

Comprehensive Analytical Tools for the Identification of Emerging Drugs of Abuse

Luis E. Arroyo, Anthony P. DeCaprio, Tom Gluodenis, Ana Michelle Broomes, Melanie Eckberg, Ashley Kimble and Joshua Z. Seither

Dept. of Chemistry & Biochemistry International Forensic Research Institute Florida International University Miami, FL

Global Drug Numbers

Global trends in the estimated prevalence of drug Global trends in the estimated number of people who use drugs, 2006-2014 use, 2006-2014 Annual drug users (millions) 5 0% 5 2% 5 2% 5 2% 5 Annual prevalence 4.9% 4.9% 6% 4 8% (percentage) 0.6% Prevalence of people who use drugs (percentage) Number of people who use drugs Prevalence of people with drug use problems (percentage) Number of people with drug use problems

Source: Responses to the annual report questionnaire. Note: Estimated percentage of adults (ages 15-64) who used drugs in the past year.

Source: Responses to the annual report questionnaire. Note: Estimates are for adults (ages 15-64), based on past-year use.

Source: United Nations Office on Drugs and Crime 2016 Report

sources: responses to the annual report questionnaire; inter-American Drug Abuse Control Commission; and Louisa Degenhardt and others, "Illicit drug use", in *Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors*, vol. 1, Majid Ezzati and others, eds. (Geneva, World Health Organization (WHO), 2004), p. 1,109.

http://www.unodc.org/doc/wdr2016/WORLD_DRUG_REPORT_2016_web.pdf

NPS Worldwide

Number of new psychoactive FIG. 75. substances reported, 2009-2014

- Number of new psychoactive substances reported in current year for the first time
- Number of new psychoactive substances reported in current year but not for the first time

Source: UNODC, early warning advisory on NPS, 2014.

Table 1.1 NATIONAL AND REGIONAL ESTIMATES FOR THE 25 MOST FREQUENTLY IDENTIFIED DRUGS¹

Estimated number and percentage of total drug reports submitted to laboratories from January 1, 2014, through December 31, 2014, and analyzed by March 31, 2015

USA Numbers

	National		West		Midwest		Northeast		South	
Drug	Number	Percent	Number	Percent	Number	Percent	Number	Percent	Number	Percent
Cannabis/THC	437,117	28.92%	50,803	19.61%	144,993	38.42%	75,154	30.36%	166,168	26.49%
Methamphetamine	236,175	15.63%	104,424	40.31%	38,983	10.33%	3,221	1.30%	89,547	14.27%
Cocaine	213,167	14.10%	18,671	7.21%	42,571	11.28%	48,884	19.75%	103,041	16.42%
Heroin	163,600	10.83%	27,418	10.59%	48,950	12.97%	51,924	20.98%	35,308	5.63%
Oxycodone	43,000	2.85%	4,289	1.66%	7,913	2.10%	9,414	3.80%	21,385	3.41%
Alprazolam	40,747	2.70%	3,310	1.28%	7,780	2.06%	5,829	2.36%	23,828	3.80%
Hydrocodone	33,132	2.19%	4,418	1.71%	7,596	2.01%	1,634	0.66%	19,484	3.11%
Buprenorphine	15,209	1.01%	1,251	0.48%	3,014	0.80%	4,539	1.83%	6,405	1.02%
Clonazepam	11,797	0.78%	1,103	0.43%	2,477	0.66%	2,376	0.96%	5,841	0.93%
Amphetamine	11,531	0.76%	1,140	0.44%	3,070	0.81%	1,517	0.61%	5,804	0.93%
XLR11	11,001	0.73%	1,244	0.48%	1,920	0.51%	2,935	1.19%	4,903	0.78%
Morphine	7,620	0.50%	1,191	0.46%	1,797	0.48%	615	0.25%	4,018	0.64%
AB-FUBINACA	6,293	0.42%	249	0.10%	1,647	0.44%	455	0.18%	3,942	0.63%
Noncontrolled, non-narcotic ²	5,724	0.38%	2,149	0.83%	50	0.01%	580	0.23%	2,946	0.47%
Methadone	5,559	0.37%	837	0.32%	1,077	0.29%	1,237	0.50%	2,407	0.38%
Diazepam	5,446	0.36%	746	0.29%	1,322	0.35%	508	0.21%	2,870	0.46%
Ethylone	5,425	0.36%	310	0.12%	435	0.12%	879	0.36%	3,801	0.61%
Phencyclidine (PCP)	5,004	0.33%	401	0.15%	990	0.26%	1,773	0.72%	1,840	0.29%
AB-PINACA	4,954	0.33%	357	0.14%	1,738	0.46%	496	0.20%	2,363	0.38%
MDMA	4,902	0.32%	1,915	0.74%	1,492	0.40%	421	0.17%	1,074	0.17%
Methylone	4,768	0.32%	679	0.26%	403	0.11%	797	0.32%	2,890	0.46%
Fentanyl	4,642	0.31%	119	0.05%	1,683	0.45%	1,545	0.62%	1,295	0.21%
Hydromorphone	4,629	0.31%	306	0.12%	572	0.15%	155	0.06%	3,597	0.57%
Psilocin/psilocibin	3,965	0.26%	1,319	0.51%	1,223	0.32%	369	0.15%	1,054	0.17%
alpha-PVP	3,905	0.26%	142	0.05%	807	0.21%	673	0.27%	2,283	0 36%
Top 25 Total	1,289,316	85.31%	228,790	88.33%	324,501	85.98%	217,928	88.05%	518,096	82.58%
All Other Drug Reports	221,997	14.69%	30,231	11.67%	52,925	14.02%	29,576	11.95%	109,264	17.42%
Total Drug Reports ³	1,511,313	100.00%	259,021	100.00%	377,426	100.00%	247,505	100.00%	627,360	100.00%

