
The Applications of Reinforcement Learning
to Neutron Diffraction

Joseph Rath, William Ratcliff, Paul Kienzle

Presenter
Presentation Notes
Thanking

So, today I will be discussing the applications of reinforcement learning to neutron diffraction

In some of the talks previous to mine, we’ve seen how machine learning could optimize the reactor at the NCNR, but now you’ll get to see how it can help optimize some of our instruments

But before I go deep into how that will happen, I will first provide you with a basic understanding of neutron diffraction and crystallography

● Materials scatter neutrons
○ Due to interactions with nuclei
○ Via strong force

● Scattered neutrons create diffraction patterns

What is Neutron Diffraction?

N
N

PN

N

P

θ
θd

Presenter
Presentation Notes
Neutrons are massive particles/with neutral charge that interact with the nucleus, of mainly lighter atoms, via the strong force

When we shoot neutrons at some material, they scatter off at various depth. Because of this, when we detect them at some point in space they may be in or out of phase, creating a diffraction pattern

And because neutrons are being scattered in all directions, the diffraction patterns that we see in the space around our material changes.

Why is it useful?

Materials have some ordered arrangement: Crystal Structure
Smallest repeating pattern in structure: Unit Cell
Atom positions and symmetries in unit cell reveal: Physical Properties

Diffraction patterns are dependent on a material’s:
○ Crystal structure/symmetry
○ Elemental composition

Analysis of them patterns:
○ Intensities -> Elemental composition
○ Patterns -> Crystal symmetries
○ Further -> Atomic positions / Properties

Presenter
Presentation Notes
So we shoot bunch of neutrons into some material. Why is this worth doing?

So, materials (for the most part) are have some order we call a crystal structure
The most basic repeating pattern of atoms within that structure we call a unit cell
It the unit cell’s elemental composition, positioning, and symmetries that can reveal to us a material’s physical properties

And it is through neutron diffraction that we can find these parameters.
The diffraction patterns that we see are dependent on:
	crystal structure/ symmetry
	elemental composition

SO when we analyze the intensities and patterns we can trace back the structure and properties of a material

Problems Arise...
● Diffraction analysis takes time!

○ Lots of interaction/calculation
○ Small # of facilities
○ Beam-time limited/precious

● Solution:
○ Machine Learning → Efficient beam-time?
○ What kind of algorithm is best?

Presenter
Presentation Notes
So, we see, neutron diffraction is very useful. So, why isn’t everyone using it ALL of the time?
Well, it turns out that the analyzing process can take forever.
Meaning… there are lot’s of interactions needed with the instruments used and calculations to determine what reflections should be looked at.
Combining that with the fact that there aren’t many neutron scattering facilities in the world, the time allowed on the instruments is limited and precious

So, the goal of our research was to help remedy this problem
In theorizing how to it we thought: planning the analysis of neutron diffraction through some sort of machine learning automation could free up time on the instrument being used.

Reinforcement Learning Reward Hypothesis: An algorithm reaches
some goal by maximizing cumulative reward

Presenter
Presentation Notes
So, in developing our solution we decided to use a subsection of Machine Learning called Reinforcement Learning.
What sets RL apart from other learning algorithms is that it is focused on the reward hypothesis:
	The idea that an algorithm will reach some goal by maximizing the total reward it can get

Example: TicTacToe
	let’s say we’re trying to teach some algorithm how to play a game: tic-tac-toe
	you may initially think “well if I just set a bunch of rules for what my algorithm should do based off of where x’s or o’s placed, that should be sufficient enough to win” and it could be
	but what happens lets say when you move to a much more complex game like Mario? There are many more factors to consider in this game
	and one might spend forever trying to code in all of the rules needed for the algorithm to successfully play the game

	but what if we just set the algorithm “free”, and it explore and learn on its own by rewarding it for certain actions that we can define?
	This is effectively what happens in Reinforcement Learning
	It may initially take the algorithm some time to learn (and specifically learn the right things), but in time it will maximize the total reward it can receive in reaching some goal.
	for more complex tasks, like beating a mario level OR IN OUR CASE ANALYZING NEUTRON SCATTERING, this is the more affective method.

Reinforcement Learning

Presenter
Presentation Notes
In understanding how we could use it in our research, it is first essential to understand what it’s system looks like.
Again using Mario on the NES, I’ll do so:
	AGENT: Firstly, there is an agent which in this case represents the algorithm controlling Mario
	ENVIRONMENT: This agent live inside of an environment. this could be one level of the game
	STATE: In this environment each frame (or time step) of the game is called a state
	ACTION: For a given state the agent can choose an action. If the agent chooses an action that is rewarding,
		the agent is rewarded in the fact that the probability of it making that action or set of actions again is increased.
	REWARD FUNCTION: and these rewards are things within the environment you can define as positive signals like:
		finishing a level
		finishing within a certain time
		collecting coins

(.2) (.1) (.3)(.3) (.15) (.25)

Proximal Policy Optimization (PPO)

CRITIC

● Converges to some successful action set
● Handles larges action spaces
● Faster learning

Actor Critic

State: s

ACTOR

…..

