Managing data-types : the CORBA Approach and
AutoMap/AutoLink, an MPI Solution

Martial MICHEL , André SCHAFF , Judith Ellen DEVANEY

Abstract— There are many ways to create a distributed
system, such as with Parallel Virtual Machine (PVM), PAR-
MACS, p4, Message Passing Interface (MPI) and the Com-
mon Object Request Broker Architecture (CORBA).

This article concentrates on MPI, CORBA and the inter-
face for information (data-type) transfer. We discuss the
transfer of complex data-types, that are compositions of
basic predefined data-types, and also present methods for
transferring dynamic data-types, which are data-types that
link to other basic, complex or dynamic data-types (i.e. con-
tain pointers).

The article will present CORBA, MPI, their default way
of handling such data-types, and our MPI solutions : Au-
toMap and AutoLink.

Keywords— CORBA, MPI, data-types, AutoMap, Au-
toLink.

I. INTRODUCTION

HE Common Object Request Broker Architecture

(CORBA) was introduced in 1991, and it is in wide
use; the Message Passing Interface (MPI) is more recent
(version 1.1 in 1995) and its use is primarily in High Per-
formance Computing (HPC). Both aim at supporting dis-
tributed computing. In distributed computing, two issues
need addressing : the model for communication, and the
interface presented to the user for transmitting informa-
tion. Commonly, the information to be transfered consists
of collections of pre-defined data-types contained in user
defined structures.

In CORBA, the communication model is client/server.
The client and server are usually distinct processes, but
they may be contained in a single process. In MPI, the
communication model is at the discretion of the user and
thus must be constructed by the user.

This paper is concerned with the second issue : the inter-
face available to the user for information transfer, specifi-
cally the transfer of varieties of data types in CORBA and
MPI. The motivation for this is to see if the algorithm de-
veloped for MPI can easily be transfered to the CORBA
environment. We address two items :

1. the transfer of multi element or complex data-types.
These correspond to ordinary C structs.

2. the transfer of groups of complex types of (1) where the
individual elements are connected by pointers. These cor-

Martial MICHEL is the AutoMap/AutoLink Project Contact, a
Guest Researcher at NIST, and a PhD student in the RESEDAS
group in France

André SCHAFF is the RESEDAS scientific leader

Judith Ellen DEVANEY is the Scientific Applications Support
Project Leader at NIST, as well as the AutoMap/AutoLink Project
Leader

Thanks are here given to Edward J. BARKMEYER and Kevin G.
BRADY for their help on the CORBA part

respond to dynamic data-types such as trees, graphs, ...,
with the additional requirement of support for heteroge-
neous nodes in the dynamic data-types case.

The rest of the paper is organized as follow. In section II,
we present CORBA and show how the Common Object
Request Broker Architecture handles composed data-types.
Then, in section III, we show how MPI allows the creation
of complex data-types (composition of basic data-types), in
a simple but repetitive process. In section IV, we present
AutoMap, atool designed to create complex MPI data-type
(composition of data-types) directly from the user’s code.
In section V, we introduce AutoLink, an MPI based library,
which given the root node of a dynamic data-type (like a
tree or a graph) will flatten it, transfer it via MPI, and
reconstruct it and its links on the receiving MPI process.
The conclusion to this article is section VI.

II. CORBA

CORBA is a conceptual “software bus” that makes com-
munication possible between applications, regardless of
computer language, and platform. CORBA is designed to
work transparently with objects; an object is a data-type
plus a behavior, i.e. procedures internal to the type. Parts
of the data may be private; i.e. opaque to the user.

CORBA specifies (as can be seen in [1]) the components :
o Object Request Broker, which in a distributed environ-
ment, makes it possible to work with objects.

o Object Services, which provide basic functions for using
and implementing objects.

o Common Facilities, which provide a collection of services
that many applications may share.

o Applications Objects, which control object interfaces.

In this article, we will to concentrate on the way CORBA
handles data-types.

A. Objects in CORBA

CORBA uses concrete object models, which are models
that work with data and methods to be applied to it.

The Object Management Architecture (OMA) specifies
that a CORBA object adheres to a classical object model®.

An object possess a public interface that is defined
through the CORBA Interface Definition Language (IDL).
This interface hides the concrete object implementation.