XLR11=[1-(5-Fluoro-pentyl)1H-indol-3-yl],(2,2,3,3-ieiramethylcyclopropyl)methanone

AR-FURINACA-(N-(1-Amino-3-methol-1-arabujan-2-vl)-1-(4-Augrahenzvl)-1H-inducale-3-carbayamide)

New Psychoactive Substances (NPS)

- Synthetic alternatives to traditional illegal drugs of abuse.
 - Stimulant-like NPS: (e.g. "Bath salts").
 - Marijuana-like NPS: e.g. "spice".
 - LSD-like NPS: e.g. "N-bombs".

Designer Drugs

Synthetic Cathinones

- Structurally and pharmacologically related to amphetamine, ecstasy (MDMA), cathinone.
- CNS stimulants.
- Sold in retail stores, internet, "head shops" as batch salts, plant food.

MS-Based Screening of Designer Drugs: Previous Work

- Peters, F.T., et al. (2003). J.Mass Spectrom. <u>38</u>, 659-676. (18 amphetamines and piperazines)
- Kölliker, S., and Oehme, M. (2004). Anal.Bioanal.Chem. 378, 1294-1304. (55 phenethylamines)
- Takahashi, M., et al. (2009). Talanta <u>77</u>, 1245-1272. (104 analytes)
- Wohlfarth, A., et al. (2010). Anal.Bioanal.Chem. <u>396</u>, 2403-2414. (35 analytes)
- Shanks, K.G., et al. (2012). J.Anal.Toxicol. <u>36</u>, 360-371. (33 cannabinoids; 26 cathinones/phenethylamines)
- Ammann, J., et al. (2012). J.Anal.Toxicol. <u>36</u>, 372-380. (23 cannabinoids)
- Ammann, D., et al. (2012). J.Anal.Toxicol. <u>36</u>, 381-389. (25 cathinones and phenethylamines)
- Guale, F., et al. (2013). J.Anal.Toxicol. <u>37</u>, 17-24. (32 cannabinoids/cathinones)
- Scheidweiler KB, Jarvis MJ, Huestis, MA (2015). Anal. Bioanal. Chem. 407, 883-897 (47 synthetic cannabinoids metabolites in urine)

Problem statement:

There is a need for comprehensive methods capable of screening the larger universe of these drugs in clinical and forensic toxicological settings

Research Objective:

To develop a robust, rapid and comprehensive MS-based screening methods for designer drugs and to provide a novel and ample MS spectral database and library.

Evolution of Method Development and Overarching Goal

Designer Drug "Master List"

- Master List of current or potential designer drugs/metabolites, identified from:
 - Published literature.
 - Government documentation.
 - Commercial standard supplier listings.
 - "PiHKAL" and "TiHKAL" by Alexander & Ann Shulgin.
 - Online drug forums:
 - http://www.bluelight.ru/vb/
 - <u>http://www.drugs-</u> <u>forum.com/index.php</u>
- Currently at 857 unique entries.

- Information collected:
 - Structure.
 - Molecular formula.
 - Accurate mass.
 - IUPAC name.
 - Common name or abbreviation.
 - CAS and Chemspider number (if available).
 - Literature citations.
- Unique ID assigned and data compiled into a Personal Compound Database Library (PCDL; Agilent Technologies).
- Standards available for 275 compounds (Initial Batch of DD).

MassHunter PCDL	Manager - C:\DATA\PCD	DL\FIU Designer Drugs Li	ibrary.cdb	Names and Address of the			-	
Eile Edit View	/ <u>P</u> CDL <u>L</u> inks <u>H</u> e	lp						
Single Search	s 😅 🖬 🗋 🖾 🧐	Batch Summary	Edit Compounds	Spectral Search	Browse Spectra	Edit Spectra		
Mass	○ [M+H]+ ○ Neutral	М.н.		Structure	MOI Text			
Mass tolerance:	10 • ppm ©) mDa		L	HOL TON			
Retention time						1		
RT tolerance:	0.1 min					CH3	N-COB	
						100	1	

Single Search Results: 615 hits

	Compound Name	Formula	Mass	Anion	Cation	RT (min)	CAS	ChemSpider	IUPAC Name	Num Spectra
	2C-C	C10H14CI	215.07131				88441-14-9	21106221	4-chloro-2,5-dimethoxy-Benzeneethanamine	3
	Fencamfamine	C15H21N	215.16740				<u>2240-14-4</u>	13922	N-ethyl-3-phenyl-norbornan-2-amine	0
	DET	C14H20N2	216.16265	m			<u>61-51-8</u>	5865	N,N-Diethyl-2-(1H-indol-3-yl)ethanamine	0
	MIPT	C14H20N2	216.16265				96096-52-5	21106353	N-methyl-N-(1-methylethyl)-1H-Indole-3-ethanamine	0
	4-MePPP	C14H19NO	217.14666			2	<u>28117-80-8</u>	4936084	1-(4-methylphenyl)-2-(1-pyrrolidinyl)-1-Propanone	0
	α-Pyπolidinobutiophenone	C14H19NO	217.14666				<u>13415-82-2</u>		1-phenyl-2-(1-pyπolidinyl)-1-butanone	3
	PCPr	C15H23N	217.18305					521518	N-(1-phenylcyclohexyl)propanaminee	0
	5-MeO-DMT	C13H18N	218.14191				<u>1019-45-0</u>	1766	2-(5-methoxy-1H-indol-3-yl)-N,N-dimethylethanamine	3
Þ	4-MeO-DMT	C13H18N	218.14191				<u>3965-97-7</u>	23126449	2-(4-methoxy-1H-indol-3-yl)-N,N-dimethyl-ethanami	3
	4-HO-MET	C13H18N	218.14191				77872-41-4	10513072	3-[2-[ethyl(methyl)amino]ethyl]-1H-indol-4-ol	0
	5-HTP	C11H12N	220.08479				<u>56-69-9</u>	388413	2-amino-3-(5-hydroxy-1H-indol-3-yl)propanoic acid	0
	MDBZP [1-(3,4-Methylenedioxybenzyl)piperazine]	C12H16N	220.12118				32231-06-4	85214	1-(benzo[1,3]dioxol-5-ylmethyl)piperazine	0
	Dehydronorketamine	C12H12CI	221.06074			2 V	<u>57683-62-2</u>	142954	6-amino-6-(2-chlorophenyl)cyclohex-2-en-1-one	0
	Butylone	C12H15N	221.10519	_		1.4 1.4	<u>802575-1</u>	21106270	1-(1,3-benzodioxol-5-yl)-2-(methylamino)-1-Butanone	3
	bk-MDDMA	C12H15N	221.1051 <mark>9</mark>	1			<u>765231-5</u>	7970239	1-(1,3-benzodioxol-5-yl)-2-(dimethylamino)-1-Propa	0
	Ethylone (bk-MDEA)	C12H15N	221.10519					21106271	(RS)-1-(1,3-benzodioxol-5-yl)-2-(ethylamino)propan	3
	N-Acetyl-3,4-methylenedioxyamphetamine	C12H15N	221.10519			2 V	<u>36209-71-9</u>	262493	N-[1-(1,3-benzodioxol-5-yl)propan-2-yl]acetamide	0
	MDPR (3,4-Methylenedioxy-N-propylamphetamine)	C13H19N	221.14158	_		14	4	<u>10723901</u>	N-[1-(1,3-benzodioxol-5-yl)propan-2-yl]propan-1-a	0
	Norketamine	C12H14CI	223.07639	1			<u>35211-10-0</u>	110322	2-Amino-2-(2-chlorophenyl)cyclohexanone	0
	Tiletamine	C12H17N	223.10308					24714	2-(Ethylamino)-2-(2-thienyl)cyclohexanone	0
	4-MTPA	C13H21NS	223.13947			28 17	<u>634607-2</u>		α-methyl-4-(methylthio)-N-propyl-Benzeneethanam	0
2 1	(3.4-DMMA)	C13H21N	223.15723			0	58993-77-4		3.4-dimethoxv-N.N.α-trimethyl-Benzeneethanamine	0

e Edit <u>V</u> iew <u>P</u> CDL <u>L</u> inks <u>H</u> elp					
Find Compounds 🚑 🚽 🗋 🚰 🎯	iary Edit Compounds	Spectral Search	Browse Spectra	Edit Spectra	
Mass Mass Mass Mass tolerance: 10 Point called Mass tolerance: 10 Point called Mass tolerance: 0.1 min Ion search mode Include neutrals Include neutrals Include a price	Formula: Name: JWH Notes: IUPAC: CAS: ChemSpider:		Molecule:	Structure MOL Text	
☑ Include cations				Cayman Chemical Item Number 10831	