Action Space: a

Presenter
Presentation Notes
The main reinforcement learning algorithm we used in our research was Actor Critic
	What we call THE ACTOR is really a probability distribution over all possible actions for a given state
	THE CRITIC judges how an action selected by the actor changes the predicted total reward
	according to how the critic responds to an action, the actor will then adjust its action probabilities	
	
The advantages of this are
	the algorithm more easily converges to some set of rewarding actions
	and it can handle large action spaces (such as our environments 198)
	
We also used an algorithm called Proximal Policy Optimization which is basically Actor Critic except
	the amount the actor “learns” from the critic is limited to increase learning stability
	
	For example: in

Crystallographic Environment
Sample: Pr2NiO4

Goal: Find Pr Z-position

Agent: Neutron Detector

Actions: 198 Possible Reflections

Reward: Chi2 Fit, Uncertainty, #Actions

h k l I

Atom X-pos Y-pos Z-pos

Presenter
Presentation Notes
In order for us to use PPO for our research we needed a virtual environment that matched a physical neutron scattering system
Luckily, In previous summers William, Paul, and previous SURF students coded a crystallographic system using experimental data so that we know:
	crystal structures of various materials
	and the way they scatter neutrons

We defined
	SAMPLE:
		out of that experimental data, we chose to look at Pr2NiO4
		those files listed measured neutron intensities at certain reflection points around the material, again indexed by h,k,l
		and also told us about atomic positionings / in unit cell
	GOAL: about this material and allowed us to test our algorithm by searching for a certain parameter: the Z-coordinate of the presidium atom
	Agent: Neutron Detector	
	Actions: move the detector into any possible reflection point (in this case 198), but without repeating
	State: reflection point that is currently being looked at
	Reward: goodness of fit (Chi2), but also state count and certainty

Results
Generated Reflections

0

20

40

60

80

100

120

140

0 50 100 150 200

In
te

ns
ity

Q

Zexp

Z0.36

Cubic Lattice:

h k l

Presenter
Presentation Notes
After running our algorithm in the crystallographic environment, it churned out sets of reflections points that it determined could pinpoint our goal (The Z-Position of the praseodymium atom)
At a glance what this might give us isn’t obvious at all, but from these we can determine how right our algorithm was.
This is how we did that:
	Since we know the experimental intensities from the data file, we can plot them as a function of q (the sum of the squares of our selected reflection point’s h,k,l components)
	In fitting, a search is done over a range of z values to see which one gives the minimum residuals
	between the simulated and experimental intensities. In finding that z value, you will have found the position of the praseodymium atom

	From our data we saw that the algorithm does its best to choose the correct z-value at a low number of reflections, but it can be hard
	but once reaching a certain number of reflections, it finds the correct z-position with no problem

	 		
	In a plot of the residuals between simulation and experiment, we see when the algorithm selects .36 it is dead on with the experimental z-value of .35973
We can also see how are algorithm’s learning process by generating this graph every time it selected a new reflection
	

Results
Generated Reflections

h k l

Presenter
Presentation Notes
After running our algorithm in the crystallographic environment, it churned out sets of reflections points that it determined could pinpoint our goal (The Z-Position of the praseodymium atom)
At a glance what this might give us isn’t obvious at all, but from these we can determine how right our algorithm was.
This is how we did that:
	Since we know the experimental intensities from the data file, we can plot them as a function of q (the sum of the squares of our selected reflection point’s h,k,l components)
	resulting in this graph:
	From here we can see the fit to the experimental data. When doing this fitting, a search is done over a range of z values to see which one gives the minimum residuals
	between the simulated and experimental intensities. In finding that z value, you will have found the position of the praseodymium atom

	From our data we saw that the algorithm does its best to choose the correct z-value, but at a low number of reflections it can be hard.
	 		
