Silicon Carbide High Voltage, High Frequency Conversion

NIST High Megawatt Variable Speed Drive Technology Workshop

April 2014

Ravi Raju, GE Global Research

Background

GE Energy Infrastructure

Energy Management

Oil & Gas

Power & Water

imagination at work

Healthcare

Aviation

Transportation

GE Capital

Home & Business Solutions

GE Global Research - SiC Activities

Internal Efforts

Development of low voltage (1200 V ,1700 V ..) MOSFETs for use in

- Renewables
- Medical systems
- Aviation systems

Collaborative Efforts (partnering with Cree, Powerex, .. ONR, NAVSEA, ARPA-e, NIST)

Application of high Voltage (10 kV) MOSFETs, diodes from Cree/Powerex for:

- Navy applications .. SSPS (solid-state power substation program)
- ARPA-e .. multi-terminal HVDC program

GE SiC Devices and Applications

SiC chips (1.2, 1.7kV, ..)

Best-in-Class 1.7kV, 40A MOSFET:

- BV_{DSS} = 1950V
- $R_{DS,On} = 36m\Omega @ T_j = 25°C$
- $R_{DS,On} = 60 m\Omega @ T_j = 150 °C$
- $R_{On,sp} = 5.6 \text{mOhm-cm}^2$

Passed automotive qualification test at 200°C...AEC-Q101

Applications

75kW SiC inverter for engine start + ECS drive

SiC modules

High Power Electronics (HPE) program – DARPA/ONR Solid-State Power Substation (SSPS)

- Base Program
 - 1 MVA, single phase, 13.8 kVac/ 265 Vac solid-state transformer, 20 kHz link
 - 2007-2009: Development, full-power building blocks tested at GE
 - 2010: Full power testing at NSWC, Philadelphia
- Option Program
 - 1 MW, 4.16 kVac, 3 phase / 1000 Vdc converter, 40 kHz link
 - 1/3rd volume, 1/10th weight of 60 Hz transformer-rectifier
 - Testing ongoing at CAPS-FSU
- Both projects use 10 kV SiC devices and high frequency transformers
 - 10 kV SiC modules: Cree/ Powerex
 - HF transformers: Los Alamos, IAP, Dynapower

Base Program - SSPS

Single-phase SSPS at Navy test lab

- ✓ Demonstrated at 1 MVA, 13.8 kV/265 V
- \checkmark Efficiency at full load > 97%
- \checkmark 1/3rd weight of conventional transformer
- ✓ AC input current/ output voltage THD < 5%</p>

Input voltage across individual bridge Current sharing at bridge outputs

60 Hz waveforms

20 kHz transformer primary (HV side) waveforms

Advantages of cabling at higher voltages

13.8 kVac vs. 265 Vac cables carrying same power (1 MVA)

Option Program - SSPS

Existing 3 W 4160 VAC – 1000 VDC Power Conversion Module

HPE – SSPS SiC 1 MW, 4160VAC-1000 VDC converter

SSPS 1 MW, 4160 Vac- 1000 Vdc tests ongoing at CAPS-FSU Unit tested to full voltage, ... full power testing yet to be done.

Related Activities

(Locomotive Power Electronic Transformers .. ABB, Alstom and others)

Alstom, ABB, ...

ABB – installed in 2012

1.2+ MW, 15kVac - 1.5kVdc; 95% efficiency; 10,000 lbs, abb.com

HV SiC Challenges

Example – EMI, dv/dt

Chips to baseplate capacitance , C $\,$ ~750 pF $\,$

Assume slew rate, dv/dt ~ 5 kV / 100 ns

Common mode current = C. dv/dt = 37.5 amps (same order of magnitude as rated currents)

Solutions - Decoupling capacitors, synchronized out-of-phase switching of phase-legs to cancel CM currents, etc. can be used.

Other challenges

Short Circuit Capability

IGBTs typically rated for > 10 us SC withstand

SiC chips with same 'nameplate' current rating are smaller than IGBT chips

- thermal capacity is low.
- lower SC withstand capability

Gate drives/ controls will need faster protection reaction time.

HV SiC devices or LV building blocks?

10 kV SiC	6 x 1.7 kV Si/ SiC
 + Reduced number of parts (drivers, auxiliaries,) + Power density benefits of reduced parts 	- Higher parts count
+ Simpler controls, no need for balancing	- More complex controls, need for balancing
- Conduction losses/ Rdson increase rapidly with temperature compared to LV MOSFETs;	+ Possibly more efficient?
- limited suppliers, low volumes -> expensive	+ cheaper, wider range of suppliers

Applications for HV SiC

- Data center distribution MV AC or DC to the rack, (13.8kV distribution to match gensets) efficiency, cost benefits, space savings, easier installation
- Transformerless Drives ... where Motor voltage = Grid Voltage 4160 V, 6.6 kV ... 13.8 kV;

High switching frequency useful on grid side for power quality, not so needed for motor side

• High frequency transformer-embedded Drives

Mismatch between AC grid and motor voltage , eg, 13.8 kV/ 33 kV supply -> 4160V motor

- Motors operating at high electrical frequencies
 - High speed motors .. O&G compressors 15 k rpm, 5MW, 4160V .. limited volumes?
 - New class of machines with high elec freq .. high pole count... electromagnetic gears ...
- Renewables integration at higher voltage AC/DC.
- Where Power Density counts locomotives, commercial marine, O&G, Navy, ...

System level cost tradeoffs

Wind example

• 2.2 kA, 690 V

LV vs MV cables

- 6x 500 MCM/ phase
- 1.6 lb/ft
- 18*1.6*300 ft = 8640 lb. in copper.
- 3\$/lb*8640 = 26 k \$ in copper

- Typical present design: converter and transformer are down-tower.
- Cable weight and cost in current turbines is significant due to low voltage (eg, 9,000 lbs for 2.7 MW turbine)
- Up-tower conversion to HV will allow use of lighter HV cables – SiC could enable this.
- Other issues to consider codes and cost of MV maintenance

45A, 35 kVac

1 x 8 AWG sufficient, but limited availability 1/0 cable(200 A), 1000 lbs 3k \$ in copper