Single Search Results: 169 hits

	Compound Name	Formula	Mass	Anion	Cation	RT (min)	CAS	ChemSpider	IUPAC Name	Num Spectra
•	JWH-030	C20H21NO	291.16231				162934-7	<u>8147131</u>	1-naphthalenyl(1-pentyl-1H-pyrrol-3-yl)-methanone	3
	JWH-031	C21H23NO	305.17796				162934-7		(1-hexyl-1H-рулоl-3-yl)-1-naphthalenyl-methanone	3
	JWH 133	C22H32O	312.24532					<u>5293702</u>	(6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetr	0
	JWH-072	C22H19NO	313.14666				209414-0	24629912	1-naphthalenyl(1-propyl-1H-indol-3-yl)-methanone	3
	JWH-251 4-methylphenyl isomer	C22H25NO	319.19361			5	864445-4		2-(4-methylphenyl)-1-(1-pentyl-1H-indol-3-yl)-ethan	3
	JWH-251 3-methylphenyl isomer	C22H25NO	319.19361			6 20			1-(1-pentyl-1H-indol-3-yl)-2-(m-tolyl)ethanone	3
	JWH-251	C22H25NO	319.19361				864445-3	<u>9791472</u>	2-(2-methylphenyl)-1-(1-pentyl-1H-indol-3-yl)-metha	3
	JWH 176	C25H24	324.18780						1-([(1E)-3-pentylinden-1-ylidine]methyl)naphthalene	0
	JWH-015	C23H21NO	327.16231				<u>155471-0</u>	3480676	(2-methyl-1-propyl-1H-indol-3-yl)-1-naphthalenyl-m	3
	JWH-073 2'-naphthyl isomer	C23H21NO	327.16231						(1-butyl-1H-indol-3-yl)(naphthalen-2-yl)-methanone	3
	JWH-073 2'-naphthyl-N-(1,1-dimethylethyl) isomer	C23H21NO	327.16231						(1-(tert-butyl)-1H-indol-3-yl)(naphthalen-2-yl)metha	3
	JWH-073 2'-naphthyl-N-(1-methylpropyl) isomer	C23H21NO	327.16231						(1-(sec-butyl)-1H-indol-3-yl)(naphthalen-2-yl)-meth	3
	JWH-073 2'-naphthyl-N-(2-methylpropyl) isomer	C23H21NO	327.16231						(1-isobutyl-1H-indol-3-yl)(naphthalen-2-yl)methanone	3
	JWH-073 N-(1,1-dimethylethyl) isomer	C23H21NO	327.16231						(1-(tert-butyl)-1H-indol-3-yl)(naphthalen-1-yl)metha	3
	JWH-073 N-(1-methylpropyl) isomer	C23H21NO	327.16231						(1-(sec-butyl)-1H-indol-3-yl)(naphthalen-1-yl)metha	3
	JWH-073 N-(2-methylpropyl) isomer	C23H21NO	327.16231						(1-isobutyl-1H-indol-3-yl)(naphthalen-1-yl)methanone	3
	JWH-073	C23H21NO	327.16231				208987-4	8647081	(1-butyl-1H-indol-3-yl)-1-naphthalenyl-methanone	3
	JWH-175	C24H25N	327.19870			n. 24	<u>619294-3</u>		3-(1-naphthalenylmethyl)-1-pentyl-1H-indole	3
	JWH 015-d7	C23H14D	334.20625						(2-methyl-1-propyl-(1,1,2,2,3,3,3-d7)-1H-indol-3-yl)	0
	JWH 073-d7 (solution)	C23H14D	334.20625						(1-butyl-1H-indol-3-yl)-1-naphthalenyl-2,2,3,3,4,4,4	0
	JWH-201	C22H25N	335.18853				864445-4	23256220	2-(4-methoxyphenyl)-1-(1-pentyl-1H-indol-3-yl)-eth	3
	JWH-302	C22H25N	335.18853				864445-4	9668546	2-(3-methoxyphenyl)-1-(1-pentyl-1H-indol-3-yl)-eth	3

HassHunter PCDL Manager - C:\DATA\PCDL\FIU Designer Drugs Library.cdb									
Eile Edit View PCDL Links Help									
🕴 🕨 Find Spectra 🎒 🔜 🗋 📂 🎯									
Single Search Batch Search Batch Summary	Edit Compounds	Spectral Search Browse Spect	tra Edit Spectra						
Single Search Batch Search Batch Sammary]					
Mass lon polarit:	Graphic Mass List								
	Liberry england								
loierance. 200 () ppm () mDa lonization	110-								
Collision energy			77.03910						
	콩 100-		100.00						
Tolerance: 2.0 eV	5 00								
Spectra for compound: 4-Euoroisocathinone	14 30-								
Compound n Collision	80-								
Name Precursor Ion Energy									
4-Fluoroisocathin 168.08189 10	/0-								
4-Fluoroisocathin 168.08189 20	60-								
4-Huoroisocathin 168.08189 40									
	50-								
	40		103.05470						
	40-		33.72						
Single Search Results: 275 hits	30-								
Compound Name Formula f	20-	51.02350	95.02920	E					
Methylhexanamine (DMAA) C7H17N 1	10-	8,98	6.81	121 04540					
Cathinone C9H11NO 1				1.53					
3-Fluoroamphetamine (3-FA) C9H12FN 1				100 100 100 100					
2-Fluoroamphetamine (2-FA) C9H12FN 1	, 30	40 50 60	70 80 90 100 110	120 130 140 150					
4-Fluoroamphetamine (4-FA) C9H12FN 1	m/z								
Phenylpiperazine (NPP) C10H14N2									
Methodhinone C10H13NO 16	63.0371 E	<u>2020/44-2</u> 1213 24							
Tior-wepnearone C10H13NO 16 Ethologophetamine C11U17NU 16		<u>31352-4/-3</u> 2-6 457.97.4 0500 M	ammo-1-(4-metry)pnenyi)-1-propanone 3 ethd-1-phendomoan-2-amine 2						
4-Eluomisocathinone C9H10ENO 16	67 07464	1270532- 1.3	amino-1-(4fluoronhenvl)oronan-2-one						
3-Fluoromethamphetamine (3-FMA) C10H14FN 16	67.11103	1182818- 34	fluoro-N.g-dimethyl-Benzeneethanamine 3						
2-Fluoromethamphetamine (2-FMA) C10H14FN 16	67.11103	1017176 24	fluoro-N,a-dimethyl-Benzeneethanamine 3						
4-Fluoromethamphetamine (4-FMA) C10H14FN 16	67.11103	<u>351-03-1</u> <u>9919721</u> 1-	(4-Fluorophenyl)-N-methyl-2-propanamine 3						
Alpha-Methyltryptamine (AMT) C11H14N2 17	74.11570	299-26-3 8930 1-4	(1H-indol-3-y/)propan-2-amine 3						
5-APB C11H13NO 17	75.09971	286834-8 8012953 1-	(1-Benzofuran-5-yl)-2-propanamine 3						
BZP C11H16N2 17	76.13135	<u>110475-3</u> <u>68493</u> 14	benzylpiperazine 3						
MDAI (5,6-Methylenedioxy-2-aminoindane) C10H11N 17	77.07898	<u>132741-8</u> <u>111694</u> 6.	7-dihydro-5H-cyclopenta[f][1,3]benzodioxol-6-a 3						
4-Methylmethcathinone (4-MMC) C11H15NO 17	77.11536	<u>1189726</u> <u>21485694</u> 24	(methylamino)-1-(4-methylphenyl)propan-1-one 3						
2-Methylmethcathinone (2-MMC) C11H15NO 17	77.11536	<u>1246911</u> 2-	(methylamino)-1-(2-methylphenyl)-1-Propanone 3						
3-Methylmethcathinone (3-MMC) C11H15NO 17	77.11536	1246911 24	(methylamino)-1-(3-methylphenyl)-1-Propanone 3						
Buphedrone C11H15NO 17	77.11536	<u>408332-7</u> <u>26286946</u> 2-	(Methylamino)-1-phenylbutan-1-one 3						
Ethcathinone (Ethvicathinone) C11H15NO 17	77.11536	18259-37-5 403504 (R	S)-2-ethylamino-1-phenyl-propan-1-one 3						

Designer Drug Spectral Databases: Current Status

- Collection of LC-QTOF MS/MS data and construction of PCDL completed.
 - Spectra from 263 designer drug standards added to the PCDL.
 - 17 designer drug standards did not produce a 1000-count base peak.
- Collection of LC-QQQ MS/MS data by Dynamic MRM completed for DEA and Japan lists.
- Collection of LC-QQQ MS/MS data by Triggered MRM completed.

"DEA Mix"	
4-Methylmethcathinone (4-MMC)	
2С-Н	
2C-D	
2С-Е	
2C-C	
2С-Р	
2C-N	
2С-Т-2	
2C-T-4	
MDPV	
2C-I	
(±)-CP-47,497	
RCS-4	
JWH-073	
(±)-CP-47,497-C8-homolog	
JWH-250	
JWH-203	
JWH-018	
JWH-122	
JWH-019	
AM2201	
JWH-081	
JWH-398	
RCS-8	
JWH-200	
ΔΜ694	

4-Methylmethcathinone (4-MMC)									
3,4-Dimethylmethcathinone (3,4-DMMC)									
Methoxetamine									
MDPV									
(±)-CP-47,497-C8-homolog									
JWH-022 (AM2201 N-(4-pentenyl) analog)									
JWH-018									
JWH-018 adamantyl carboxamide (2NE1)									
AKB48									
CB-13									
Cannabipiperidiethanone									
AM1220									
AM2233									

"Japan Mix"

"Supermix"

Evolving mix that contains as many designer drugs and metabolites as possible (currently at 275 analytes).

Divided into 25 individual calibration mixes for validation purposes (0.01 – 100 ng/mL).

LC Separation of 35 designer drugs including DEA and Japan List using LC-QTOF instrument

Summary for Screening and Confirmation of Designer Drugs Using QTOF LC-MS/MS

- Unique Designer Drugs Accurate-Mass Database and Library with 826 compounds, 263 with positive-ion spectra.
- High-resolution LC method on UHPLC column and simple mobile phase.
- Preliminary SPE method for serum using 35 representative drugs from multiple classes:
 - > 60% absolute recovery for 33/35 drugs.
 - 0.5 5 ng/mL LODs for 33/35 drugs (others were 10, 25 ng/mL).

Development of a Comprehensive LC-QQQ-MS/MS Designer Drug Spectral Database and Screening Confirmatory Method

Designer Drug LC-QQQ-MS Method Development Work Flow

"DEA Mix"	"Japan Mix"
4-Methylmethcathinone (4-MMC)	4-Methylmethcathinone (4-MMC)
2С-Н	3,4-Dimethylmethcathinone (3,4-DMMC)
2C-D	Methoxetamine
2С-Е	MDPV
2C-C	(±)-CP-47,497-C8-homolog
2С-Р	JWH-022 (AM2201 N-(4-pentenyl) analog)
2C-N	JWH-018
2C-T-2	JWH-018 adamantyl carboxamide (2NE1)
2C-T-4	AKB48 CB-13
MDPV	Cannabiniperidiethanone
2C-I	AM1220
(±)-CP-47,497	AM2233
RCS-4	
JWH-073	
(±)-CP-47,497-C8-homolog	
JWH-250	"Supermix"
JWH-203	Evolving mix that contains as many designer drugs
JWH-018	and metabolites as possible (currently at 275
JWH-122	analytes).
JWH-019	
AM2201	Divided into 25 individual calibration mixes for
JWH-081	validation purposes (0.01 – 100 ng/mL).
JWH-398	
RCS-8	
JWH-200	
AM694	

