Mode-field diameter of

single-mode optical fiber by far-field scanning

Matt Young

I use the direct far-field method to measure the mode-field diameter of a single-mode fiber ‘with an
expanded uncertainty of 30 nm, with a coverage factor of 2. For a step-index fiber with a mode-field
diameter of approximately 9 pm, the major sources of uncertainty are nonlinearity in the electronics,
angular errors and scattered light in the apparatus, and the polarization : and noncircularity of the mode
of the fiber. The paper concludes by showing an inconsistency in the derivation of the far-field expres-

sion for mode-field diameter.
OCIS codes:

1. Introduction

The measurements and analyses that have led to an
artifact standard for the mode-field diameter of a
single-mode optical fiber are described. This stan-
dard is the seventh so far developed by the Fiber and
Integrated Optics Group of the Optoelectronics Divi-
sion of the Natipnal Institute of Standards and Tech-
nology (NIST).

The Telecommunications Industry Association
(TIA) has defined the direct far-field method of mea-
suring mode-field diameter as the “reference method,
used to resolve disputes.”® The far-field method is
thus considered definitive, and other methods must
agree with the far-field method if they are to be con-
sidered valid ‘measurements. The direct far-field
method consists of a far-field scan; that is, a detector
that is linear in optical power is scanned in an arc at
‘whose center lies the exit face of the fiber specimen.

The TIA method specifies a detector that is linear
over at least 4 orders of magnitude (40 dB). IfO0is
the center of the far-field radiation pattern, then the
detector must scan an are that is typically from —~21°
to +21°in steps no greater than 0.5°, and the pinhole
in front of the detector must subtend an angle no
larger than 0.5°. The measurement must also in-
clude a cladding-mode stripper, which is often simply
the polymer coating, and a 3-cm-diameter loop of fi-
ber to remove higher-order modes if: necessary.

\———

The author is with the Optoelectronics Division, National Insti-
tute of Standards and" Technology, 325 Broadway, Boulder, Colo-
rada 80303,
lqueewed 9 February 1998; revised manuscript received 8 May

060.0060, 060.2270, 060.2300, 060.2430, 050.1960, 120.3940, 120.4860.

The criteria concerning the angular step and the
pinhole diameter are almost always adequate. The
range of *+21° however, is inadequate for certain
types of fiber. A better criterion would state, for
example, that the measurement must be continued
until the detector photocurrent falls to a specified
fraction of its maximum value and remains below
that specified fraction. That fraction may be more
than 4 orders of magnitude below the maximum in-
tensity. )

The mode-field diameter is calculated from a rela-
tion first derived by Petermann and elaborated by
Pask:? Artiglia and co-workers? derived from Pask’s
formulation the equation that is used today in the
TIA standard:

Qw, = ._(h/'n')[Z f I(0) sin 0 cos 0 d /

1/2
_ fI(e) sinsecosede} , 1

where 2w, is the mode—ﬁeld diameter, \ is the mean

wavelength of the light, 6 is the angle with respect to
the center of the radiation pattern, and the integra-
tions are carried out, in principle, from 0° to 90°.
The standard implicitly considers Eg. (1) and Peter-
mann’s relation to be equivalent. I note several
problems with Eq. (1) below. Specifically, Pask’s for-
mulation assumes implicitly that the amplitude dis-
tribution, or pattern, in the exit face of the fiber has
radial symmetry. More fundamentally, Eq. (1) is a
nonpara:nal formulation, but its derivation improp-
erly ignorcs the obliquity factor; a formulation that
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Fig. 1. Schematic drawihg of the far-field scanner showing the
fiber, pinhole, and detector.

retaing the obliquity factor regults in integrals that
do not converge. Finally, Petermann’s relation uses
the mode of the fiber, whereas the field at the end of
a truncated fiber differs from the mode. For practi-
«cal reasons, I therefore suggest that Bq. (1), not Pe-
termann’s relation, be adopted as the definition of
mode-field d1ameter Petermann’s relation and Eq.

(1) are not equivalent.

Tn this paper I describe the far-field scanner set up
at NIST to certify mode-field diameter standards, and
I estimate the standard uncertainty of the meastre-
ments performed on this apparatus. The scanner
was designed to provide linearity over 6 orders of
magnitude and can scan an arc from +40° to ~40° if
necessary. In addition, scattered light has been
minimized because a constant scattered power added
to the measurement can bring about a significant
systematic error.

2. Apparatus ‘

The apparatus is shown in Fig. 1. It consists of a
rotation stage under computer .control and is the
same stage that we used earlier for measurements on
multimode fibers.# Iimproved the system by adding
a lock-in amplifier and a mechanical chopper, as well
as by constructing a black backdrop (not shown) and
painting most of the apparatus with a proprietaryflat
black paint. I used two sources, both Fabry—Perot
lasers, with wavelengths around 1310 and 1550 hm.
In addition, 1 replaced the old Ge deteetor with an
InGaAs photodlode for use at these wavelengths.

A typical single-mode fiber has a mode-field radius
wy around 5 pm. The TIA requires the distance
between the exit face of the fiber and the detector to
be at least 100 X w%/\, where' wa?/\ is the distance
at which a circle of radms wy occupies one Fresnel
zone® wgy?/\ is an arbitrary dividing line between
the near field and the far field, but the measured
intensity close to this dividing hne does not closely
approximate the calculated far-field pattern. For
better agreement with theory, the distance between
the fiber and the detector has to exceed at least 10
times wo/\, dependmg on the accuracy required.
The TIA criterion is 100 times, or approximately 2
mm. In our system, we use approximately 130 mm,
I therefore assume that no measurable error can
arise from the fact that this distance is finite.

5606 APPLIED OPTICS / Vol. 37, No, 24 / 20 August 1998

The rotation stage drives the detector in a horizon-
tal are, It uses a stepping motor whose steps corre--
spond to angular increments. of (1/240)°. The
computer takes measurements every 96 steps, or
0.4°, which I call a giant step. Previous experience
with this stage showed that it rotated through a com-
plete circle, or 86,400 steps, with an imprecision well
under 1 step. Frrors that result from machining
tolerances, ’how.ev_er, amount to apprmdmately 3 arc
min or 0.05°, that is, 12 steps. The major source of
these errors is a periodic error in the shaft of the
motor.

The lasers are Fabry—Perot lasers with linewidths
of around 2 nm. They are mounted in fixtures that
control their temperatures within 0.1 °C, and their
input currents of 40 or 50 mA are controlled within
0.1 mA. 'The lasers are plgtalled directly to gingle-
mode fibers, so the radiation is brought briefly into
air and collimated to accommodate a mechanical
chopper, which is needed for phase-sensitive detec-
tion. The beam is then refocused into a second
single-mode fiber. One.end of the specimen.is con-
neeted to this fiber hy means of a commercial splice
that contains an oil-filled capillary. All the fibers
are constrained so that they cannot move, especially
during polarization-sensitive measurements, either
with pressure-sensitive tape or a weighted layer of
foam rubber.

