1 UsageontheWeb

You can also use AutoMap on the web.

Go to http://math.nist.gov/savg/parallelauto/v3.00/automap_web.html and
fill the box with the content of your data-structure file.

It will generate the files you need to include into your source code.

3.2 Theinstalled version

3.2.1 AutoMap stand alone
What does AutoMap do?

AutoMap automatizes the process of data-type creation for MPI; it parses the C header-file given as a
parameter to generate the MPI-data-types corresponding to the typedef struct found in the file.

The command line

Type AutoMap -help to have a list of the options available :

Location : AutoMap
Identification : AutoMap 3.00 [beta 1]

AutoMap [-help] [-Vv] [-log] [-noAL] filename

-help - Will print this help menu

-v - \Verbose mode

-log - Will generate the "logbook.txt"™ for this run

-noAL : Will not generate the entries for use with AutoLink
filename : name of the C typedef definition file to analyze

Let’s learn it with a minimal example!

1. The header file for AutoMap
Let’s say you want to use, with MPI, the following structure :

struct element

{

int value;

}s

3.2 The installed version AutoMap/AutoLink Users' Manual

Then, you can transform your .h file to look like this :

/*~ AM_Begin*/
typedef struct element element /*~ AM*/ ;

struct element

{

int value;
}s

/*~ AM_End*/

Everything between /*~ AM_Begin */ and /*~ AM_End */ will be analyzed by AutoMap.
The /*~ AM */ flag will tell AutoMap to map this structure for MPI, by generating a new MPI-
type that will be named after the name of the structure by adding the AM_ prefix (here, the name will
then be AM_e lement).

2. AutoMap processing

Type “AutoMap -noAL short.h” where short.h is the file containing the above code. The “-noAL”
option makes AutoMap generate no code for AutoLink for in this example we want to use AutoMap
stand alone only. You can generate the code for AutoLink, it’s just not needed in this example.

AutoMap -noAL short.h

--> Generated output for :
-—--> element

--> done

AutoMap finished without error

Output files can be found iIn current directory.
0 Errors, O Warnings, Highest Severity O

2 files have then been generated (mpitypes.h and mpitypes.inc) in the current directory.

3. The main function
In your ”.c” main file you will need to add the following :

Headers :
#include <mpi.h>
#include "mpitypes.inc"

Beginning of your main function :
MPI_Init(&argc, &argv);
Build MPI_Types(); /* to create the new MPl data-types */

End of your main function :
Free MP1_Types(); /*for cleaning the MPl data-types */
MPI_Finalize();

The only thing needed to send your data is to provide the name of the type you wish to transfer
to the send and receive functions; in this case : “AM_element”.

3.2 The installed version AutoMap/AutoLink Users' Manual

To transfer “element myElement;” use:

MP1_Send(&myElement, 1, AM_element, sendTo, O, MPI_COMM_WORLD)
and

MP1_Recv(&myElement, 1, AM_element, recvFrom, O, MPI_COMMWORLD, &status)

according to the syntax of the MPI functions MP1_Send and MPI_Recv.

Want to have a look at the source code?

You can find the source code of this example in your “AutoMap-Example” directory
(Ex : Examples/AutoMap/shortExample).

Summary

1. Have a file containing your AutoMap specifications
Your file will look like this :
/=~ AM_Begin */

/* First the typedefs */

typedef struct structl structl /*~ AM */;
typedef struct struct2 struct2 /*~ AM */;

typedef struct structN structN /*~ AM */;

struct structl

(
b

struct struct?

(
b

struct structN

(
)

/*~ AM_End */

2. Use AutoMap to generate the code to include in your program (AutoMap -noAL short.h)
3. In your code, include mpitypes.inc, and calls to Build_MPI_Types() and Free_MPI _Types()
4. Use the MPI standard functions to send and receive data with your new types (prefixed by AM_)

5. You’re ready.

Want to see more examples of AutoMap stand alone?

You can find several examples of AutoMap stand alone in your “AutoMap-Examples” directory.
(Ex : Examples/AutoMap/Examples).

3.2 The installed version AutoMap/AutoLink Users' Manual

3.2.2 AutoMap with AutoLink

What does AutoLink do?

AutoL.ink is a tool/library that allows you to transfer, via MPI, data structures containing pointers. AutoLink,
being an extension to AutoMap, works exclusively on typedef structs.

Let’s learn it with a minimal example!

1. The header file for AutoMap
AutoLink needs the output of AutoMap in order to work.

Let’s say you want to send, via MPI, the following structure :

struct element

{

int *value;

}s

Then, you will have to modify your code to pass to AutoMap a C header file that looks like this :

/=~ AM_Begin */

typedef struct element element /*~ AM */;
typedef struct data data /7*~ AM */;

struct data

{

int value;

}s

struct element

{

data *dataElement;

}s

/*~ AMEnd */
}

Why do you have to modify your code this way? Because AutoMap and AutoLink work exclusively
on typedef structs and AutoLink requires its data to point to user defined data-types.

2. AutoMap processing
So, you type “AutoMap short.h” to generate the necessary files :

mpitypes.h
mpitypes.inc
al_routines.h
al_routines.inc
autolink.h

3. The main function
In your ”.c” main file you will have the following :

Headers :
#include <mpi.h>
#include "autolink.inc” /* will include mpitypes.inc */

3.2 The installed version AutoMap/AutoLink Users' Manual

Beginning of your main function :
MPI_Init(&argc, &argv);
AL_Init(-1); /* also calls BuildMPI_Types */

End of your main function :
AL_Finalize(); /* also calls FreeMPIl_Types */
MP1_Finalize();

To transfer your data, you’ll need to use AutoL.ink’s specific functions :

(a) For a blocking usage :

AL_Send
AL_Recv

(b) For a non-blocking usage :

AL_ISend
AL_ISendTest
AL_ISendWait
AL_1SendComplete
AL_IRecv
AL_IRecvTest
AL_IRecwWait
AL_IRecvComplete

You have to declare the data you want to receive as a pointer. This is because the “AutoL.ink receive
functions” require a pointer to a pointer. Do not allocate any memory for the data you will receive,
for AutoLink will do it for you; you would waste memory (that you couldn’t free) by doing so!!