Flow Injection Analysis Screening (DEA mix)

Flow Injection Analysis Screening (Japan Mix)

MRM Optimization/Confirmation

1	DEA list								
2	Compound Name	Formula	Mass	Precursor	Product	Frag	CE	Abundance	Rel %
3	2C-E	C12H19NO2	209.14	210.1	193.1	75	4	410160	100.0
4	2C-E	C12H19NO2	209.14	210.1	178.1	75	12	162559	39.6
5	2C-E	C12H19NO2	209.14	210.1	91.1	75	44	64133	15.6
6	2C-E	C12H19NO2	209.14	210.1	77.1	75	60	68047	16.6
7	2C-D	C11H17NO2	195.13	196.1	179.1	80	4	27323	100.0
8	2C-D	C11H17NO2	195.13	196.1	164.1	80	16	9980	36.5
9	2C-D	C11H17NO2	195.13	196.1	91.1	80	36	4956	18.1
10	2C-D	C11H17NO2	195.13	196.1	149.1	80	24	5445	19.9
11	2C-C	C10H14CINO2	215.07	216.1	199.1	65	4	22971	100.0
12	2C-C	C10H14CINO2	215.07	216.1	184.1	65	16	10235	44.6
13	2C-C	C10H14CINO2	215.07	216.1	77.1	65	48	4592	20.0
14	2C-C	C10H14CINO2	215.07	216.1	169.1	65	28	5753	25.0
15	2C-H	C10H15NO2	181.11	182.1	165.1	85	4	10422	100.0
16	2C-H	C10H15NO2	181.11	182.1	150.1	85	16	6593	63.3
17	2C-H	C10H15NO2	181.11	182.1	77.1	85	52	2759	26.5
18	2C-H	C10H15NO2	181.11	182.1	135.1	85	28	2900	27.8
19	JWH-200	C25H24N2O2	384.18	385.2	155	90	16	1059244	100.0
20	JWH-200	C25H24N2O2	384.18	385.2	114.1	90	24	524891	95.7
21	JWH-200	C25H24N2O2	384.18	385.2	127	90	52	502118	24.1
22	JWH-200	C25H24N2O2	384.18	385.2	70.1	90	48	126314	86.0
23	JWH-203	C21H22CINO	339.14	340.2	125	90	24	451456	100.0
24	JWH-203	C21H22CINO	339.14	340.2	144	90	40	46283	10.3
25	JWH-203	C21H22CINO	339.14	340.2	89.1	90	60	66655	14.8
26	JWH-203	C21H22CINO	339.14	340.2	188.1	90	16	67385	14.9
27	2C-T-4	C13H21NO2S	255.13	256.1	239.1	70	4	312702	100.0
28	2C-T-4	C13H21NO2S	255.13	256.1	197.1	70	16	205668	65.8
29	2C-T-4	C13H21NO2S	255.13	256.1	91.1	70	52	63322	20.2
30	2C-T-4	C13H21NO2S	255.13	256.1	167	70	36	64795	20.7

Mass Hunter Optimizer Software: Optimizer Parameters

Fragmentor Coarse Range	60-210 V
Collision Energy Range	0-60 V
Cell Accelerator Voltage	7

Table 1. Excerpt from Summary Table of Optimization data for DEA list which shows 4 transitions for each compound, optimized fragmentor voltages and collision energies and the abundance of each product ion.

MRM Optimization/Confirmation (DEA Mix)

Table. 2 Optimized transitions of JWH-081

Compound Name	Formula	Mass	Precursor	Product	Frag	CE	Rel %
JWH-081	C25H25NO2	371.19	372.2	185	80	24	100.0
JWH-081	C25H25NO2	371.19	372.2	157	80	44	37.9
JWH-081	C25H25NO2	371.19	372.2	127	80	60	27.7
JWH-081	C25H25NO2	371.19	372.2	214.1	80	20	29.0

Fig. 3 Shows the correlating product ion peaks produced following CID of [M+H]⁺ ion during optimization

MRM Optimization/Confirmation (Japan Mix)