The other end of the specimen is cleaved perpen-
dicularly to its axis with a commercial cleaver and
located at the center of rotation of the stage by means
of a microscope and a cross hair. This is a critical

step:  An errorin the position of the fiber will result

in an error of the measurement. To locate the cross

‘hair along the axis of rotation of the stage, I had a
brags pin machined to fit tlghtly into a hole at the

center of the stage. The pin comes to a point near
the desired location of the fiber end. The point
comes within 100 pm of the axis of the stage. How-
ever, by rotating the stage or (what turns out to be
equivalent) the pin, I can easily locate the cross hair
within 25 pm of the axis.

After locating the fiber end along the axis of rota-
tion, I revolved the detector about that axis until the
phobocurrent is a maximum; this ensures that the
detector is located along the axis of the fiber and
needs tobe done only once. Thereafter, Ilocated the
fiber end with the cross hair and then adjusted it
]aterally and vertically but not axially with a three-

axis translation stage until the photocurrent is a

maximum. The lateral and vertical adjustments are
necessary because the end of the fiber is not precisely
perpendicular to the axis. _ _

The detector is a 2-mm InGaAs photodiode at the
end of a 130-mm arm and always points toward the
fiber end. Its housing also accommodates a 0.5-mm
pinhole, which T deliberatelylocated about 1 cm from
the detector so as to limit the field of view of the
detector and thereby discriminate against stray light.
The output of the photodiode goes into the low-
impedance inpul of a lock-in amplifier. The detector
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Fig. 2. Far-ﬁeld scan of a step-index fiber at 1310 nm. The
logarithm of intensity is plotted as a function of angle.

had to be electrically isolated from the rotation stage
to eliminate what were apparently ground loops,

The Inck-in amplifier has a small zero affset, which
1 corrected on each scale by issuing an offset com-
mand. Ichecked between-scale linearity by measur-
ing a given pawer on two adjacent scales. The scale
factors varied by as much as 4% of their nominal
values, although the important scales, where the pho-
tocurrent is highest, differed from one another by
only a few tenths of 1%. 1 corrected this defect with
software and saved the corrected data.

I checked for saturation by inserting a filter di-

rectly in front of the pinhole and measuring the -

transmittance of that filter at each scale on the
lock-in amplifier. -Iused a colored glass filter, rather
than a metal-coated filter, to reduce the possibility of
‘multiple reflections within the glass. Toreach every
scale on the lock<in amplifier, I controlled the power
by revolving the detector about the fiber end until it
reached the intensity that brought about a nearly
full-scale reading on each scale. The filter had to be
perpendicular to the incoming pencil of rays to avoid
deflecting that pencil; if the pencil were deflected, the
pinhole would sample a different part of the wave
front than when the filter was absent. Betause the
filter had to be removed and replaced repeatedly, I
built a small fixture to ensure that the filler wonld
always be inserted in the same place andin the same
orientation. All scales gave substantially the same
transmittance, generally within a fraction of 1%, so
correction for saturation was not necessary, I did
not check whether the gain of each scale was a con-
stant but rather treated within-scale nonlinearity as
an uncertainty.

Figure 2 shows a scan of a step:index fiber whose
mode-field diameter is approximately 9 pwm. The
cusps at approximately +13° are zero crossings of the
electric field; that the mtensxty at those zero cross-
ings does not gamuch helow 107 is a measure of the
Scattered light in the system. Beyond approxi-
mately 40°, the detector responds to scattered hght
whose relative intensity is no more than 3 X 1077, but

sidelobe power is sometimes barely visible at those
angles when the cleave of the fiber is exceptionally
good. Figure 2 is an exceptionally good scan that
shows the second and third sidelobes well. .

A liberal application of the proprietary flat black
paint was needed to reduce the scattered intensity
below 1078 This paint covers the detector arm, the
backdrop, and the mechanism that holds the fiber.
To ascertain the source of the remaining scattered
light, T performed a radiometric analysis using the
‘paraxial approximation and the notation and formal-
ism of Ref. 6. “Briefly, if P is the total power emitted
by the fiber, then the Javerage irradiance E of the
black backdrop is P/ww?, where w is the radius of the
radla‘mon pattern at a dlstance D from the fiber end
and D is the distance between the fiber end and the

backdrop. The correspondingradianceis L = KE/,
where K is the diffuse reflectance of the backdrop.
The light scattered from the backdrop and onto the
structure that’ holds the fiber gives rise to an irradi-
ance E' = KP/nD? in the plane of the structure.
The corresponding radiance of the structure in the
plane of the fiher end is L' = KE' /n, where T aggume
that the reflectance of the structure is the same as
that of the backdrop.

Because the pinhole is approximately 1 em from
the detactor, the field of view of the detector is only a
small area around the fiber end. This area depends
on the radius r; of the detector, its distance [ from the
pinhole, and the dxstance £ between thefiber end and
tha pinhale; its radius is given by (7,/1)¥¢. Using
similar triangles, we find that the total power scat-
tered from this area into a pinhole of radius p is
(Rryp/4%1)°P cos 0, when the detector is off axis by an
angle 0 (see Fig. 1).

Only a fraction of the total power emitted by the
fiber passes through the pinhole when the detector is
located exactly at the center of the radiation pattern.
If the fiber mode is a Gaussian beam, then that frac-
tion is 2P(p/w)®. The ratio of the scattered power
to the power that falls onto the detector when it
is in the center of the radiation pattern is therefore

f=n0 /2)(Krdw/3’l)2 eos . K =0.01and8 = 40°,

then f = 8 X 107% ‘The measured value at 40°
where the specularly transmitted light from the ﬁber
end is small, however, is approximately 8 X 1077,

To assess the accuracy of the radiometric ealeula-
tion, 1 placed a piece of diffuse white paper in the
plane of the fiber. To avoid disturbing the fiber, I
located the paper below the fiber end so that it cov-
ered only approximately onehalf of the field of view of
the detector. Ifthe diffuse reflectance of the paperis
0.9, then the ratio f' becomes 3 X 1072 x (0. 9/0.01) X
(1/2) = 1.5 %X 1077 The measured value is 4.5 X

7. that is, the white paper increased the value of
f by apprommately 1,5 X 1077, whichisin agreement
with the calculation.

1t seems, therefore, that the scattered light origi-
nates from the surface of the fiber itself. To see
whether this conclusion is plausible, I estimated the
value of f that would arise as a result of surface
roughness on the cleaved end of the fiber. Aslongas
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Fig.3. Far-field scans of two step-index fibers and one dispersion-
compensating fiber at 1310 nm.

the correlation length of the surface features is longer
than approximately 2\, the total power scattered into
a hemlsphere by a reﬂector is P/P, = (2ko)?R, where
Py is the power incident on the surface, k2 = 211/)& o
is the rms surface roughness, and R is reflectance.”
For a surface in transmission, we have 1o replace 2
with (n — 1) and R with the transmittance T of the
surface. That is, for our case, P/P, = [k(n — 1)o°T.
By an analysis similar to that above, we find that the
ratio f = 2[k(n — D)o PTw/$)?cos 8. o =2nm,a
good but not unreahstlc surface finish, we obtain ap-
prommatel,y 2.6 X 107, whereas the measured value
is3 X% 107

The ev1dence strongly suggests that the scattered
light emanates from the end of the fiber. Further-
‘more, although most .of the few step-index fibers I
tested -are similar, scans of two other fibers displayed
either more or less scattered light. Figure 3 shows
far-field scans of those two step-index fibers, as well
as a dispersion-compensating fiber (not a dlspersmn-
shifted fiber), all at 1310 nm. The cusps in the step-
index fibers’ patterns are zero crossings of the electrie
field; that they differ from 0 is a measure of the
scattered intensity at those angles. One of thefibers
evidently has a poor surface finish, whereas the other
has a very geod finish. Itisnot, however, possible to
ascertain whether the dispersion-compensating fiber
scatters significant power because its radiation pat-
" tern is wider than the 40° of the scan. Because a
scattered-light ratio of 1075 can affect the results (see
below), this militates in favor of using a step-mdex
fiber for a standard.

