

The Applications of Reinforcement Learning to Neutron Diffraction

Joseph Rath, William Ratcliff, Paul Kienzle

What is Neutron Diffraction?

Ν

Ρ

- Materials scatter neutrons
 - Due to interactions with nuclei
 - Via strong force
- Scattered neutrons create diffraction patterns

H

θ

Why is it useful?

Materials have some ordered arrangement: **Crystal Structure** Smallest repeating pattern in structure: **Unit Cell** Atom positions and symmetries in unit cell reveal: **Physical Properties**

Diffraction patterns are dependent on a material's:

- Crystal structure/symmetry
- o Elemental composition

Analysis of them patterns:

- Intensities -> Elemental composition
- Patterns -> Crystal symmetries
- Further -> Atomic positions / Properties

Problems Arise...

- Diffraction analysis takes time!
 - Lots of interaction/calculation
 - Small # of facilities
 - Beam-time limited/precious

- Solution:
 - Machine Learning \rightarrow Efficient beam-time?
 - What kind of algorithm is best?

Reinforcement Learning

Reward Hypothesis: An algorithm reaches some goal by maximizing cumulative reward

Reinforcement Learning

- Handles larges action spaces
- Faster learning

Discussion

Algorithm:

- Z-coordinate found!
- Fast convergence / low deviation
 BUT
- Reward Function
- For a simple system
- Realistically could be very slow

Future:

- More parameters
- Better RL algorithms

<u>References</u>

- https://www.ill.eu/users/instruments/instrumentslist/orientexpress/how-it-works/principle-of-neutron-laue-diffraction/
- https://towardsdatascience.com/policy-gradients-in-a-nutshell-8b72f9743c5d
- https://www.freecodecamp.org/news/an-introduction-to-policygradients-with-cartpole-and-doom-495b5ef2207f/
- https://www.ncnr.nist.gov/programs/crystallography/
- http://www.crystal0studio.com/news.php

Acknowledgements

- Dr. William Ratcliff
- Dr. Paul Kienzle
- SURF Directors: Julie Borchers & Joe Dura
- SHIP students: Jess & Kate
- Other NCNR SURFers

NIST Center for Neutron Research