Japa	n List									
Compound Name		Form	ula	Mass	Precursor	Product	Frag	CE	Abundance	Rel %
4-M	4-MMC C11H15		5NO	177.12	178.1	145.1	70	20	327375	64.8
4-M	4-MMC C11H15		SNO	177.12	178.1	160.1	70	8	505349	100.0
4-M	4-MMC C11H15		5NO	177.12	178.1	144.1	70	32	255191	50.5
4-M	4-MMC C11H15		SNO	177.12	178.1	91.1	70	36	56804	11.2
AM:	AM2233 C22H23		N2O	458.09	459.1	98.1	140	32	346271	100.0
AM	AM2233 C22H23		N20	458.09	459.1	112.1	140	20	213533	61.7
AM	AM2233 C22H2		N2O	458.09	459.1	230.9	140	28	55966	16.2
AM:	AM2233		N20	458.09	459.1	70.1	140	60	66737	19.3
HWL	JWH-022 C24H		INO	339.16	340.2	127	140	52	127627	87.6
JWH	JWH-022 C2 JWH-022 C2		21NO	339.16	340.2 340.2	155 212.1	140 140	20 20	145706 22758	100.0 15.6
JWH				339.16						
JWH	-022	C24H21	INO	339.16	340.2	144	140	40	9884	6.8
Compound Name	Form	ula	М	ass	Precurs	or Pr	oduct	Frag	CE	Rel %
AM-1220	C26H26	N2O	38	2.2	383.2	g	98.1	85	36	100.0
AM-1220	220 C26H26N2O		0 382.2		383.2	112.1		85	20	84.1
AM-1220	C26H26	N2O	38	2.2	383.2	1	55.1	85	24	40.9
AM-1220 C26H26N2O		38	2.2	383.2	1	27.1	85	60	31.0	
Cannabipipe	ridiethanone	C24H28	V2O2	376.22	377.2	98.1	75	40	179460	56.3
Cannabipipe	Cannabipiperidiethanone		N2O2	376.22	377.2	121.1	75	24	174515	54.8
Cannabipiperidiethanone		C24H28/	N2O2	376.22	377.2	91.1	75	60	124910	39.2
AKB-48		C23H31	N3O	365.25	366.3	135.1	90	16	472795	100.0
AKB-48		C23H31	N3O	365.25	366.3	93.1	90	56	64578	13.7
AKB-48		C23H31	N3O	365.25	366.3	79.1	90	60	63386	13.4
AKE	AKR-48 CZ		NBO	365.25	366.3	107.1	90	48	39198	8.3
AM-	AM-1220 C26H		N2O	382.2	383.2	98.1	85	36	270093	100.0
AM-1220 C26H2		C26H26	N2O	382.2	383.2	112.1	85	20	227023	84.1
AM-1220		C26H26	N2O	382.2	383.2	155.1	85	24	110348	40.9
AM-1220		C26H26	N2O	382.2	383.2	127.1	85	60	83703	31.0

Table. 3 Optimized transitions for AM-1220

Fig. 4 Shows the correlating product ion peaks produced following CID of $[M+H]^+$ ion during optimization

QTOF Confirmation

Chromatographic Separation LC Conditions for Column Separation (DEA MIX B) Column:

JWH 019

AM2201

JWH 398

JWH 200

(non-ionizable)

Zorbax Eclipse Plus C18 column, 2.1 x 100mm, 1.8 µm **Injection volume:** 20µl of 10ng/ml DEA MIX B solution in H₂O Mobile phase A (95%) Gradient: 1.0 min Mobile phase B (5%) 9.5 min Mobile phase A (10%) Mobile phase B (90%) 0.4ml/min. Flow: Stoptime: 14 mins. 40.00 °C Temperature:

pd 19: FIU 0155 04 Feb 2013 5.434: +ESI MRM Frag=80.0V CID@4.0 (227.1000 -> 210.1000) 130206_QQQ_dMRM_Ecl +100mm_FA-AF-MeOH_DEA_B_L6_36.d x105

DEA MIX B

2C-N

2C-I

RCS-4

JWH 203

(±)-CP 47,497-C8-homolog

Compound Name	Formula	Mass	Precursor	Product	Frag	CE	Rel %	Ret. Times
2C-E	C12H19NO2	209.14	210.1	193.1	75	4	100.0	7.496
2C-E	C12H19NO2	209.14	210.1	178.1	75	12	39.6	
2C-E	C12H19NO2	209.14	210.1	91.1	75	44	15.6	
2C-E	C12H19NO2	209.14	210.1	77.1	75	60	16.6	
2C-D	C11H17NO2	195.13	196.1	179.1	80	4	100.0	6.669
2C-D	C11H17NO2	195.13	196.1	164.1	80	16	36.5	
2C-D	C11H17NO2	195.13	196.1	91.1	80	36	18.1	
2C-D	C11H17NO2	195.13	196.1	149.1	80	24	19.9	
2C-C	C10H14CINO2	215.07	216.1	199.1	65	4	100.0	6.519
2C-C	C10H14CINO2	215.07	216.1	184.1	65	16	44.6	
2C-C	C10H14CINO2	215.07	216.1	77.1	65	48	20.0	
2C-C	C10H14CINO2	215.07	216.1	169.1	65	28	25.0	
2C-H	C10H15NO2	181.11	182.1	165.1	85	4	100.0	5.561
2C-H	C10H15NO2	181.11	182.1	150.1	85	16	63.3	
2C-H	C10H15NO2	181.11	182.1	77.1	85	52	26.5	
2C-H	C10H15NO2	181.11	182.1	135.1	85	28	27.8	
JWH-200	C25H24N2O2	384.18	385.2	155	90	16	100.0	9.273
JWH-200	C25H24N2O2	384.18	385.2	114.1	90	24	95.7	
JWH-200	C25H24N2O2	384.18	385.2	127	90	52	24.1	
JWH-200	C25H24N2O2	384.18	385.2	70.1	90	48	86.0	
JWH-203	C21H22CINO	339.14	340.2	125	90	24	100.0	11.340
JWH-203	C21H22CINO	339.14	340.2	144	90	40	10.3	
JWH-203	C21H22CINO	339.14	340.2	89.1	90	60	14.8	
JWH-203	C21H22CINO	339.14	340.2	188.1	90	16	14.9	
2C-T-4	C13H21NO2S	255.13	256.1	239.1	70	4	100.0	7.679
2C-T-4	C13H21NO2S	255.13	256.1	197.1	70	16	65.8	
2C-T-4	C13H21NO2S	255.13	256.1	91.1	70	52	20.2	
2C-T-4	C13H21NO2S	255.13	256.1	167	70	36	20.7	
RCS-4	C21H23NO2	321.17	322.2	135	110	20	100.0	11.072
RCS-4	C21H23NO2	321.17	322.2	77.1	110	56	46.9	
RCS-4	C21H23NO2	321.17	322.2	107.1	110	40	16.2	
RCS-4	C21H23NO2	321.17	322.2	92.1	110	68	16.0	