3. Resuits =~ S !
Some typical and atypical results are shown in Figs.
2 and 3. In addition, I located four fibers that had
been used in a round robin (interlaboratory compar-
ison) of mode-field diameter measurements.?. Two of
these fibers are step-index fibers, whereas the other
two are dispersion-shifted fibers. Followingthe TIA
procedure, I cut the requisite 2.2 m of each fiber and
prepared new ends. For each specimen, I measured
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Fig. 4. Comparison of the results of this study (crosses) with an
earlier interlaboratory comparison (open circles) of mode-field di-
ameters of two step-index fibers and two dispersion-shifted fibers.
Each circle represents the result.of a different laboratory.

the mode-field diameter at 1310 nm and then cut a
new end and performed a second measurement.
The results are displayed as the crosses in Fig. 4.
The open circles in that figure are the round robin
Bach circle represents a datum submitted by
a single participant. Each datum is the average of
one ‘measurement on each of two newly prepared
ends.

The agreement is good, although my measure-
ments of the dispersion-shifted fibers fall slightly on

the high side of the mean of the round robin mea-
surements.

It is hard to ascribe much significance to
this fact, particularly because much of the scatter in

the data may be the result of variations in the fibers

and we have no estimate of the measurement uncer-
tainty of the participants. Nevertheless, no partici-

pant’s data disagree with NIST data by more than a

smidgen over 0.1 pm,

4. Uncertainty Analysis

I performed the uncertainty analysis on the step-
index fiber of Fig. 2. Its near-field intensity is ap-
pronmately Gaussian, as verified by near-field
scanning. I performed most of the analyses in two
ways: First I assumed a Gaussian intensity in both
the near and the far fields and estimated the errors
mathematically. Second, I deliberately introduced
errors into the experimental setup and caleulated the
resulting mode-field diameter. In general, the cal-
culations agreed well with the experiment.

A. Note on Terminology

When I say error, I mean the difference between a
measured value and the (hypothetlcal) true value of a
quantity, whether that quantity is an independent
variable such as the position of the fiber end or the
measurand itself. Repeated observations of the
same measurand will yield different values and
therefore different errors. The mean value of the set
of repeated measurements is an estimator of the true



Table1.

Mode-Field Diametgr-caipu_la_tgd for Various Angular increments, Simulated Data

‘Extended
Increment Number of Angular range Trapezoidal Trapezoidal Simpson’s
{deg) Points (deg) Rule Rule - Rule
0.4 53 21.2 9.071 9.080 9.080
0.6 85 21 9.060 9.082 9.080 -
0.8 26 20.8 9.045 9.085 . 9081

9All the results are in micrometers.

wvalue, The range of mcasured values is one compo-
nent of the uncertainty associated with the mean
value. »

Many uncertainties cannot be measured but must
be estimated. I state such uncertainties in terms of
what is essentially a 100% confidence interval (strict-
ly, the smallest 100% confidence interval; an ex-
tremely wide interval .obviously ylelds 100%
conﬁdence, ‘but it is not useful). .Contidence interval
is a term that is borrowed from statistics; for exam-
ple, a confidence interval of 99.7% corresponds to 3
standard deviations of the mean value of a Gaussian
random variable, I use the term somewhat impre-
cisely to deseribe uncertainties that cannot be ob-
tained by statistical means and whose confiderice
intervals therefore must be estimated. 8Specifically,
T estimate the largest probable error and use that
estimate to define the 100% confidence interval, but I
assume that the probability distribution for such er-
rors is flat over the interval.

I combine components of uncertainty by adding
the variances of the presumed: probability distribu-
tions in quadrature, what is commonly called the
_root-sum-of-bquales method, whether or not an er-
ror is identified as random or systematic.® This is
equivalent to assuming that the components of the
uncertainty are small and uncorrelated or, more
Pprecisely, that I succeeded in categorizing the com-
ponents of uncertainty in such a way that they are
small and uncorrelated. . Here the variance of a
Gaussian distribution is the square of its standard
deviation, whereas the variance of a rectangular
distribution is equal to the half-width of the distri-
bution divided by 3. The square root of any variance
is called the standard uncertainty and is analogous to
standard deviation in statistics. The standard un-
certainty of a rectangular distribution equals its half-
width divided by /(3).

Some uncertainties result from systematic errors,
or biases. Then the confidence infervals are asym-
metric-about the true value. Specifically, the confi-
dence interval may extend from 0 to some value 2x.
In such cases, T generally subtract the value x from
. the experimental result, so the confidence mterval
extends from —x to x.

B. Numerical Integration and Angular Increment

The sampling theorem1? can be used to estimate the
largest useful angular increment, or giant step. It
applies only to band-limited functions, and the near-
field pattern of a fiber is only apprommately band

limited. Nevertheless, let us treat lhe near-feld
pattern as if'it were a band-limited function whose
(single-sided) bandwidth is perhaps 3w, Ifthe am-
plitude is an approximately Gaussian function of ra-
dius, ther at the radius 3w, the amplitude is a factor
ofe=? ~ 10~ below its value at the center of the fiber,
The sampling theorem applied to our case preseribes
that the angular increment must be less than A/(2 X
6w,), where 6w, is the full-width of the near-field
pattern. Ifwe take ) = 1.3 pm and wgy = 4.5 pm, we
find that A/(2 X 6wo) = 1.4° In fact, that angular
increment would give a measurable error, presum-
ably because the near-field pattern is not truly band
Timited (Table 1).

I used a simulation to determine the errors that
might arise as a result of the numerical integration.
There are two considerations: the range of the scan
and the angular increment between measurements.
Here we consider the angular increment. I assumed
that the near-field pattern of the fiber was a Gaussian
function with wy, = 9.08 pm, in agreement with a
specific fiber end I had been studying, and A = 1.308
wm. The far-field mten31ty pattern that results
from this near-field pattern is

I(8) = eXp(—2 sin? 0/ S_inz-ﬂo), 2)

where sin 8=\ /mwqis the numerical aperture of the
fiber. Tt is important to use sin 8, rather than 6, 'in
all calculatmns, the paraxial approximation will re-
sult in a potentially significant error, as has been
noted elsewhere. 1!

I used Eq. (1) with various angular increments to
calculate the mode-field diameter that corresponds to
Tq. (2). Specifically, I used a trapezoidal rule, an

_extended trapezoidal rule, and Simpson’s rule!? to

numerically integrate a discrete data set derived
from Eq. (2). ' As long as the scanning range is large
-enough, the rectangular rule yields the same result
as the frapezoidal rule, because the first and last
terms in the integrands are 0.

