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Abstract
We have developed a series of radiofrequency ion traps using pairs of lithographically-patterned 
ceramic plates. Both 3-D and 2-D quadrupoles have been demonstrated, as well as an interesting 
arrangement in which both a 3-D quadrupole and a toroidal trapping field are created 
simultaneously and coaxially.  In this coaxial ion trap, ions can be trapped in the toroidal region 
(which has a significantly larger storage capacity), transferred to and trapped in the 3-D 
quadrupole, and then mass analyzed.  Although all of these devices rely on trapping fields that are 
primarily quadrupolar, the electrode patterns allow independent adjustment of higher-order 
components, e.g., hexapole, octopole, decapole, etc.  We can also perform dipole resonant 
excitation resulting in either ion ejection or collision-induced dissociation.  As mass analyzers these 
devices have demonstrated resolving power in excess of 1000 (m/Δm).  These devices have a 
very open structure, allowing easy access for lasers, incident particle beams, and optics.

Conceptual/Theoretical Basis

  

The electric potential distribution within any volume of space is found by solving the Laplace equation, using known 
potential surfaces (i.e., electrodes) as boundary conditions.  Boundary conditions do not have to be equipotential 
surfaces, such as metal electrodes.  Non-equipotential surfaces also produce potential distributions.  For instance, 
the familiar three hyperbolic electrodes shown below produce a quadrupolar potential distribution.  Similarly, a 
cylindrical solid on which each surface has a quadratically varying potential function will also produce a quadrupolar 
potential distribution.  Indeed any real potential distribution can be made by applying the corresponding potential 
functions to any closed surface.  We are using planar electrode arrays covered with a resistive layer, in which 
potential functions are superimposed to produce any desired trapping potential.  As with conventional ion traps, 
however, edge effects are still an issue.  Ion traps made using this approach have several potential advantages. For 
instance, electric trapping fields can be optimized by changing the potential function on the plates rather than by 
changing the physical electrode spacing or dimensions.

Trap Plate Design
Trap plates begin as alumina substrates, 0.65 mm thick and 46 mm diameter.  Holes are laser-drilled for vias
(electrical connections between front and back sides) which are then filled with gold.  Holes for ion ejection and for 
mounting are also laser drilled.  Aluminum electrode rings are photolithographically deposited in the trapping side, 
and connections and contact pads are patterned on the backside. A thin layer of germanium is deposited on top of 
the rings on the trapping side.  Potentials are applied to the trap using an RF power supply. The potential on each 
ring is set using a capacitive voltage divider.  Supplementary voltages (ac or dc) can be applied to specific rings, or 
to just one plate.  The germanium layer prevents charge build-up and evens out the potential applied by the rings.
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Two-plate Quadrupole Ion Trap
We have developed and demonstrated a quadrupole ion trap (Paul trap) made using two plates.  
A 1-mm hole is used for ion ejection.  The spacing between the plates is adjustable, but most 
experiments were done using a plate spacing of 5 mm, corresponding to a z0 value of 2.5 mm.  
Shown at bottom are spectra of several organics taken using a dipole resonance ejection scan, 
with drive RF at 1.1 MHz, ramped from 250-750 V0-p, operated using 1 mtorr of helium as buffer 
gas.  Higher order multipoles can be modified by changing the potentials on each ring—a simple 
electrical change rather than changing the physical shape of spacing of metal electrodes. 

Typical mass spectra from the two-plate Paul trap (planar Paul trap).  
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Photograph of the two-plate quadrupole ion trap

Equipotential lines in the two-
plate quadrupole ion trap

Varying Higher-Order Multipoles

Coaxial Ion Trap

A linear ion trap has also been 
made using this approach
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Cylindrically symmetric potential distributions can be expressed as:

quadrupole (l=2), hexapole (l=3), octopole (l=4), etc.  In primarily quadrupolar devices the 
terms with l>2 are referred to as higher-order multipoles.  These terms can be independently 
controlled and adjusted using our multiple-electrode design simply by changing the RF 
amplitude applied to each ring.  
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Isopotential plots of “quadrupole” ion trap configurations with varying 8-, 12-, and 16-poles.  
Magnitude of higher-order poles is expressed as a percent of the quadrupole.

-2.0

-1.0

0.0

1.0

1 2 3 4 5 6

A
n/A

1

Radial location of electrode, mm

Hexapole (n=3)

10-pole (n=5)14-pole (n=7)

20-pole 
(n=10)

Opposite potential applied to a given ring on 
each plate (odd-order terms)

-4

-2

0

2

4

1 3 5 7 9

A
n/A

2

Octopole (n=4)
12-pole (n=6)

20-pole (n=10)

16-pole (n=8)

The same potential applied to rings on both plates 
(even-order terms)

Radial location of electrode, mm

Toroidal 
trapping 
region

Quadrupolar 
trapping 
region

e-

The coaxial ion trap is a two-plate 
device in which both quadrupolar and 
toroidal trapping regions are created 
simultaneously and coaxially.  Ions 
can be trapped in either region, can 
be transferred from the toroidal 
region to the quadrupolar region, and 
mass-selectively ejected from the 
quadrupolar region.  The Coaxial trap 
is made using the exact same set of 
plates as the quadrupole trap 
described to the left, the only 
difference being the RF amplitudes 
applied to each electrode ring.
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Representative data from 
coaxial ion trap.  Each step in 
which the quadrupole is 
scanned yields a time-domain 
mass spectrum. These data are 
from bromopentafluorobenzene.

For experimental characterization, electro ionization created ions in situ.  Ions were then mass-selectively 
ejected out of the quadrupole trap.  A second quadrupole scan verified that the quadrupole trap was empty.  
Ions were then transferred from the toroidal trapping region to the quadrupole region using an applied ac 
signal.  The Quadrupole region was then scanned again and the transferred ions were mass-selectively 
ejected. Below is the scan sequence.  Many other scan sequences have been demonstrated, including 
multiple transfer steps and mass analyses.