To work with the object, the Object Request Broker
(ORB) component implements the CORBA “bus”, and
manages the client requests while hiding location and im-
plementation details? from the client.

Lall methods are contained within a class
2an Object Managment Group (OMG) standard language mapping

Client Object
Implementation
A
IDL IDL
ORB
>)
o/

Fig. 1. CORBA request example

Figure 1 is a simple example of how a request from the
client applies data to an object; the request goes through
the ORB, and is interpreted for the requesting applications
through the IDL, so that the client sees only the object in-
terface; not the details of the implementation. The client
and the object requested may not be in the same process
but available through network connection; however, the
concept of requesting an object remains the same.

CORBA gives the user two modes of object invocation :
static and dynamic. In the first mode, IDL object definition
is compiled in the target program. In the second mode,
everything is handled at runtime, by the client using ORB
functions. This last mode gives more flexibility for the use
of the objects, but it requires more user coding.

The CORBA object model works to some extent with
the concept of object references, which defines an object
instance (locally or remotely)

B. Data-types in CORBA

CORBA recognizes types of two kind : object and non
object. A non object is a basic or constructed type, as
shown in figure 2 (on page 2).

CORBA types
Object Non-Object
@ Basic Constructed
|
N]
short long float char bool enum struct union
ushort ulong double string octet any sequence array

Fig. 2. CORBA types

As can be seen in figure 2, among the basic data-types
CORBA recognizes, is an any type. The any type can rep-
resent any possible basic or constructed type, where con-
structed types are complex data-types made out of basic
data-types.

is defined for some programming language, so that users can have
access to OMG IDL types and methods

An any value is a type definition that can be passed to
a program without any static information for the type, so
the object does not have a portable method of using it. An
any value can be dynamically interpreted and constructed
using DynAny objects.

Using its IDL, CORBA can work with complex and dy-
namic data-types. Complex data-types are easily handled
by CORBA for they are easily created through IDL (an
example of such a “composed” data-type for IDL can be
found in entry 1 (on page 2)); in contrast with MPI (cf Sec-
tion ITI-A.1) it is not necessary to give details of memory
offsets and displacements to create a CORBA data-type.
Dynamic data-types on the other hand, are not handled by
default by CORBA, and are not easily created. Although
it is syntactically possible to generate recursive type speci-
fications in IDL, such recursion is semantically constrained;
the only permissible form of recursive type specification is
through the use of the sequence template type.

Entry 1 IDL entry example

struct FormattedData {
string representation;
sequence<octet> value;

};

In CORBA, in a sense, the object reference replaces the
pointer; but only some vendors have supersets of IDL that
include the notion of pointer. Still, a pointer does not
reference across process bounds. Pointers from one process
to another lose their meaning : to avoid that, either what it
references must travel with it, or an adjustment is needed
relative to its target on arrival.

Two solutions —at least— are possible for handling such
dynamic data-type transmission with CORBA :

1. Based on the object concept, it is possible to give each
object a behavior so that it knows how to traverse and
recreate itself if asked through the ORB. This method re-
quires some coding from the user, but insures proper —and
efficient, depending on the coding— traversal of such data-
types. It may require the object to contain methods that
need to be given to the other objects. An example, con-
sider the transfer of a dynamic data-type such as a tree (or
a graph); the user would have to define a node indexing
process, as well as a tree (graph) reconstruction process, in
order to send and receive the object content a proper way.
2. In IDL, there is also a transfer mode called “objects by
value”. This uses a get and put to copy the data as they
are. Pre- and post- processing may need to be done by the
user. In the case of pointers, new valid references would
need to be created.

To have a higher level of understanding in the process
of transmission of CORBA, one has to understand that
through some interoperability protocols, basic data-types
are sent as byte streams using the Common Data Repre-
sentation, as explained here after.

C. Interoperability

ORB interoperability specifies a comprehensive, flexible
approach to supporting networks of objects that are dis-
tributed across and managed by multiple, heterogeneous
CORBA-compliant ORBs.

Two Inter-ORB Protocols exist (the second a comple-
ment of the first) :

1. The General Inter-ORB Protocol (GIOP) element speci-
fies a standard transfer syntax and a set of message formats
for communications between ORBs.

2. The Internet Inter-ORB Protocol (IIOP) element speci-
fies how GIOP messages are exchanged using TCP/IP con-
nections.