All three methods gave .consistent results at any
range that equaled or exceeded the TIA’s specified
value of 21°.  The trapezoidal rule, however, did not
yield the correct value 0f9.080 jum, as shown in Table
1, but resulted in an error of 9 nm.

T'used the extended trapezoidal rule, in part simply
because I began with it. (Simpson’s rule was more
accurate at coarser scans, but the extended trapezoi-
dal rule was adequate when the angular increment
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was 0.4°) The definite integral of a function f(x)
over the interval from x to x4 is given by

I flx)dx = [(8/8)f, + (1/18)f; + (28/24) fs + fu + [

Gt fyn tfyat (23/24) fys
+ (7/6) fy-1 + (3/8) fyulox, (3)

where 8x is the step size and N is the number of
increments. I assume that the standard uncer-
‘tainty brought about by the numerical integration is
less than 1 nm (0.01%), although it could be signifi-
cant with a different type of fiber.

C. Angle of Scan
The scan is taken from —0,, t0 6,,,, and the value of 8,

may affect the result. This is so because taking a .

finite scan is precisely equivalent tousing a lens with
a finite numerical aperture. The far-field pattern is
assumed to be the Hankel transform-of the near-field
pattern (but see below). If we scan over a finite an-
gular range, we clip the Hanke] transform, that is,
multiply it by a cire function (the terminology is that
of Gaskill's; cire(r/a) = 1 when r < @ and 0 other-
wise). The resulting near-field pattern is therefore
the convolution of the true near-ficld pattern with a
sombrero function 2J,(8/B), where J, is the first-
order Ressel function, B = (1.22a7/RL), RL = 0.61\/
sin 6,,, and r is the radial dimension in the near field.
The sombrero function is identical to the impulse
response of a diffraction-limited lens whose numeri-
cal aperture is sin 8,,. I therefore use-the term nu-
merical aperture to describe the scanning range. A
scan with a finite numerical aperture results in a
broadened near-field intensity, or a calculated mode-
field diameter that is larger than the true value.

To assess the effect of numerical aperture on mea-
sured diameter, I again used Egs. (1) and (2) with wg
= 9,08 pm and an increment of 0.4°. The extended
trapezoidal rule gave an error of +16 nm when 6, =
10.4° but an error less than +1 nm when 6, > 15.2°.

it is not mncommon to assume not only that the
electric-field pattern in the exit face of the fiber is
Gapssian buf also that the Airy disk can be approx-
imated by a Gaussian function whose radius g is
roughly equal to the resolution limit RL. Convolu-
tion of two such Gaussian functions results in the
convenient rule w? = w,” + g*, where w is the radius
of the resulting function. In our case, RL = 0.61h/
sin 8, and 0,, = 21°, soRL = 2.2 pm. Fw, = 9.08
pm, then w = 9.35 ym, and the error w — wy is 270
nm, Thisis a gross overestimate; convolving with a
sine or a sombrero function broadens a given function
much less than convolving with a Gaussian function
that has the same half-width or radius.

I next took two real data sets, one for a step-index
fiber and one for a dispersion-compensating fiber.
‘Bach data set extended from ~40° to 40°, and I cal-
culated the mode-field diameter with values of 6,
from 15.2° to 40°. The result is shown in Table 2;
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Table 2. Measured Mode-Field Diameter as a F n of
Scanning Angle ) o
‘Dispersion-Compensating
Angle (deg)  Step-Index (um) Fiber (pm)
15.2 9.116 4.647
18 9.091 4.292
212 9,081 4.045
24 19,081 3.916
26 9.080 3.858
28 9.079 3.818
30 9.079 3.792
36 9.078 3.760°
3.754

49 9077

evidently the value of 21° is adequate for the step-
index fiber but not for the dispersion-compensating
fiver. Although noise may bea factor, the step-index
fiber seems to converge toward 9.075 or thereabouts,
or 6 nm less than the value calculated with 8, =
21.2°. The dispersion-compensating fiber also may
approach an asymptote around 40° or 45°, but the
value at 21.2° i5 in error by at least 300 nm.

1 took the error introduced by truncating the mea-
surement at 21° to be approximately +5 nm for the
step-indéx fiber. Thus, to compensate for the sys-
tematic nature of the error, we subfract 5 nm from
the measured value but, to be conservative, also as-
sume a 100% confidence interval of 5 nm. The stan-
dard uncertainty is 5/y/3 nm =~ 3 nm.

A fher with a substantially different mode-field
diameter has to be analyzed similarly. The correc-
tion of 5 nm is specific to this fiber only and will differ
from 5 nm if the far-fleld pattern dilfers from the
far-field pattern of this specimen ar if the angle of
scan differs from 21°. The dispersion-compensating
fiber, for example, will require a scan fo at least 40°,
a fact already noted by Anderson and colleagues in
their discussion of dispersion-shifted fibers.14

D. Angular Errors

The manufacturer specifies the angulur accnracy of
the stage to be +3 arc min. ‘The major source of the
angular errors is machining tolerance in the manu-
facture of the motor. Therefore exrors do not accu-
mulate but rather are periodic, with a period
equivalent to one rotation of the shaft, or 400 steps.
We might try to estimate the effect of an angular
error by noting that the half-angle of the far-field
radiation pattern is approximately 5°. If we were to
search for the 1/e® intensity, we would encounter an
angular uncertainty up to 3 are min, or9 X 107 rad.
The corresponding value of wy will be in error by as
much as {3 arc min/6%) X wy, or 80 nm. This value
is unacceptably large and shows that it is necessary
to use all the data, either by a curve fit or by the TIA
method, Tather than to search for a single point.

To include the periodic error in the simulation, I
replaced 6 with 8 + m sin(2w6/11), where m = 9 X
10~ rad is the maximam error and II = 0.029 rad is
the period of the error and corresponds to one rotation



of the shaft. The calculated mode-field diameter is
in error by 10 nm, as opposed to the 90 nm-obtained
by the estimafe. (Integ-ratlng real data with an
added periodic error gives a similar result, although-
this calculation is problematic in that it could have
added one uncertainty to ancther.) Becausem isthe
greatest expected angular error, I took 10 nm/,/ 3
nm ~ 6 nm to be the standard uncertainty that is due
to angular errors.

E. Finite Pinhole

The far-field pattern recorded by the detector is the
convolution of the true pattern with the cire function
that represents the pinhole. According to the con-
volution theorem, therefore, the recorded near-field
pattern is the product of the true near-field pattern
and the Hankel transform of the circ function. That
is, Eq. (1) calculates not the mode-field diameter of
the true near-field pattern but rather the mode-field
diameter of that product. Because the far-field pat-
tern is broadened by the finite pinhole, the near-field
pattern is narrowed. That is, we can expect a value
that is always less than the true value of the mode-
field diameter.

The Hankel transform of the pinhole is
2, (1 22.,,-,-/ p)/(1.22nr/p), where 7 is the radial di-
mension in the exit face of the fiber and p = 0.61\L /p.
To estimate the error that results from the finite
pinhole, I multiplied the Gaussian function
exp(—2r%/w,®) by the Hankel transform and calcu-
lated the value of p for which the intensity was 1/e
For typical values of w, and A, the resulting error in
the mode-field diameter is roughly -8 nm.

