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https://opentextbc.ca/chemistry/chapter/10-6-lattice-structures-in-crystalline-
solids/

https://www.researchgate.net/figure/Miller-indices-indicating-the-
plane-perpendicular-to-the-vector-given-for-the-cubic_fig7_302838100

Crystal Structure



https://www.researchgate.net/figure/Principle-of-a-4-circles-diffractometer-and-definition-of-rotation-
angles_fig5_320672016?_sg=2SkZLSPV7hSnuAUpNs3TXfaV8kakzml0dVVeB2cvI2IzZGyC1Ps1yU8kVyvZqnvICSSLG6P9JpuDMRMowYQU9g

Neutron Diffraction
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Materials’ properties are determined by atomic structure
Neutron diffraction is a key tool used to determine the atomic structure of crystals
Crystal is placed in a neutron beam
Neutrons scatter off crystal
Atomic structure can be calculated from resulting diffraction pattern




Problem
•Determining atomic structure is key to understanding novel materials

•Beam time is highly limited
• Few neutron sources

•Need to optimize experiments to minimize required beam time for experiments
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Less workds
Contrast for zrays is different than with neutrons
Neutrons are more sensitive to low z, hydrogen, ooxygen
@NCNR: day per measurementmoderate damp[le 6-12 hr



Can Reinforcement Learning be 
applied to optimize Neutron 
Diffraction experiments?



Reinforcement learning

Whiteson, Shimon. (2010). Adaptive Representations for Reinforcement Learning. 10.1007/978-3-642-13932-
1. 
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RL is a form of ML traditionally used for games. For example, chess, Atari
There is a defined env which the agent interacts with
The agent decides to take actions, which effect the env
In return the env updates and the agent gets some observation of the env state and a reward
Over time, the agent learns to optimize rewards
This allows it to learn how to play complex games which



http://www.geocities.jp/ohba
_lab_ob_page/structure6.html

https://www.researchgate.net/figure/Principle-of-a-4-circles-diffractometer-and-definition-of-rotation-
angles_fig5_320672016?_sg=2SkZLSPV7hSnuAUpNs3TXfaV8kakzml0dVVeB2cvI2IzZGyC1Ps1yU8kVyvZqnvICSSLG6P9JpuDMRMowYQU9g

https://publicdomainvectors.org/en/fr
ee-clipart/Green-robot/38871.html

Action: Take Measurement

Environment
Agent

State: Measurements Taken

Reward: +/-



Our Algorithms
ALGORITHMS

•Q Learning

•Deep Q Learning

•Epsilon Greedy
• Implemented by Ryan Cho and Telon Yan

•Actor Critic
• Implemented in collaboration with Ryan Cho and Telon

Yan

RESOURCES

•BLAND [1]
• Crystallographic library

•Training Data
• 𝑃𝑃𝑃𝑃2𝑁𝑁𝑁𝑁𝑂𝑂4 – single crystal data from FullProf

[1] J. E. Lesniewski, S. M.T. Disseler, D. J. Quintanta, P. Kienzle, W. D. Ratcliff. “Bayesian Method for the Analysis of Diffraction Patterns using 
BLAND,” Journal of Applied Crystallography, vol. 49, December 2016.



Epsilon Greedy
•Implemented by Ryan Cho and Telon Yan

•Agent chooses the best action at each state, with a small likelihood of choosing 
a random action
• The “best” action is determined by recording the average reward earned from taking that 

action previously

•Preliminary results:
• The agent learned a preference for certain measurements
• Have not yet identified a pattern



Q Learning Deep Q Learning
•Adds a Deep Neural Network to 
standard Q Learning

•Implemented an Environment in 
TensorForce to represent this problem 
space

A sample Q table for Tic-Tac-Toe
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Values represent the estimated future reward
Calculated using Bellman Equation
Inadequate state representation
Action:  <0, 0, 0, 1, 0, . . . 0, 0, 0, 0>
State:    <1, 0, 0, 1, . . . 0, 1, 1, 1, 0>
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Total Reward Over Time: Deep Q Learning Algorithm
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Goal: identify problem with repeat actions
Implemented simple env where the only goal was to take diff actions 
Pos reward for new action, neg for repeat
Perfectly capable on small scale, overwhelmed by large action space
Conclusion: q learning is not sufficiently complex to handle large discrete action space





Total Reward Over Time: Actor Critic Final Z Position of Pr Atom: Actor Critic



Reinforcement Learning in Crystallographic Problem Space

STRENGTHS

•Problem can be framed as a game

•Has the potential to identify patterns 
researchers wouldn’t find

•If effective, could optimize 
experiments

WEAKNESSES

•Has a large discrete action space

•Challenging to develop an effective 
reward
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Increased planning efficieny, refining the current knowledge
Not real time



Future Steps
•Complete Actor Critic

•Continue exploring rewards functions

•Implement the Wolpertinger architecture
• Designed for large discrete action spaces
• Proposed by Dulac-Arnold et al in “Deep Reinforcement Learning in Large Discrete Action 

Spaces” (arXiv:1512.07679 [cs.AI])

https://arxiv.org/abs/1512.07679
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Our Reinforcement Learning Game
•The environment contains an initial 
model of the crystal

•Agent chooses to make a certain 
measurement
• Model is updated
• Fit of the model is calculated
• Agent gets reward

•Repeat until the uncertainty drops 
below threshold

•The reward function
• A penalty each step, to encourage efficiency
• A measure of fit: 𝜒𝜒2

• A reward for improving the fit of the model
• Constant
• Proportional to how significantly the fit 

improved
• Inversely proportional to 𝜒𝜒2



https://nmi3.eu/neutron-research/techniques-for-/structural-research.html

Neutron 
Diffraction



Episode Reward Over Time: Actor Critic Final Z Value: Actor Critic
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