C.1 GIOP

The GIOP possesses the following elements :
e The GIOP Message Formats, which specify the con-
tents of messages regarding object (request, implementa-
tion, ...).
o The GIOP Transport Assumptions, which describe gen-
eral assumptions concerning any network transport layer
that may be used to transfer GIOP messages.
e The Common Data Representation (CDR), which is a
transfer syntax, mapping OMG IDL data-types so that
they can be transfered between ORBs. This particular el-
ement is described more in detail in section II-D.

C.2 IIOP

The IIOP specification adds Internet IOP Message
Transport to the GIOP specification; it describes how
agents open TCP /IP connections and use them to transfer
GIOP messages.

D. Common Data Representation (CDR)

The Common Data Representation (CDR) is a transfer
syntax® (a data-type encapsulation), that has the following
features :

Variable byte ordering Machines with a common byte or-
der may exchange messages without byte swapping. When
communicating machines have different byte order, the
message originator determines the message byte order, and
the receiver is responsible for swapping bytes to match its
native ordering. Each GIOP message (and CDR encapsu-
lation) contains a flag that indicates the appropriate byte
order.

Aligned primitive types Primitive OMG IDL data types
are aligned on their natural boundaries within GIOP mes-
sages, permitting data to be handled efficiently by archi-
tectures that enforce data alignment in memory.

Complete OMG IDL Mapping CDR describes representa-
tions for all OMG IDL data types, including transferable
pseudo-objects such as TypeCodes. Where necessary, CDR
defines representations for data types whose representa-
tions are undefined or implementation-dependent in the
CORBA Core specifications.

3the format in which the GIOP represents OMG IDL data types in
an octet stream

Encapsulations are octet streams into which OMG
IDL data structures may be marshaled independently,
apart from any particular message context. Once a
data structure has been encapsulated, the octet stream
can be represented as the OMG IDL opaque data type
sequence<octet>, which can subsequently marshaled into
a message or another encapsulation.

D.1 Basic data-types

Each data-type has a special alignment in order to enable
primitive data to be moved into and out of octet streams,
all primitive data types must be aligned on their natural
boundaries.

D.2 Complex data-types

Also called “OMG IDL Constructed Types” for they are
built from OMG IDL’s data types using facilities defined
by the OMG IDL language.

Constructed type have no alignment restrictions beyond
those of their primitive components; the alignment of those
primitive types is not intended to support use of marshal-
ing buffers as equivalent to the implementation of con-
structed data-types within any particular language envi-
ronment. GIOP assumes that agents will usually construct
structured data types by copying primitive data between
the marshaled buffer and the appropriate in-memory data-
structure layout for the language mapping implementation
involved.

E. Discussion

It is straightforward to transfer complex data types with
CORBA using IDL to define the structures. Transferring
structures with pointers requires additional work on the
part of the coder. There needs to be either pre- and post-
processing; or object encapsulation with behaviors that
provide node indexing and traversal, for example.

II1. MPI

MPI is a distributed communication library, working on
the “Message Passing” concept. Like CORBA it knows a
predefined set of basic data-types. It allows for the creation
of new data-types. Since MPI is a library, we will discuss
MPI functions using its bindings for the C language.

A. Data-Types

The MPI library can only transfer types that it knows
about, and permits the creation of user defined MPI data-
types (a complex and repetitive operation).

A.1 Complex Data-Type

Users may want to use a composition of basic data-types,
which we will call a “complex data-type”(as long as the
user doesn’t use pointers to other structures or components
inside the structure).

So, an example of a complex data-structure may be as
in entry 2 (on page 4)

Entry 2 Complex data-type example

struct {
char display[50];
int maxiter;
double xmin, ymin;
double Xmax, ymax;
int width;
int height;

} cmdline;

A.2 Dynamic Data-Type

Dynamic data-types are an extension of complex data-
types, for they can handle structures containing pointer
fields. Examples of such data-structures [2] are linked lists,
trees, and graphs.

Like CORBA, there are at least two ways to transfer
dynamic data-types. Similar to the CORBA “object by
value”, one can send data-types, such as trees, as is with
MPI; but the pointer memory references will be invalid on
the receiving processor. So creating valid dynamic data-
types may require the user to pre- and post- process the
data-types.

Alternatively, one can encapsulate the pre- and post-
processing in the MPI library; this is the approach followed
in the AutoLink design, detailed in Section V.