Provided that the mode-field pattern of the fiber is
close to a Gaussian function, then we can add 8 nm to
the calculated value and thereby correct for the finite
pinhole. That is, the value of 8 nm is not an uncer-
tainty but rather a correction. Let us guess that the
uncertainty of the correction is no more than 4 nm, or
‘half the correction itself. Then the standard uncer-
tainty is 4//3 nm =~ 2 nm.

F. Repeatabmty and Noise

If a fiber is placed in the setip and nothing is moved,
several measurements in succession are repeatable
within a fow nanometers. Thie suggests that the
effect of eleetronic noise is also only a few nanome-
ters. 1 simulated electronic noise by adding a
Gaussian random variable!s to Eq. (2).

The short-term stability of the laser and the elec-
tronics is approximately 0.6 parts in 440. Call that
value 6 standard deviations. Then 1 standard devi-
ation is 2 X 107% I modeled these fluctuations by
replacing I(0) with I(6)(1 + n), wheren represents a
. Gaussian random variable whose mean is 0 and
whose standard deviation is 2 X 10™%,  This is equiv-
alent to assuming that the »ﬂuc-tuatic)ns derive from
fluctuations in the laser power, the gain or noise of
the amplifier, or the rotation speed of the chopper. 1
calculated the mode-field diameter a number of times
and calenlated the sample standard deviation, which
was under 1 nm. I similarly calculated the mode-

field diameter for purely additive noise Wlth a stan-
dard deviation of 107%, which is roughly the noise
floorin Fig. 2. Again, the sample standard deviation
was approximately 1 nm. These values are consis-
tent with the observation that repeated measure-
ments yield values that are within a few nanometers
of each other.

Physically removing and replacing the fiber yields
a repeatability of perhaps 5 nm. It seems likely,
however, that at least some of the loss of repeatability
is due to polarization and noncircularity and some to
posmomng errors, all of which are discussed below.
It is important not to mistakenly include the same
source of uncertainty twice, so I took repeatability to
mean the repeatablhty of measurements faken in
qmck succession. Lack of: repeatability in this sense
is primarily the result of electronic noise, and I esti-
mated the standard uncertainty to be 3 nm.

G. Gain Nonlinearity

I examined two cases of gain nonlinearity: between
scale and within scale. The experiments described
above showed that the error introduced by changing
from one scale to an adjacent scale was a few tenths
of 1%, except for the most sensitive scales, where the
photocurrent was least. Over the first three decades
of intensity or photocurrent, the error that was due to
scale change accumulated to apprommately 04%. 1
attempted to correct this error in the software, but
with only partial success, as judged by repeated cal-
ibrations. For uuuertaluty analysis, therefore, Ias-
sumed that the gain of the electronics (that is, the
lock-in amplifier and the detector) was a linear func-
tion of intensity and varied between 0.99 and 1 as the
mtens1ty varied between 0 and the maximum. I
again assumed that the far-field intensity pattern is
a Gaussian function and multiplied that function by
the gain. The calculated mode-field diameter dif-
fered from the true value by 12 nm.

The manufacturer specifies that the gain of the
lock-in amplifier is linear within 1%, and the mea-
sured transmittances of the filter were always within
1% .of each other. These transmittances, however,
were always measured on the same part of the scale,
so these filter experiments tell nothing about within-
scale linearity. I assumed, therefore, that the gain
of each scale varied by 1% between 0 and full scale—
that is, that the gain of the amplifier was a saw-
toothed function of ‘intensity. This added
sophistication increased the error of the mode-field
diameter to 13nm, I therefore took 13//3 nm ~ 8
nm to be the standard uncertainty that was due to
gain nonlinearity.

H. Axial Position

The length of the arm is not szgmﬁcant as long as the
arm is longer than 100 X wg%/A. Locatmg the fiber
end at the center of rotamon, however, is critical. If
the length of the arm is L and the fiber end is located
100 close or too far from the detector by 3L, then
simple geometry shows that the relative error of the
measurementis3L/L. Ifthe fiber end lies in a'plane
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that is located within 25 pm of the axis, then the
error of measurement is (25 pm)/ (130 mm) times the
true mode-field diameter or, in the case of the step-
index fiber, approximately 2 nm. If we adopt this
value as the 100% confidence interval, then the stan-
dard uncertainty is 2//3 hm ~ 1 nm.

I. Cleave An_g'lé

The cleaver we use normally produces an end thatis
perpendicular to the fiber axis within approximately
1wavelength of visible light. This leads to an angle
of approximately 4 mrad between the axis of the fiber
and the axis of symmetry of the beam that emerges
from the fiber. If the detector is to pass through the
peak of the far-field radiation pattern, then the end of
the fiber may have to be positioned nearly 0.5 mm
from the center of rotation of the detector. One gi-
ant step is 0.4° or approximately 7 mrad and corre-
sponds to a linear step of approximately 0.9 mm.
Therefore, the angle of the endface, or cleave angle,
may seem significant. It is possible to show, how-
ever, that the true angle between the fiber and the
detector is equal to the nominal angle tn second order
in the position error. The main effect of the cleave
arigle is therefore to create a neghglble cosine error.
Another effect of cleave angle is to put the fiber
slightly farther from the detector than the nominal
distance L hecause it lies in the correct plane but not
on a radius of the circle. If the fiber is located a
distance k from the center of rotation, then the extra
distance 8L is given by the sag formula 8L = h%/2L
and is less than 1 pm. The resultmg error of the
calculated mode-field diameter is less than 1nm.

J. Vertical Position

In our system the fiber is positioned vertically with a
micrometer while the photocurrent of the detector is
maximized. For a step-index fiber whose mode-field
diameter is approximately 9 pm, the vertical posi-
tioning is repeatable within apprommately 100 pm.
A vertical-positioning error results in a scan that does
not follow a great circle of the reference sphere on
which we are gathering data. Thus, whereas an er-
ror in the cleave angle as such may not be significant,
an error in the posxtlomng of the fiber may cause
‘measurable error in the caleulation.

If we were to scan across a small circle of the far-
field pattern, rather than a great circle, then we
might expect the measured mode-field diameter to be
smaller than the true value. Tn the paraxial approx-
imation, this is equ1va1ent to scanning a chord rather
than a diameter of the circ function. The length of
that chord is less than the diameter by A%/2w, where
k is the vertical ecror and w is the radius of- the circ
function. We might therefore conclude that the
measured mode-field diameter is larger than the true
wvalue by a few nanometers. This argument would
be prec1sely correct if the far-field intensity pattern
‘were a circ function.

If the near-field patbem is Gaussian, however, then
the far-field pattern is nearly Gaussian. "We restrict
the discussion to the paraxial approximation. Sup-
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Fig. 5. Change of measured mode-field diameter asa ﬂmct‘iop of
vertical positioning-error. The solid curve is an estimate based on
the sag formula.

pose that the far-field pattern is given by the function
exp(—~R2/w?), where R is the distance from the center
of the pattern. If'we mistakenly sean a chord rather
thana. diameter, then we record exp[— (R + r%)/w?],

‘where h is again the vertical positioning error (out of

the plane of Fig. 1). The near-field pattern is the
Hankel transform of the far-field pattern and is equal
to exp(—h%/w?) X exp(—r?/w,?), that is, to-a constant
times the correct function. Therefore, in the Gauss-
ian and paraxidl approxunatmns, the error that is
due to a vertical offset is 0, not £%/2w. As above, a

* rough but plausible approximation leads to error.