	In a plot of the residuals between simulation and experiment, we see when the algorithm selects .36 it is dead on with the experimental z-value of .35973
We can also see how are algorithm’s learning process by generating this graph every time it selected a new reflection
	

Results
Generated Reflections

h k l

Presenter
Presentation Notes
After running our algorithm in the crystallographic environment, it churned out sets of reflections points that it determined could pinpoint our goal (The Z-Position of the praseodymium atom)
At a glance what this might give us isn’t obvious at all, but from these we can determine how right our algorithm was.
This is how we did that:
	Since we know the experimental intensities from the data file, we can plot them as a function of q (the sum of the squares of our selected reflection point’s h,k,l components)
	resulting in this graph:
	From here we can see the fit to the experimental data. When doing this fitting, a search is done over a range of z values to see which one gives the minimum residuals
	between the simulated and experimental intensities. In finding that z value, you will have found the position of the praseodymium atom

	From our data we saw that the algorithm does its best to choose the correct z-value, but at a low number of reflections it can be hard.
	 		
	In a plot of the residuals between simulation and experiment, we see when the algorithm selects .36 it is dead on with the experimental z-value of .35973
We can also see how are algorithm’s learning process by generating this graph every time it selected a new reflection
	

Results
Generated Reflections

h k l

Z0.36

Presenter
Presentation Notes
After running our algorithm in the crystallographic environment, it churned out sets of reflections points that it determined could pinpoint our goal (The Z-Position of the praseodymium atom)
At a glance what this might give us isn’t obvious at all, but from these we can determine how right our algorithm was.
This is how we did that:
	Since we know the experimental intensities from the data file, we can plot them as a function of q (the sum of the squares of our selected reflection point’s h,k,l components)
	resulting in this graph:
	From here we can see the fit to the experimental data. When doing this fitting, a search is done over a range of z values to see which one gives the minimum residuals
	between the simulated and experimental intensities. In finding that z value, you will have found the position of the praseodymium atom

	From our data we saw that the algorithm does its best to choose the correct z-value, but at a low number of reflections it can be hard.
		 		
	In a plot of the residuals between simulation and experiment, we see when the algorithm selects .36 it is dead on with the experimental z-value of .35973
We can also see how are algorithm’s learning process by generating this graph every time it selected a new reflection
	

Results
Generated Reflections

h k l

~10

Presenter
Presentation Notes
After running our algorithm in the crystallographic environment, it churned out sets of reflections points that it determined could pinpoint our goal (The Z-Position of the praseodymium atom)
At a glance what this might give us isn’t obvious at all, but from these we can determine how right our algorithm was.
This is how we did that:
	Since we know the experimental intensities from the data file, we can plot them as a function of q (the sum of the squares of our selected reflection point’s h,k,l components)
	resulting in this graph:
	From here we can see the fit to the experimental data. When doing this fitting, a search is done over a range of z values to see which one gives the minimum residuals
	between the simulated and experimental intensities. In finding that z value, you will have found the position of the praseodymium atom

	From our data we saw that the algorithm does its best to choose the correct z-value, but at a low number of reflections it can be hard.
	 		
	In a plot of the residuals between simulation and experiment, we see when the algorithm selects .36 it is dead on with the experimental z-value of .35973
We can also see how are algorithm’s learning process by generating this graph every time it selected a new reflection
	

Discussion
Algorithm:
- Z-coordinate found!
- Fast convergence / low deviation

BUT
- Reward Function
- For a simple system
- Realistically could be very slow

Future:
- More parameters
- Better RL algorithms

Presenter
Presentation Notes
So, from these datasets, the algorithm looks pretty confident!
	the answer we were looking for was found with little deviation
	while only using 10 reflection points out of 198

While this is great, this was only for a very simple system
	we knew everything about the atom we were looking at except one parameter: the Z coord of Pr
	in actual neutron diffraction you could easily be searching for over 30 parameters
	this large dimensionality could definitely pose a problem in the time it takes our algorithm to run
	
But exploration into that larger parameter space is for the future!
And also possibly using better/newer RL algorithms that could optimize running

References
• https://www.ill.eu/users/instruments/instruments-

list/orientexpress/how-it-works/principle-of-neutron-laue-diffraction/
• https://towardsdatascience.com/policy-gradients-in-a-nutshell-

8b72f9743c5d
• https://www.freecodecamp.org/news/an-introduction-to-policy-

gradients-with-cartpole-and-doom-495b5ef2207f/
• https://www.ncnr.nist.gov/programs/crystallography/
• http://www.crystal0studio.com/news.php

• Dr. William Ratcliff
• Dr. Paul Kienzle
• SURF Directors: Julie Borchers & Joe Dura
• SHIP students: Jess & Kate
• Other NCNR SURFers

Acknowledgements

	The Applications of Reinforcement Learning to Neutron Diffraction
	What is Neutron Diffraction?
	Why is it useful?
	Problems Arise...
	Reinforcement Learning
	Reinforcement Learning
	Actor Critic
	Crystallographic Environment
	Results
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Discussion
	References