In the following, we describe the creation of a new data-
type from a complex data-type. Then, we discuss AutoMap
which automates this process.

B. Complex Data-Type Creation with MPI
B.1 C Structure

We will create the data-type defined in entry 2 (on
page 4), which contains 50 chars, 3 integers (1 and then
2 more), and 4 doubles.

B.2 Creation of the MPI Data-Type

The process of creating an MPI data-type involves spec-
ifying the layout in memory of the data in the C structure
[3]. It is done in six operations :

1. Set up an array defining the number of data of each
kind that will be used (in the same order as the structure
definition).

int blockcounts[4]= {50,1,4,2};

which corresponds to : 50 char, 1 int, 4 double, 2 int.
2. Set up an array that will contain the type specification
for each element contained in the structure. There are four
fields* in the struct, thus :

MPI Datatype types[4];

Set the data-type for each element of the data-type to be
created :

types[0]= MPI_CHAR;

types[1]= MPI_INT;

types[2]= MPI_DOUBLE;

types[3]= MPI_INT;

4even if there are only 3 different data-types, the struct type order

needs to be followed so that a correct mapping may be done

3. Set up an internal displacement array containing the
memory offset of each field in the struct :

MPI Aint displs[4];

Map onto the displacement array, the MPI data-type on
the C structure (by linking it to the very first memory
element) :

MPI_Address(&cmdline.display, &displs[0]);
MPI_Address(&cmdline.maxiter, &displs[1]);
MPI_Address(&cmdline.xmin, &displs[2]);

MPI Address(&cmdline.width, &displs|[3]);

Adjust the displacement array so that the displacements
are offsets from the beginning of the structure :

for (i = 3; i >= 0; i - -) displs[i]-= displs[0];
4. Give a name to the MPI data-type :

MPI Datatype cmdtype;

5. Build the new MPI type :

MPI _Type_struct(4, blockcounts, displs, types,
&cmdtype) ;

6. Validate the type existence to be used with MPI :
MPI_Type_commit(&cmdtype) ;

IV. AutoMapP

AutoMap is a tool designed to simplify the MPI user’s
task when willing to create complex data-types; the tool
will, for the user’s C type definition file extract used data-
types and create output files containing C procedures to
define the MPI user types.

A. Overview of AutoMap use

AutoMap is very simple to use, and in version 2.1 it
comes with the optional building of AutoLink output files
(see Section V on page 5).

To use it the process is simple :

1. Edit your type definition file, by adding 3 markers :

e /*” AM Begin */ to mark the beginning of the Au-
toMap recognition process.

e /*~ AM End */ to mark the end of the recognition pro-
cess.

o /%~ AM */ to specify which types are to be processed.

In the entry 2 (on page 4), it will look like entry 3 (on
page 5).
2. Run AutoMap on the type definition processed file (the
options are explained in entry 4 (on page 5), so in the
present case it was run —at least— with the option -noAL);
it will output files such as :

¢ mpitypes.inc which defines a file to be included by the
user code (after the user type definition file) fully defining
a Build MPI _Types() command, that does all of the MPI
type creation process (as described in Section III-B).

e mpitypes.h is the prototype definition for
mpitypes.inc file.

« logbook.txt is an internal AutoMap log .

3. Include the generated files and other prototypes files, as
shown in figure 3 (on page 5, in the following order :

o mpi.h because MPI is required.

the

Sused mainly for debugging purposes, and/or user understanding
of the low level engine

e struct.h so that the user data-types are known to C,
and we can do some mapping to MPI.

e mpitypes.inc so that the created Build MPI_Types ()
command definition is available for use.
4. In the user code, after having done the required
MPI_Init, just execute the Build MPI _Types() procedure
so that the user AutoMap created data-types are available.
One can the then use AM_ prefixed user data-types with
MPI 8.

Entry 3 AutoMap adapted code
/*~ AM_Begin */

struct {
char display[50];
int maxiter;
double xmin, ymin;
double Xmax, ymax;
int width;
int height;

} cmdline /*~ AM */;

/*~ AM_End */

Entry 4 AutoMap options

[-help | [-v] [-noAL] [-log] filename]
-help : Will print this help menu

-v : Verbose mode

AutoMap

-noAL : Will not generate the entries
for use with AutoLink

-log : Will generate the "logbook.txt"
for this run

filename : name of the C typedef

definition file to analyze

B. Design of AutoMap

The design of a “source-to-source” compiler tool is with
grammars that match C type definitions, and a core engine
to process the recognized types. The tool Yacc+-+[4] is
used as the parser and lexer for the grammars.