To directly assess the potential error caused by

incorrect positioning, I measured the mode-field di-

ameter of a step-index fiber as a funetion of vertical
offset. The result is shown in Fig. 5. The crosses
and open circles are different data sets made with the
same fiber end. The mede-field diameter depends
somewhat on vertical offset and, for this fiber, is
slightly less than the value when the offset is 0 (not
more, as predicted by the rough estimate). The §1gn
of the uncertainty probably depends on the precxse
shape of the far-field pattern. For comparison, I
shew the rough estimate based on the sag formula.

If vertical positioning is accurate within 100 pm,
then the 100% confidence interval is at most 2 nm,
which I take to be the halfwidth of a symmetnc
interval because the uncertainty may differ for
slightly different fibers. Thus the standard uncer-
tainty is 2 nm//3 =~ 1 nm.

K. Lateral or Horizontal Position

If the fiber is offset laterally from the correct position,
then, in the paraxial approximation, we detect the

function exp[—2(R — h)?/w?], instead of the correct

function, for which & = 0. The shift theorem of Fou-
rier theory does not apply to the Hankel transform,
because the derivation of the Hankel transform de-
pends on the assumption of radial symmetry, and the
shift from 0 to A breaks the symmetry. Depending
on the sign of &, an integration from 0 to e will yield
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Fig. 6. Change of measured mode-field diameter as a function of
lateral or horizontal positioning error. The open circles and
squares are measured data. ‘Fhe dashed curve is aparabolic fit to
the open-circle data, ‘The solid curve is a theoretical curve that
approximates the dashed curve. The crosses represent an at-
tempt to correct for the offset mathematically.

a mode-field diameter that is, say, too small, whereas
an integration from 0 to —% will yield a result that is
too large. The TIA solution is to average the two
data sets and perform the integration once. Fiber-
Optic Test Procedure 191 does not directly address
the condition that the pattem is not precisely cen-
tered about 0.

.We can rewrite the exponential function as
exp[~2(R? — 2Rh + h®/w”]. The second-order
term in & is a constant factor and does not contribute
to the mode-field diameter. The first-order term,
however, is significant, so the TIA’s procedure does
not completely correct for lateral errors. This is so
because the sum of any two identical functions that
display peaks near 0 but are offset from each other is
necessarily broader than either function, Thus the
function used for the caleculation is necessarily
broader than the true 1ntensxty pattern. The calcu-
lated mode-field diameter is therefore always less
than the true value when there is a lateral offset in
the position of the fiber.

To assess the error caused by a lateral offset, I
aligned a fiber end as well as possible and then de-
liberately translated it laterally in successive 0.1-mm
increments, performed a far-field scan, and calcu-
lated the mode-field diameter by averaging the two
halves of the data set. The open circles in Fig. 6
show the results of such an experiment. A parabolic
fit to the data (dashed curve) displays a maximum of
9.08 um located —0.09 mm from the nominal center.
This distance-from the center is an estimate of the
actual position of the fiber with respect to the center
of rotation. It is approsnmately one tenth the dis-
tance traveled by the detector in a giant step of 0.4°.

I next added two Gaussian functions with a slight
offset between them. The value of w, was set equal
to 9.08 pm so as to agree with the parabolic fit. I
integrated the sum according to Eq. (1). The result

not).
and —2 nm. Unlike the uncertainty owing to verti-
cal offsets, this uncertainty is- always negative.

is shown as the solid curve in Fig. 6. Except for the
offset, it parsllels the dashed curved well.

T tried to correct for the offset by fitting a parabola
to the first three data points, using that parabola to

‘estimate the true center of the radiation pattern, and

then carrying out the rest of the integration as before.
The result is given by the crosses and the dot—dash
curve. This formalism reduces the error by perhaps

- a factor of 3 but is not worth the effort because the

erroris small anyway. If, however, itis not practical
to position the fiber accurately, this technique may
reduce the required positioning accuracy measur-
aply. -

Finally, I repeated the experiment with offsets be-
tween —1 and +1 mm. * These results are shown as
the open squares in Fig. 6. 'The error introduced by

- alateral offset is periodic, and the period is evidently
-determined by the offset that corres_ponds to the 0.4°

giont step of the rotation stage. That is, as long as
the fiber is directly opposite the detector at one posi-
tion close to 0, the numerical calculation yields the
correct result. The repeatability of locating the fiber
is important, however, in that it must be well within
0.5 mm of the correct position to ensure an error less
than 20 nm,

To estimate the uncertainty that results from lat-
eral positioning errors, I assumed that the fiber could
be positioned within 100- pm with approximately
100% confidence and that the probability could be
evenly distributed over this interval (in reality, it is.
‘The resulting confidence interval is between 0

It is,
however, so small that a correction is not necessary
As above, the standard uncertainty is 2 nm//3 ~
nm.

L. Scattered Light

Scattered light -adds to the far-field data a slowly
varying function of angle, which we approximate as a
constant. Adding this constant to the far-field in-
tensity is the equivalent of adding a sombrero func-
tion to the near-field pattern (not convolving the
near-field pattern with a sombrero function). Be-
cause the sombrero function adds more intensity
where p = 0 than elsewhere, the near- -field intensity

" is relatively sharply peaked near the center, and the

calculated mode-field diameter is always less than
the true value.

I assessed the effect of seattered light in two ways:
First, I took the previous data sets and linearly. added
a constant. The smallest additive constant, 1075, is
seversl times larger than my estimate of the scat-
tered light in the system. The result is shown in
Table 3 for both the step-index fiber and the
dispersion-compensating fiber.

Seattered light has the most pronounced effect at
the highest numerical aperture. Thisis so because
the corresponding sombrero finction in the near field
is narrowest and therefore most sharply peaked at
the highest numerical aperture. This result sug-
gests that a scan should not be carried out farther
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Table 3. CGhange of Mode-Field Diameter when a Constant
Background is Added to Real Data

) Dispersion-
Angle Background Step-Index  Compensating
(deg)  (relative units)  Fiber (pm) Piber (um)
212 0 9.081
21.2 107 9.079
212 3% 1078 9.074
21.2 1078 9.057
26 0 9.080
26 1076 9.075
26 ‘3% 107 9.064
26 107° 9.027
40 1078 9.077 3.754
40 107 9.052 3754
40 3% 1078 9.002 3.753
40 107% 8.834

3.750

than is necessary to reduce the errar of truncating to
less than a few nanometers if there is danger of scat-
tered light entering the detector: When 9,, = 28°,
for example, the addition of a relaive scattered in-
tensity of 107° causes an ervor of —5 nm in the cal
culated mode-field diameter, whereas the same
scattered intensity causes an error of nearly —30 nm
when §,, = 40°.