LC Conditions for Column Separation						
Column:		Zorbax Eclipse Plus C18 column, 2.1 x 100mm, 1.8 µm				
Injection volu	ime:	20µl of 100ng/ml DEA MIX B solution in H_2O				
Gradient:	1.0 min	Mobile phase A (95%) Mobile phase B (5%)				
	9.5 min	Mobile phase A (10%) Mobile phase B (90%)				
Flow:		0.4ml/min.				
Stoptime:		14 mins.				
Temperature:		40.00 °C				

Table 4. Summary Table of Optimization data for DEA list which shows 4 transitions for each compound, optimized fragmentor voltages and collision energies, relative abundances reported as percentages and retention times.

Fig. 7 shows the on-column separation of 23 of 26 compounds recently scheduled by the DEA NB of the 3 compounds missing: 2 are non-ionizable (CP family) and 1 shows inadequate chromatography

	Compounds	Ret. time	[M+H]+
	2C-N	5.431	227.1
Fig. 8 Enlarged view of co-eluting compounds in DEA mix	2С-Н	5.565	182.1
x10 ⁵ Cpd 1: FIU_0174_05_Feb_2013 2.810: +ESI MRM Frag=75.0V CID@4.0 (224.2000 -> 207.1000) 130206_QQQ_DMRM_Ect +100mm_FA-AF-MeOH_DEA26_100ppb_00.d 9.6-	4-MMC	5.678	178.1
94- 92- 9- 88- e.	2C-C	6.541	216.1
84- 82- 8- 78- 78-	MDPV	6.546	276.2
74- 72- 7- 68-	2C-T-2	7.135	242.1
6- 58- 58-	2C-I	7.191	308
2CH 2CH 2CH 44MC 2CH 555 55 55 55 55 55 55 55 55 55 55 55 5	2C-D 6586 55 6'7 6'75 6'8 6.85 6'9 6.95 7 7.05	2C-1 2C-7 7.191 7.135 7.135 7.135 7.135 7.135 7.135 7.135	

Fig. 7 shows the on-column separation of 23 of 26 compounds recently scheduled by the DEA NB of the 3 compounds missing: 2 are non-ionizable (CP family) and 1 shows inadequate chromatography

Figs. 9a and 9b - Enlarged view of co-eluting compounds in DEA mix

Is there cross-talk?

Is There Crosstalk Between JWH-122 and JWH-019?

Common precursor with no response for unique products = <u>NO CROSSTALK</u>

Unique Products for Common Precursor

Because the main 2 transitions for each of JWH-019 and JWH-022 are unique, the correct identities can be determined even though they co-elute

Fig. 10 shows the on-column separation of 12 of 13 compounds recently scheduled in Japan NB the missing compound (1) is non-ionizable (CP family)

LC-QQQ Separation of 176 Designer Drugs

Summary for LC-QQQ- MS/MS Screening

- LC-QQQ-MS is effective in producing characteristic MS/MS spectra and chromatography specific to several hundred designer drugs including DEA and Japan List.
- Quantification data for the majority of the designer drugs studied showed concentrations in the parts per billion range with adequate linearity.
- The use of a triggered MRM database with up to ten transitions for each compound coupled with the characteristic chromatography data obtained allows the LC-QQQ-MS to be a highly discriminatory analytical tool when conducting the analysis of designer drug isomers

Recent efforts

- Number of new psychoactive substances reported in current year for the first time
- Number of new psychoactive substances reported in current year but not for the first time

General Conclusions

- A high resolution MS/MS spectral library was created that has spectral data at three different collision energies for **263** designer drugs.
- The Collision Induced Dissociation (CID) fragment spectra is very specific and enable peak identification with high accuracy.
- A compound database that includes structural and chemical information was created for an **additional 550** designer drugs.
- LC-QQQ-MS is effective in producing characteristic MS/MS spectra and chromatography specific to several hundred designer drugs.
- Single quadrupole and triple quadrupole MRM databases are now available for 261 designer drugs.

Acknowledgements

- Josh Seither, Melanie Eckberg, Ashley Kimble (FIU Ph.D. students).
- □ Ana-Michelle Broomes (FIU MSFS student).
- Agilent Technologies, Inc.
- Cayman Chemical.
- Ralph Hindle; Vogon Laboratory Services.
- FIU IFRI Forensic & Analytical Toxicology Facility
- □ NIJ funding NIJ 2014-R2-CX-K006