Two grammars are used in the creation process :

o The first grammar is used to recognize the AutoMap be-
gin marker and then run the second grammar processing.
o The second grammar reads all the user created data-
types’ definitions and make it possible for the core engine
to access them. The second grammar stops its processing
when recognizing the AutoMap end marker.

The core engine works with the abstract simplified design
algorithm described in entry 5 (on page 6), that makes
sure that if a “sub-type” is used by a data-type, this sub-
type definition is created. To do so, it has to work with
an Abstract Syntax Tree (AST) generated from the user
data-type definition.

8in our example, the data-type was cmdline; as the AutoMap data-

type is AM_cmdline

_—— —- —- —a

mpitypes.h

mpitypes.inc userprog

A

AutoMap
C linker
(with MPI)
struct.h —T= userprog.c - userprog.o

——= is used by

------- C compilation
—I= isincluded by

- - — - optional

—® generates

Fig. 3. AutoMap use process

C. Awailability

AutoMap is available at http://www.nist.gov/itl/
div895/auto/. It may be downloaded or run directly on
its web page .

V. AuTtoLINK

AutoLink is a tool for transmitting dynamic data-types
(graphs, trees, ...) with MPIL.

A. Overview of AutoLink use

To use AutoLink :

¢ Run AutoMap on a definition file containing the same
tag as defined in Section IV-A. It will create the files :

— mpitypes.inc and mpitypes.h define AutoMap user’s
data-type generation process.

— autolink.h defines the prototype definition for Au-
toLink functions, as well as the naming of the user defined
types for those functions (same concept as for AutoMap,
but the AM_ is replaced by AL_).

— al_routines.inc defines the specialized code for each
user function on user data-types; it is only supposed to be
used by autolink.inc, and defines the “@Q” entries in the
send and receive algorithm of AutoLink shown in entry 6
(on page 7) and entry 7 (on page 7).

— logbook. txt is the internal AutoMap log.

o Include files as presented in figure 4 (on page 6), where :

— al_common.h contains all the common AutoLink defi-
nitions and debug mode settings.

Entry 5 AutoMap abstract simplified core engine algo-
rithm

[Creation of the AST

| |Processing Grammarl

| |Processing Grammar2

|Updating the AST

| |Copying Pointer information and

| | Assigning subTypes (number)

| |Assigning Datatype Numbers

|[Writing MPI data-types definitions files
| (and the Build_MPI_Types procedure)
| |First, the sub-types

| |Then, the user defined types

|If AutoLink generation asked

[Then |Writing AutoLink internal

| | routines definitions

| |[Writing AutoLink types definition
|[If run in verbose mode

|Then |Print run information
[Cleaning the AST

— al_internals.h defines the prototypes of AutoLink in-
ternal data-types (detailed in Section V-C).

— al_internals.c contains the definition of the Au-
toLink internal data-types; note that they define some fully
operational specialized types and functions.

— autolink.inc is the AutoLink main code definition it-

self, it is the front end to the specialized functions gener-
ated by AutoMap for each data-types required.
e In the user code, after the required MPI_Init, execute
the AL_Init procedure (it will automatically generate the
MPI data-types, and set up the AutoLink engine). Now the
AutoLink functions (detailed in Section V-B) are available
for use. Before doing the MPI Finalize command, do a
AL _Finalize command to tell AutoLink to finish its pro-
cessing.

B. AutoLink functions
B.1 AL_Init()

It initializes AutoLink internals.

B.2 AL_SetPacketSize(size)

Enables the change of the maximum size of the packet
(by data-type) transmitted. size is a value in bytes. This
need to be done for each AutoLink communicating pro-
cesses, for a test is run at the initialization of the sending
and receiving end, to check it.

B.3 int AL_Send(buf, datatype, dest, tag, comm)

Will transfer a dynamic data-type following every —first
level— pointer in the data-type from buf (of AutoLink
data-type datatype) to MPI rank dest with matching tag
and communicator. Returns MPI_SUCCESS if no error is
encountered.