Adding a constant to a real data set is problematic
because those data already contain a measurable
fraction of scattered light. The true value is there-
fore not necessarily the value calculated with the raw
data. Accordingly, I performed a simulation using a
Gauspian boam for the far-ficld pattorn. The resnit
isshowninTable 4. A relative scattered intensity of
1076, for example, causes an error of —4nm when §,,
= 26° and ~6 nm when 8, = 28.8°, which is in good
agreement with the experiment. I therefore add a
correction of & nm and adopt a standard uncertainty
of 6//3 nm = 3am,

M. Noncircularity of Fiber or Mede
The caleulation, Eq. (1), assumes radial symmetry.
The fiber core itself, however, may not be exactly
circular, and the mode may not be circular even if the
fiber iy circular.

¥t is genarally aseumed that the made is circular if
the fiber is circular, ‘The theory of the stepindex

ablo 4. Change of Mode-Field Diamster when a Constant
Savkgrauny Is Auded tv Simulatyd Pata”

Background
(relative unite) 2%° 288°
o 9.080 5.080
3% 1077 9.079 9.078
1078 9.076 9074
3% 107® 3488 9060
107 9.034 5.013

*Angular increment, 0.4°. Mode-field diameter is in microme.
ters.
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fiber depends on the assumption that the z compo-
nent E, of the electric field is separable into the prod-
uct of two functions, a function of radiug and a
fanction of ammuthal angle.’® The lowest-oftler
mode then has radial symmetry. It seems unlikely,
however, that any mode can truly have radial sym-
metry {unless it is circularly polarized) because the
boundary conditivne where the electrie iR is para).
Jel to the boundary and where it is perpendicular are
different. In consequence, the phase shift on reflee-
tian for ane linear component of polarization is dif-
ferent from that for the other component. Thusibe
mode {s probably slightly oval, even in a perfectly
circular fiber. . ) )

To estimate the order of magnitude of this effect, [
caloulated the TE and 'TM modes of a single-made
slab waveguide with parameters similar to those of
the single-mode fiber. Specifically, the slab had a
half-width of 4.33 pum, 2 dladding index of 1457, apd
a core index of 1.4628. These parameters have no
special significance except that they yielded a beam
width of 9.087 um for the TE mode and 9.073 pm for
the TM mode, where here beam width means the
full-width between the 1/e points, The mean valye
is 9.080 and is what we would expect with wholly
unpolarized light. If the polarization were un-
known, the uncertainty of a measurement (L00% con-
fidence interval) would therefore be approximately 7
nm, that is, the differente hetween 9.087 or 9.073 and
their mean, 8.080. )

The slab wavegnide was meant as a model for a
step-index fiber. Eiven a step-index fiber may have a
slightly blurced interface, however. I examined a
vefracted-ray (refracted near field) scan?” of another
specimen of the same step-index fiber. Figure 7
shows two details from this ccan. The points are .1
wm apart and are presented to facilitate an estimate
of the edge transition widths, The lefimost scan is
taken across the edge of the ddadding. The 20-80%

* transition width is approximately 0.4 wm. Convolv-

ing the sombrero function with an edge shows that
the 20~80% transition of a diffraction-limited system
is equal 0 0.63 times the theoretical resolution limit
0.610/NA, orapproximately 0.38 . The system is
therefore approximately diffraction limited. -

The rightmost scan is the coxe of the fber. The
90-—-809% transition width there is close to 0.8 um, go
we may assume that the cure—dadding interface is
slightly blurred or graded. The phase shift on re-
flection from a blurred or graded interface is wf4 and

. is independent of angle of incidence,*® provided that

the graded region is wide enough. Thus I interpret
the 7-nm uncertainty implied by the slab waveguides
ag an upper limit to what we might expect in a real,
circular fiber with a slightly graded interface.

The dispersion-compensating fiber has a small
mode-field diameter and 4 correspondingly broad far-
ficld intensity pattern, Far-field scans are therefore
comparatively insensitive to Jateral and vertical po-
sitioning errors. 1 made several scans of the
dispersion-compensating fiher by placing a polarizer
before the detector and adjusting the plane of the
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Fig. 7. Refractive-index profile of a step-index fiber. The left

curveis the edge of the fiber and has a transition width of approx-

imately 0.4 pm. The core displays a transition width of approx-

imately 0.8 wm.

electric vector of the wave emerging from the fiber to
be either horizontal or vertical, where vertical means
perpendicular to the plane of the scan and horizontal
means parallel to that plane. Without moving any-
thing, 1 scanned the far field twice, oneé with each
polarization, and divided the results point by point.
I rotated the fiber approximately 90°, readjusted its
position, and performed one more scan at each polar-
ization. I repeated the procedure at angles of 180°
and 270°,

Figure 8 superimposes all eight scans, and Fig. 9
superimposes the four ratios taken at each angle.
The ratios are, within a few percent, equal to 1 out to
an angle of 25°, where the intensity is a factor of 300
below the maximum. Integration from 0° to 25° con-
tributes the maJonty of the final result. Neverthe-
less, the wave is not truly a TEM wave, and it might
some day become necessary to account for that fact
with fibers that have much smaller cores than most of
today’s fbers. The plots of Tig. 9 become noisy be-
yond 30°, where the denominators become small and
noisy. It is not clear whether the apparent inerease
of the polarization ratio at large angles is real or the
result of noise. .

1 performed similar experiments with the step-

index fiber and calculated the mode-field diameters.

for vertical and horizontal polarizations. The hori-
zontal polarization yielded a diameter that was on
average 20 nm larger than the vertical, in fair agree-

ment with the slab calculation, which ylelded 14 nm.

The core of the fiber may be noncircular, and the
fiber will therefore support a noncircular mode for
this reason as well. It is impossible to distinguish
‘noncircularity that is due to polarization from that
-due to noncircularity of the core without controlling
the polarization.

Because the polarization in the fiber is in general
unknown, the most probable value of the mode-field
diamecter is the avcrage of the two lincar polanza-

tions. T took the 100% confidence interval that is

Log relative power

s-H e

T = T — 1
-50 . 25 0 25 50
Angle, °

Fig. 8. Superposition of eight scans of a dispersion-compensating
fiber with four orientations 90° apart and two orthogonal, linear
polarizations at each orientation.

due to polarization to be half the difference between

horizontal and vertieal polarizations, a half-width of

approximately 10 nm. It is hard to distinguish, but
the noncircularity of the fiber may add another +10
nm, so I took the overall confidence interval that is
due 1o the noncircularity of the mode to'be /2 X 10
nm = 14 nm. The standard uncertainty is 14//3

nm = 8 nm.

N. Wavelength
I measured the wavelength with a commercial grat-

ing instrument whose uncertainty is 0.1 nm, as mea-

sured-at NIST. If the laser’s wavelength is stable
within another 0.1 nm, then the 100% confidence
interval of the wavelength is0.14 nm. The resultmg
confidence interval of mode-field diameter is (0.14
nm)/(1310 nm) times the mode-field diameter or, in
our case, a bit less than 1 nm, The standard uncer-
tainty is 1//3 nm — 0.

