

Standard Test Methods for Response Robots

ASTM International Standards Committee on Homeland Security Applications; Response Robots (E54.09) | Website: RobotTestMethods.nist.gov

Sensor Tests Ground Robots

Version 2020C

Sponsor:

Adam Jacoff Intelligent Systems Division National Institute of Standards and Technology

Test Director:

U.S. Department of Commerce

Science and Technology Directorate U.S. Department of Homeland Security

Internet RobotTestMethods.nist.gov

Email RobotTestMethods@nist.gov

Sensing: Visual Acuity Test ASTM E2566-2017

Standard Test Methods for Response Robots ASTM International Standards Committee on Homeland Security Applications;

Response Robots (E54.09) | Website: RobotTestMethods.nist.gov

Sensing: Color Acuity Test ASTM WK54755 R

NIST **Standard Test Methods for Response Robots** ASTM International Standards Committee on Homeland Security Applications National Institute a Response Robots (E54.09) | http://RobotTestMethods.nist.gov Standards and Technolog U.S. Department of Commerc COLOR ACUITY TEST CHART 6 RANDOM HAZMAT LABEL COLORS - 30 REPETITIONS B Ε D 3 5D 50 5

COLOR DOTS

ROTATING HAZMAT LABELS

Sensing: Point and Zoom Camera Test ASTM WK33261

Visual, Color, Motion, Thermal, and Operationally Significant Objects

LICENSE PLATES OBJECTS OF INTEREST THERMAL HAND WARMER

Sensing: Point and Zoom Camera Test ASTM WK33261

Sensing: Point and Zoom Camera Test ASTM WK33261

WATCH MOVIE OF ASSEMBLY PROCESS HERE

Thermal acuity circular hole patterns. The large holes are 1 inch diameter and small holes are 1/2 inch diameter. One of the 8 directions is missing, like the gap on the visual acuity targets. There is a sticker template to drill through in the Disk Insert file.

A simpler approach is to fold a hand warmer into roughly a line and staple it to the panel vertical, horizontal, or diagonal

Sensing: Motion Detection

Sensing: Thermal Image Acuity ASTM WK57967

Heated reptile pads or hand warmers behind laser cut or drilled facades (Indoor or outdoor use – typical sticker targets warmed by the sun also work)

An array of Concentric C thermal targets placed throughout a scenario (needs power).

Concentric Cs laser cut into MDF with a reptile heater. A metal backing helps diffuse the heat.

Drill Holes (1in, 1/2in, 1/4in) through plastic disks with hand warmers heating a metal disk backing.

Sensing: Video Latency ASTM WK46478

Latency test with flashing "SOS" beacon or other light

High speed camera video (240 fps) captures flash in field AND flash on display views simultaneously.

Sensing: Remote Latency and Packet Loss ASTM WK46478

COMPUTER READABLE CODES SYNCRONIZED AT BOTH ENDS HUMAN READABLE CLOCKS SYNCRONIZED AT BOTH ENDS

UP RANGE WITH OCU (VIDEO CAPTURE WITH INTERFACE)

<image>

DOWN RANGE WITH ROBOT (VIEWED THROUGH INTERFACE) UP RANGE WITH OCU (VIDEO CAPTURE WITH INTERFACE)

DOWN RANGE WITH ROBOT (VIEWED THROUGH INTERFACE)

Sensing: Audio Acuity (2-Way) ASTM WK60783

Alpha-numeric list read by a computer voice

Loudness set to 75-80 dB

AUDIO ACUITY TEST1.

0 MISSES IN 2 LINES ALLOWED. 0 IN 10 NUMBERS.1 MISS IN 3 LINES ALLOWED. 1 IN 15 NUMBERS.2 MISSES IN 5 LINES ALLOWED. 2 IN 25 NUMBERS.3 MISSES IN 6 LINES ALLOWED. 3 IN 30 NUMBERS.

A! B! C! D! E! F! G! H!	 1. 6. 2. 7. 3. 5. 6. 2. 	2. 2. 5. 2. 4. 8. 9.	3. 3. 9. 8. 9. 0. 7. 5.	 4. 5. 8. 9. 1. 2. 3. 2. 	5. 4. 7. 5. 0. 9. 8. 7.	5 4 7/5 0 9 8 7/ 4 5 8 7/1 2 3 2 3 3 9 8 9 0 7/5 3 3 9 8 9 0 7/5 2 2 5 2 4 8 9 0 7/5 2 2 5 2 4 8 9 0 7/5 1 6 2 7/3 5 6 2
I!	3.	5.	2.	8.	9.	
J!	7.	2.	6.	1.	6.	
K!	8.	3.	3.	4.	5.	

Sensing: 3D Range Imagers and Scanners ASTM WK____

Resolution

Mapping

Sensing: Light Emissions

WHITE OR RED HEADLAMPS WRAPPED AROUND BUCKETS POINTED INWARD

Position accuracy for range to target using lighted buckets (red or white) Inspect objects of interest using lighted buckets (red or white) Identify objects lighted from the aircraft

Measure additional sensor capabilities

Sensing: Combined Sensor/Dexterity Crates (aka "Victim" Crates) WK _____

Radio Comms Range Tests Ground Robots

Test Director:

Adam Jacoff

Intelligent Systems Division National Institute of Standards and Technology U.S. Department of Commerce Sponsor:

Phil Mattson

Science and Technology Directorate U.S. Department of Homeland Security

Internet RobotTestMethods.nist.gov

Email RobotTestMethods@nist.gov

Radio Comms: Line-of-Sight Range ASTM E2854-2020

18

Sub Committee Chair:

Adam Jacoff

Committee Chair: Phil Mattson

Intelligent Systems Division National Institute of Standards and Technology U.S. Department of Commerce

Science and Technology Directorate U.S. Department of Homeland Security

Internet RobotTestMethods.nist.gov

Email RobotTestMethods@nist.gov