Y

mpitypes.h

Y

autolink.h

Y

T mpitypes.inc

Y

al_routines.inc

Vi T ¥

<t

al_common.h

AutoMap

autolink.inc al_internals.h —T= al_internals.c

i '

userprog.c |- B

struct.h =

userprog.o al_internals.o

C compilation m

- - - - optional

—= s used by

—= isincluded by

—® generates userprog

Fig. 4. AutoLink use process

B.4 int AL Recv(buf, datatype, source, tag, comm,
status)

Will receive and reconstruct a data-type sent by Au-
toLink through the command AL_Send. The function stores
the address of the root node of the recreated dynamic data-
type into buf, its data-type in datatype. This for an
element sent from source with matching tag and comm.
If given, will store an MPI_status into status. Returns
MPI_SUCCESS if no error is encountered.

B.5 AL _Finalize()

Finalize AutoLink internals.

C. Internal data-types

For AutoLink data-types and operations on those data-
types were designed for efficiency and practical use. We will
describe them by the names that are used in the algorithm
shown in entry 6 (on page 7) and entry 7 (on page 7).

C.1 NEXT

This is a Queue of elements. It allows AutoLink to know
the number of elements still to be traversed.
C.2 ‘‘mark’’

The “mark” is defined as a Hash table where each level
is made of a Linked List with add in head. It is used
by AutoLink to “mark” that an element has already been
traversed 7.

C.3 ADDRESS

ADDRESS is a dynamically expanded two dimensional
array. AutoLink is designed to handle dynamic data-types
with heterogeneous nodes, thus one dimension is for distinct

“the dynamic data-type is to be traversed by passing only one
through every possible element

data-types, the second for indexing the data-type elements
for such node types. This array is used by AutoLink to
store addresses of traversed elements (they are added in it
on the recreation end in the same order) for quick access
to those elements.

C.4 LINKS

Uses C casting facility, and replaces the content of a
pointer by the index in ADDRESS (same as “mark”) of
the pointed element. Since AutoLink works using strong
data-type typing, by using the data-type and the index in
the data-type storage in ADDRESS, it is possible to find
the place in memory of the element.

C.5 PACKET

It constitute the PACKET to be sent through MPI by
AutoLink. It is a one dimensional array, where each ele-
ment is a memory space for some elements of each data-

types.
D. AutoLink simplified algorithm

The “@” lines in the algorithms are code specified in the
data-types specialized code file al_routines.inc.

Entry 6 AutoLink simplified sending algorithm
Initialization :

[Check coherency of PACKET size with receiver
| or stop error.

[Add entry node’s address in ADDRESS.

|Add entry node’s informations in NEXT.

|[Mark entry node.

Main loop:

|While there are elements in NEXT

| |Reach current element in NEXT.

|Add current element in PACKET.

|@For each son of current node (copy in

| PACKET)

|@If son is not marked

|@Then |@QIf son does not exist

| |@Then |@Add ¢ ‘non existent’’

| | in LINKS.

| |@Else |@Add son’s address

| I | in ADDRESS.

| |@Add son’s informations
| in NEXT.

|

[

[|
| | @Mark son.

| | |@Add son’s mark in LINKS.
| |@Else |@Add son’s mark in LINKS.

|If PACKET is full, send.

| |Next element from NEXT.

|Send last PACKET.

|Send initial element index.

D.1 Sending

See entry 6 (on page 7) for a simplified version of the
sending algorithm.

Entry 7 AutoLink simplified reception algorithm

Initialization :
|Check coherency of PACKET size with sender
| or stop error.

Main loop :

|While there are PACKETs to receive

| |Receive PACKET.

| |For each element from PACKET

| | |@Create element in memory.

| | |Add created element’s address in ADDRESS.
|Receive initial element index.

|@For each element in LINKS

| |@If element is ‘‘non existent’’

| |@Then |@Set son’s value to non existent.

| |@Else |@Set son’s value to referred element
| | | in ADDRESS.

|Result is initial element with recreated links.

D.2 Receiving

See entry 7 (on page 7) for a simplified version of the
receiving algorithm.

E. Discussion

It is straightforward to transfer complex data-types with
MPI using AutoMap to create the MPI structures. We have
enabled the transfer of types with pointers through the use
of the MPI AutoLink library. AutoLink flattens the data-
types, sends them, and reconstructs them on the receiving
process. All of this occurs “behind the scene”; of the user
interface of AutoLink, through the two routines AL_Send
and AL Recv.

