NETSCOUT. Arbor

Devices Without Identity: Internet of Things (IoT) in the Enterprise Network

Arabella Hallawell

National Institute of Standards and Technology U.S. Department of Commerce

The Defender's Reality in 2017

9 Min.

The **mean time for initial compromise** of a network.

44% of advanced attacks in 2016 used social engineering or IT applications, NOT malware as entry points

140++

The average dwell time (mean time to detect) a breach to the business.

60% of enterprises take longer than 3 days to investigate a critical security event.

What We See Today...

 An unprotected IoT device on the Internet will get infected within 1 minute.

 An IoT device located behind a NAT device or a Firewall is not accessible from the Internet and we believe is (mostly) secure.

But this is not always the reality...

The Weakest Link IoT: Devices Without Identities

Consumer Grade Devices on Enterprise Network

Traditional Security Models Don't Apply

NAC Struggles to Control

Greater Attack Surface

The Defender's Reality with IoT in 2017

The **mean time for initial compromise** of a loT device.

Use Malware as way to infect entire network (Windows Mirai)

Back doors for automated Botnet / DDoS.

Physical damage

Implications & Potential Consequences

The Zombie horde

A single infected Windows computer has now the capability to infect and subvert the "innocent" IoT population into zombies, all under the control of the attacker.

The attackers weapon arsenal

The attacker can now use the zombies to:

- Infect other IoT devices.
- Launch outbound attacks against external targets.
- 3. Perform reconnaissance on internal networks, followed by targeted attacks against internal targets.

Launching Outbound DDoS Attacks

- Attack activity generates a lot of traffic.
 Mirai can for example launch:
 - UDP / ICMP / TCP packet flooding
 - Reflection attacks using UDP packets with spoofed source IP addresses
 - Application level attacks (HTTP / SIP attacks).
 - Pseudo random DNS label prefix attacks against DNS servers.
- This attack traffic will quickly fill up any internal WAN links and will also will cause havoc with any stateful device on the path, including NGFWs.

IoT: Enterprise Security Architecture Revisit

Defending Against IoT InternalThreats

- Implementing Network segmentation and harden (or isolate) vulnerable network devices and services.
- Utilizing flow telemetry to analyze external and internal traffic. This is necessary for attack detection, classification and trace back.
- Deploying multi-layered DDoS protection.
- Scanning for misconfigured and abusable services.
- Implementing Anti-Spoofing mechanisms on all edge devices.

Q&A/THANK YOU

Contact Information:

