

Applying Reinforcement Learning to the Determination of Crystal Structures with Neutron Diffraction

August 8th, 2018 Abigail Wilson NIST SURF Fellow, Tufts University Class of 2021 Dr. William Ratcliff NIST Center For Neutron Research, Neutron Condensed Matter Science Group

Outline

- Background
 - Crystallography
 - Neutron Diffraction
- •Problem
- •Algorithms
- Performance
- •Reinforcement Learning in this Problem Space
- •Future Steps

Crystal Structure

https://opentextbc.ca/chemistry/chapter/10-6-lattice-structures-in-crystalline-solids/

https://www.researchgate.net/figure/Miller-indices-indicating-theplane-perpendicular-to-the-vector-given-for-the-cubic_fig7_302838100

Neutron Diffraction

Problem

- •Determining atomic structure is key to understanding novel materials
- •Beam time is highly limited
 - Few neutron sources
- •Need to optimize experiments to minimize required beam time for experiments

Can Reinforcement Learning be applied to optimize Neutron Diffraction experiments?

Reinforcement learning

Ē

Whiteson, Shimon. (2010). Adaptive Representations for Reinforcement Learning. 10.1007/978-3-642-13932-

https://www.researchgate.net/figure/Principle-of-a-4-circles-diffractometer-and-definition-of-rotationangles_fig5_320672016?_sg=2SkZLSPV7hSnuAUpNs3TXfaV8kakzml0dVVeB2cvl2IzZGyC1Ps1yU8kVyvZqnvICSSLG6P9JpuDMRMowYQU9g

Our Algorithms

ALGORITHMS

- •Q Learning
- •Deep Q Learning
- •Epsilon Greedy
 - Implemented by Ryan Cho and Telon Yan

•Actor Critic

• Implemented in collaboration with Ryan Cho and Telon Yan

RESOURCES

- •BLAND [1]
 - Crystallographic library

•Training Data

• Pr_2NiO_4 – single crystal data from FullProf

[1] J. E. Lesniewski, S. M.T. Disseler, D. J. Quintanta, P. Kienzle, W. D. Ratcliff. "Bayesian Method for the Analysis of Diffraction Patterns using BLAND," *Journal of Applied Crystallography*, vol. 49, December 2016.

Epsilon Greedy

•Implemented by Ryan Cho and Telon Yan

- •Agent chooses the best action at each state, with a small likelihood of choosing a random action
 - The "best" action is determined by recording the average reward earned from taking that action previously

•Preliminary results:

- The agent learned a preference for certain measurements
- Have not yet identified a pattern

Q Learning

٠

A sample Q table for Tic-Tac-Toe

States	Actions	Reword
XIOC	3	0
XO	7	0
67 . 61	9	1
- 10 X	1	1
otxt	4	1
4	9	O. 5

Deep Q Learning

- •Adds a Deep Neural Network to standard Q Learning
- •Implemented an Environment in TensorForce to represent this problem space

Total Reward Over Time: Deep Q Learning Algorithm

Reinforcement Learning in Crystallographic Problem Space

STRENGTHS

- •Problem can be framed as a game
- •Has the potential to identify patterns researchers wouldn't find
- •If effective, could optimize experiments

WEAKNESSES

- •Has a large discrete action space
- •Challenging to develop an effective reward

Future Steps

- •Complete Actor Critic
- •Continue exploring rewards functions
- •Implement the Wolpertinger architecture
 - Designed for large discrete action spaces
 - Proposed by Dulac-Arnold et al in "Deep Reinforcement Learning in Large Discrete Action Spaces" (<u>arXiv:1512.07679</u> [cs.Al])

Acknowledgements

Dr. William Ratcliff, Paul Kienzle NIST Center For Neutron Research, Neutron Condensed Matter Science Group

Ryan Cho and Telon Yan (SHIP) Montgomery Blair High School

Tufts University

NIST SURF Program and Directors

Our Reinforcement Learning Game

- •The environment contains an initial model of the crystal
- Agent chooses to make a certain measurement
 - Model is updated
 - Fit of the model is calculated
 - Agent gets reward
- Repeat until the uncertainty drops below threshold

- •The reward function
 - A penalty each step, to encourage efficiency
 - A measure of fit: χ^2
 - A reward for improving the fit of the model
 - Constant
 - Proportional to how significantly the fit improved
 - Inversely proportional to χ^2

Neutron Diffraction

https://nmi3.eu/neutron-research/techniques-for-/structural-research.html