VI. CONCLUSION

In this article, we have compared two ways for CORBA
and MPI to send and receive complex and dynamic data-
types, and shown an implementation for MPI of one way
of doing so (AutoMap/AutoLink).

This method could also be created in CORBA by en-
capsulating a similar algorithm in an object definition so
that the objects are given a behavior for traversing and
reconstructing themselves. Thus the AutoLink algorithm
developed for MPI can be used in a CORBA environment.

VII. HTTP REFERENCES

« MPT data-type tools :
http://www.nist.gov/it1l/div895/auto/
o NIST :

http://www.nist.gov/

« RESEDAS :
http://www.loria.fr/equipes/resedas/
. SASP .
http://www.nist.gov/itl/div895/sasg/

REFERENCES

Object Management Group, “The Common Object Request
Broker : Architecture and Specification,” Tech. Rep., Object
Management Group, 1998, http://www.omg.org/.

Aaron M. Tenenbaum, Yedidyah Langsam, and Moshe J. Au-
genstein, Data Structures Using C, Prentice Hall, 1990.
William Gropp, Ewing Lusk, and Anthony Skjellum, Using
MPI: Portable Parallel Programming with the Message-Passing
Interface, The MIT Press, Cambridge, MA, 1994.

Compiler Resources, Hopkinton, MA, Yacc++ and the Language
Objects Library Reference Guide, 1996.

Alan Pope, The CORBA Reference Guide, Addison Wesley,
1997.

Robert Orfali, Dan Harkey, and Jeri Edwards, Instant CORBA,
Wiley Computer Publishing, 1997.

Thomas Mowbray and Ron Zahavi, The Essential CORBA,
Wiley Computer Publishing, 1995.

Message Passing Interface Forum, MPI : A Message-Passing
Interface Standard.

“MPI: A Message Passing Interface Standard,” HTML doc-
ument, 1994, http://wuw.mcs.anl.gov/Projects/mpi/index.
html.

[10] Ian Foster, Designing and Building Parallel Programs, Addison

Wesley, 1995, http://www.mcs.anl.gov/dbpp/.

[11] Peter Pacheco, Parallel Programming with MPI, Morgan Kauf-

mann Publishers Inc., 1997, http://wuw.usfca.edu/mpi/.

[12] K. H. J. Vrielink, E. C. Baland, and J. E. Devaney, “AutoLink:

An MPI Library for Sending and Receiving Dynamic Data Struc-
tures,” in International Conference on Parallel Computing. Uni-
versity of Minnesota Supercomputer Institute, october 3-4, 1996.

[13] Judith Ellen Devaney, Martial Michel, Jasper Peeters, and Koen

Vrielink, “AutoLink: An MPI C Library For Sending and Re-
ceiving Dynamic Data Structures,” Tech. Rep., NIST, April
1997, http://www.itl.nist.gov/div895/sasg/parallel/.

[14] Judith Ellen Devaney, Martial Michel, Jasper Peeters, and Eric

Baland, “AutoMap: A Software Tool for the Automatic Cre-
ation of MPI Data Structures From User Code,” Tech. Rep.,
NIST, April 1997, http://www.itl.nist.gov/div895/sasg/
parallel/.

[15] Delphine Stéphanie Goujon, Martial Michel, Jasper Peeters, and

Judith Ellen Devaney, “Automap and autolink : Tools for com-
municating complex and dynamic data-structures using mpi,”
Lectures Notes in Computer Science, vol. 1362, 1998, Presented
at CANPC’98.

[16] Brian W. Kernighan and Dennis M. Ritchie, The C Program-

ming Language, second edition, Prentice Hall PTR, Englewood
Cliffs, NJ, 1988.

[17] Bjarne Stroustrup, The C++ Programming Language, second

edition, Addison-Wesley, 1991.

[18] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers :

to

Principles, Techniques, and Tools, Addison-Wesley Publishing
Company, 1988.

DiISCLAIMER

Certain commercial products may be identified in order
adequately specify or describe the subject matter of this

work. In no case does such identification imply recommen-
dation or endorsement by the NATIONAL INSTITUTE OF
STANDARDS AND TECHNOLOGY, nor does it imply that
the products identified are necessarily the best available
for the purpose.

