

TSOM: R&D 100 Award Winner

TSOM Method for Nanoelectronics Dimensional Metrology

Ravikiran Attota

Nanoscale Metrology Group Physical Measurement Laboratory National Institute of Standards and Technology Gaithersburg, USA

*TSOM is pronounced as "tee-som" ; A latest presentation on TSOM can be found here.

Contents

- ♦ What is TSOM ?
- Method to construct TSOM images
- Characteristics of TSOM images
- Applications

TSOM: Through-focus Scanning Optical Microscopy

Digital camera

TSOM transforms conventional optical microscopes into three-dimensional metrology tools with nanometer scale measurement sensitivity

Not an image resolution enhancement method

TSOM: Through-focus Scanning Optical Microscopy

Analysis in lateral and vertical directions as large as over 50 μm.

Requirement for defining the "Best Focus" is eliminated.

How does **TSOM** achieve this?

- By using a set of through-focus images instead of one "best focus" image
- Going beyond edge-based imaging
- Using the image as a signal/dataset

Requires a TSOM Image

Ravikiran Attota, Frontiers of Metrology, Grenoble, May 24 2011

Animation showing the TSOM image construction method using a conventional optical microscope

Differential TSOM images are distinct for different dimensional variations

Isolated Si line on Si substrate; $\lambda = 546$ nm; LW = 40 nm; LH = 100 nm

Differential images appear similar for small Simulation changes in the same dimension

Characteristics of TSOM images: Summary

- TSOM images change with target (assumed to be unique).
- Differential TSOM images
 - <u>Highlight nanometer scale</u> dimensional differences using a conventional optical microscope.
 - Appear <u>distinct</u> for different dimensional change (breaks the correlation between parameters, e.g., height and width, in the optical signal).
 - Are <u>additive</u>.
 - Appear qualitatively similar for a change in the same dimension.
- Integrated optical intensity of differential TSOM image indicates the magnitude of the dimensional difference.
- TSOM images are (assumed to be) unique.
- Robust to optical aberrations and illumination variations.
- Good quantitative agreement between measurement and simulation is not established yet.
- Trends observed in simulations generally match measurements.

Two Applications

Evaluate

differences in dimensions

Requires two targets

•Simulation is not necessary but useful

Determine dimensions of a target

•Requires a library of either <u>Accurate simulations</u> or Measurements

Requires good agreement between measurement and simulation
TSOM images are assumed to be unique

Some Example applications of the TSOM method

Simulation to Experiment comparison

Line gratings

Simulation

Linewidth = 152 nm, Line height = 230 nm, Pitch = 601 nm, Wavelength = 546 nm, Si line on Si substrate.

Simulation to Experiment comparison

Simulation

Differential TSOM images for <u>3 nm</u> difference in the line width

Experimental line width determination using simulated library

Experimental TSOM image

Determining the dimension using the library matching method

TSOM Matched target line width : 153 nm AFM measured line width: 145 nm

Experiment

Size determination of nanodots (nanoparticles, quantum dots) using experimental library Experiment

SEM image of 121 nm nanodot

Experimental TSOM image of 121 nm nanodot. λ = 546 nm. Si nanodot on Si substrate.

SEM measured size = 103 nm TSOM measured size = 106 nm

Experimental defect analysis of four types of 10 nm defects in dense gratings Pitch = 270 nm, Linewidth = 100 nm, λ = 546 nm

Experiment

Defect analysis: Random structure

(XZ-plane reversed)

Defect size: 25 nm, Defect height = 25 nm; Linewidth of the features= 100 nm, Line height =100 nm Wavelength = 365 nm, Si features on Si substrate

3D Metrology

High aspect ratio through silicon via (TSV) dimensional analysis

TSV Diameter = 5 μ m, Depth = 25 μ m, λ = 546 nm 5.0 μm 20 20 0.15 0.3 15 15 Through focus distance, µm 0.1 Through focus distance, µm 0.2 10 10 0.05 25.0_m 0.1 0 5 5 -0.05 0 0 0 -0.1 -0.1 -5 -5 -0.15 -0.2 -10 -10 -0.2 -0.3 -15 -15 -0.25 -0.4 -20 -20 -2 0 2 -2 0 2 Distance, µm Distance, µm 20 nm change in

the depth

20 nm change in the diameter

Photo mask application: Transmission microscope

Optimization of Illumination NA to obtain maximum sensitivity

Photo mask target		Quartz Chrome				
	Dimension	Diff.	INA	MSD		x10 ⁻⁶
		(nm)		UP	TE	TM
	Line width	2	0.1	9.5	15.7	6.6
	Line width	2	0.6	2.0	2.9	1.5
	Line height	2	0.1	4.3	4.0	5.8
	Line height	2	0.6	0.6	1.0	0.5

For line width measurements select low INA and TE polarization For line height measurements select low INA and TM polarization

Line width = 120 nm, Line height = 100 nm, Wavelength = 365 nm, UP=Unpolarized, TE=TE polarized, TM=TM polarized, MSD=Mean Square Difference

Thin film metrology

Intensity normalized TSOM images at the edge of thin films for different film thickness

Calibration curve to measure films of unknown thickness

Experiment

Overlay Targets for Double Patterning

Simulations

Ravikiran Attota, Frontiers of Metrology, Grenoble, May 24 2011

Monitoring/Measuring Nanoscale Movements for <u>MEMS/NEMS</u> Devices

A simplified schematic of a MEMS device (fabricated at NIST) containing inner 20 μ mx20 μ m movable part and the outer fixed frame. Every time the device is powered the inner part moves 10 nm to the right side relative to the outer frame.

Calibration Curve

Mean Intensity difference as a function of movement

Simulation

Wavelength = 546 nm Ravikiran Attota, Frontiers of Metrology, Grenoble, May 24 2011

Advantages of the TSOM Method

- Transforms conventional optical microscopes to truly 3D metrology tools that provide excellent lateral and vertical <u>measurement</u> resolutions comparable to typical Scatterometry, SEM and AFM.
- Has the ability to decouple vertical, lateral or any other dimensional changes, i.e. distinguishes different dimensional variations and magnitudes at nanoscale with less or no ambiguity.
- Has the ability to analyze large dimensions (over 50 $\mu m)$ both in lateral and vertical direction.
- Robust to optical and illumination aberrations.

Advantages of the TSOM Method

- Inexpensive, nondestructive, fast and simple, requiring merely ubiquitous conventional optical microscopes and is perfectly suitable for industrial, high-throughput metrology.
- Can be used with a variety of targets ranging from opaque (reflection mode) to transparent (transmission mode) materials and geometries ranging from simple nanoparticles to complex semiconductor memory structures.
- Applicability to a wide variety of measurement tasks.
- Requirement for defining the "Best Focus" is eliminated.

Limitations of the TSOM Method

- Optical system errors (for the second method)
- Experiment to simulation agreement (for the second method)

Potential Applications (not exhaustive)

Areas

- Defect analysis
- Inspection and process control
- Quantum dots/nanoparticles/nanotubes
- Critical dimension (CD) metrology
- Overlay registration metrology
- ✤ 3D interconnect metrology (TSV)
- FinFET metrology
- Photo mask metrology
- Film thickness metrology
- Line-edge roughness measurement
- Nanometrology
- Relative movements of parts in MEMS/NEMS

Companies openly collaborating or assessing the technology

Industries

- ✤ MEMS
- NEMS
- Semiconductor industry
- Biotechnology
- Nanomanufacturing
- Nanotechnology
- Data storage industry
- Photonics
- Nanotechnology

SEMATECH, A large US Semiconductor Company, Veeco (Bruker), Toshiba, and several emerging companies

Any suggestions are welcome

Conclusion

Through-focus scanning optical microscopy (TSOM) method provides 3D metrology with nanometer scale measurement sensitivity using a conventional optical microscope

Acknowledgements

Michael Postek: Chief - Mechanical Metrology Division John Kramar: Leader - Nanoscale Metrology Group, discussions James Potzick: Discussions Richard Silver: Leader - For providing NIST optical microscope Rich Kasica and Lei Chen: NIST NanoFab – Fabrication Andras Vladar, Prem Kavuri and Bin Ming: SEM measurements Ronald Dixson: AFM measurements Andrew Rudack, Ben Bunday, Erik Novak, Victor Vartanian: For providing targets

Mike Stocker, Yeung-Joon Sohn, Bryan Barnes, Richard Quintanilha, Thom Germer, Jayson Gorman, and Egon Marx

Thank you

Ravikiran.attota@nist.gov

Google search: Ravikiran, Attota, TSOM

Ravikiran Attota, Frontiers of Metrology, Grenoble, May 24 2011