It means you have to declare “element *myElement”; not “element myElement”;

The blocking version functions

1. In general
Two functions are at your disposal : AL_Send and AL _Recv.

(&) AL_Send
int AL_Send(void* buf, int datatype, int dest, int tag, MPI_Comm comm);
buf Initial address of send buffer
datatype Data-type to send
dest Rank of destination
tag Message tag

comm Communicator
Use this function to send your data-type.

3.2 The installed version AutoMap/AutoLink Users' Manual

(b) AL_Recv
int AL_Recv(void** buf, int* datatype, int source, int tag, MPI_Comm comm,
MPI_Status* status, AL _RegList** rglist);

buf Pointer to the initial address of receive buffer
datatype Pointer to the data-type to receive (will be filled for you)
source Rank of source

tag Message tag

comm Communicator

status Return status

rglist Specify the memory allocation method

Use this function to receive your data-type.

2. With our example

AL _Send(myElement, AL _element, sendTo, 0, MPI_COMM _WORLD);
AL _Recv((void *) &myElement, &type, recvFrom, 0, MPI_COMM_WORLD, &status, NULL);

The non-blocking version functions

1. AL_1Send
int AL _ISend(void* buf, int datatype, int dest, int tag, MPI_Comm comm, AL _ISendRL** rlist);

buf Initial address of send buffer
datatype Data-type to send
dest Rank of destination
tag Message tag
comm Communicator
rlist Specific information for transfer completion

2. AL_ISendTest
int AL_I1SendTest(AL_ISendRL **rlist);
rlist ~ Specific information for transfer completion

3. AL_ISendWait
int AL_ISendWait(AL_1SendRL **rlist);
rlist Specific information for transfer completion

4. AL_ISendComplete
int AL_ISendComplete(AL_ISendRL **rlist);
rlist ~ Specific information for transfer completion

5. AL_IRecv
int AL_IRecv(void** buf, int* datatype, int source, int tag, MPI_Comm comm, AL _IRecvRL** rlist,
AL _RegList** rglist);
buf Pointer to the initial address of receive buffer

datatype Pointer to the data-type to receive (will be filled for you)
source Rank of source

tag Message tag

comm Communicator

status Return status

rlist Specific information for transfer completion
rglist Specify the memory allocation method

6. AL_IRecvTest
int AL_IRecvTest(AL_IRecvRL **rlist);
rlist ~ Specific information for transfer completion

3.2 The installed version AutoMap/AutoLink Users' Manual

7. AL_IRecvWait

8.

int AL_IRecvWait(AL_IRecvRL **rlist);
rlist Specific information for transfer completion
AL _IRecvComplete

int AL_IRecvComplete(AL _IRecvRL **rlist);
rlist ~ Specific information for transfer completion

Other AutoLink functions

1.

AL_Init
void AL _Init(int packetSize);
packetSize size of the packets in bytes

If packetSize<0, AutoLink uses the default size for the packets to send (see “al_common.h’” defini-
tions.

. AL_Finalize

void AL _Finalize();

. AL_LogEntry

int AL_LogEntry(char *entry);
entry string you want to add to the log file (cf LogFile chapter)

. AL _SetPacketSize

int AL _SetPacketSize(int size);
size size of the packets in bytes

. AL_Free

void AL _Free(AL_ReqL.ist** rlist);
rlist specific information for transfer completion

Note : the rlist parameter seen in all those functions needs to point to the same list for one session!

Compiling an AutoLink program

See the Makefile in the given examples.

Want to have a look at the source code?

You can find the source code of this example in your AutoLink-Examples directory

(Ex:

Examples/AutoMap/Examples/shortExample).

Summary

1.

Have a file containing your AutoMap specifications (Ex :short.h)

. Use AutoMap to generate code to include in your program (AutoMap short.h)
. In your code, include autolink.inc, and calls to AL _Init() and AL _Finalize()

2
3
4,
5

Use the AutoLink functions to send and receive data with your new types (prefixed by AL)

. You’re ready

Want to see more examples of AutoLink?

You can find several examples of AutoLink used with AutoMap in your AutoL ink-Examples directory

(Ex:

Examples/AutoMap/Examples).

Chapter 4

Morethings you need to know

1. Itis not possible to map every type via AutoMap, due to the technical specifications of AutoMap/AutoL ink;
AutoLink needs fixed sized data-types to work.

For example, you cannot use char*. Use char[n] instead.

2. AutoMap doesn’t read files included with the #include mechanism.

3. AutoMap doesn’t perform macro text replacement.

4. AutoMap doesn’t perform any computation

Ex:
char b[2*3];

won’t be recognized by AutoMap’s grammar.

5. Mapping of pointers of arrays are not implemented yet.
(Ex : int (array *) [2])

6. Be sure, when using AutoLink to put every non-used pointer to NULL before sending any data.
7. AutoLink needs fully defined fixed size entries to work!

8. Also, don’t map a data-type architecture containing 2nd level (any level>1 in fact) pointers; it’s not
yet supported.
Ex of a 2nd level pointer :
A pointsto B
B contains C
C pointsto D

AutoLink won’t traverse the C type and so won’t access D.