12 |}

Ratio (HV}

Tg. 0. Ratios of scans taken “with orthogonal polarizations at
each of the four orientations in Fig. 8.
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» Table 5. Summary of Uncertainties

Source

Method of‘ Analysxs

Correction (nm) Ungertainty (nm)

‘Numerical mtegratlon Su'nulahon <1
Angle of scan PData -5 3"
Angular errors Simulation plus specification ' 6
Finite pinhole Simulation 8 2
Repeatability and noise Data 3
Gain nonlinearity Data plus simulation 8
Axial position of fiber Geometry 1
Cleave angle Geometry <1
Vertical position Data <1
.Lateral position Data 1
Scattered light Data plus simulation 6 3
Noncircularity Measnrements plus theory 8
Wavelength Data <1
Fresnel coefficients - Simulation plus theory <1
Additive correction 9

Combined uncertainty i5
Expanded uncertainty 30

(coverage factgjr of ‘2)

0. Fresnel Coefficients

The Fresnel coefficients do not rigorously apply to the
wave reflected from the end of the fiber. This is so
for two reasons. First, they are derived for infinite
plane waves incident on a semi-infinite medium.

We can to some extent take this fact into account by
decomposing the mode inside the cavity into its an-
gular spectrum and calculating the amplitude trans-
mittance for each component. The effect is slight;

for example, for a Gaussian mode whose radius is 4.5
jm, the reflectance differs from the value at normal
incidence by approxxmately 1 part in 10° at an angle
of 5° and less than 2 parts in 10° at an angle of 10°.

These angles correspond to 1 and 2 times the numer-
ical aperture A/mw, of the fiber. I nevertheless in-
corporated the Fresnel coefficients into the Gaussian
simulation; they change the result of the calcnlation
by less than 0.1 nm. I discuss the second reason in
Subsection 4.R below.

P. Expanded Uncertainty

I calculated the expanded uncertainty for the step-
index fiber only. Other similar fibers are probably
subject to similar uncertainties, but fibersin different
classes will need separate analyses. In addition,
this analysis was carried out.at 1310 pm. The
mode-field diameter of the same fiber at 1550 pm is
somewhat larger, but the uncertainties are largely
unchanged.

The first column of Table 5 details all the uncer-
tainties that I discovered, except for the effect of the
reflection from the end of the fiber, and the second
column describes the method of analysis. The third
column shows the estimated corrections that are due
to systematic errors or biased probability distribu-
tions. The last column shows the standard uncer-
tainty, that is, with a coverage factor of 2 = 1. The
second to last row shows the combined standard un-
certainty, that is, the sum of the standard uncertain-
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ties added in quadrature. The last row shows the
expanded uncertainty, that is, expanded to a cover-

age factor of 2 (which is analogous to 2 standard
deviations of the mean).

Q. Philosophical Point 1

Before continuing, let us define the mode field and
distinguish it from the aperture field. The mode
field is the electric field inside the fiber but a great
distance from either end, after evanescent waves
have died away. If we call the exit face of the fiber
the aperture plane, then the aperture field is the
electric field in the dperture plane and differs from
the mode field because different boundary conditions
apply at the very end of the fiber. We may want to
know the mode field for most applications, but we
necessarily measure the aperture field.

Equation (1) has been derived from Petermann’s
definition of the mode-field radius:

1/2
we = [2 J. le@Pr dr / ]' loe()/orlr dr} , @

where e(r) is the {scalar) mode field and the absolute
value’ 31gns are for generality. (With the absolute
~value signs, we heed not assume that e(r) is real, that
is, that the wave in the fiber is a TEM wave.) The
integrations are carried out from 0 to .

The derivation of Eq. (1) assumés both that the
far-field pattern is equal to the Hankel transform of
{he near-field pattern and that the aperture field is
the same as the mede field. Both assumptions are
incorrect.

The far-field pattem is not equal to the Hankel
transform but rather to the Hankel transform mul-
tiplied by a factor known as the obliquity or inclina-
tion factor.® That is,

E(@®) = O(0)HTe,(r)], )



where HT stands for Hankel transform, O(6) is the
obliquity factor, and e (r) is the apetfture field. The
obhqmty factor is often ignored in calculations be-
cause it is nearly equal to 1 for small angles. Inour
calculation, however, angles are mnot necessarily
small, and ignoring the obliquity factor selectively
while otherwise using the exact theory is equivalent
to commingling paraxial and exact calculations.
If we rewrite Eq. (5) as’

E(0)/0(8) = HT{e,(r)] (6)
and calculate the inverse Hankel transform
“e,(r) = HT Y E(6)/0(0)], (N

we find that the Hankel transform pair consists of
e,(r) and E(8)/0(6), not e, (r) and E(8). The function
1(8) in Eq. (1) should therefore be replaced with 1(8)/
0%(6), because I(8) = |E|*(®) in the far fleld.

We argued earlier that the obliquity factor inscalar
theory is equal to cos 06,2021 not (1 + cos 8)/2. Ifwe
adopt Petermann’s definition, Eq, (3), but include the
obliquity factor, we find

wi = (h/w)[ f I(®) tan 6 d 6 /

1/2
f I@) sin’9tan 6d .e} . (8

'Equatmn (8) follows rigorously from applying Peter-
mann’s definition to the apérture field and could
therefore be considered the correct result for scalar
theory.

To assess the effect of using Eq. (8) in place of Eq.
(1), 1 first performed a simulation using a Gaussian’
beam and an angular scan with 0, = 26°. Including
the obliquity factor in the calculation decreased the
mode-field diameter by approximately 20 nm, With
the real, step-index fiber, the decrease was more
nearly 256 nm. Withthe d1spersmn—compensat1ng fi-
ber, the decrease grew from 80 to 100 nm as 9,, in-
creased from 26° to 40°. That is, mcludmg the
obliquity factor in the calculation may change the
result by as much as 100 nm with a particularly
small-cored fiber, but perhaps —25 nm with a com-
mon step-index fiber.

The difference between the two .calculations, in-
cluding or not including the obliquity factor, is not an
uncertainty. To the contrary, if the calculation that
includes the obliquity factor is correct—or more
nearly correct than the simpler theory—then the sim-
pler calculation gives rise to a systematic error.

Both Egs. (1) and (8) may be transformed to the
near field by applying standard Fourier transform
theorems. Both are derived, with different assump-
tions, from Petermann’s original definition, Eq. (3).
Equation (3) pertains to the mode field of a fiber, not
the aperture field. Truncating the fiber, however,
excites fields that are radiative and decay asymptot-
ically as 1/r in the far field. The numerator and

where e,'(r) = [de,(r, 2)/82], — ¢

denominator of Eq. (3) therefore diverge:
eral, w§" does not exist.
The mode-field radius w{’ as defined by Eq. (8)

likewise does not exist. ‘The definition as stated in

In gen-

- Eq. (1), by contrast, converges but does not correctly

follow from Petermann’s definition, Eq. (3), as applied
to the aperture field. We therefore suggested else-
where that Eq. (1), though arguably incorrect, be
adopted as the definition of mode-field dlameter 22
This has an advantage in that it is consistent with
present practice.

Let the field a short distance z beyond the aperture
plane be e, (r, 2), where 2z =0 is the plane of the face
and e, (r) = e,(r,0). Interms ofthe field in the plane

deﬁned by 2. the far-field pattern can be expressed as

E(9) = O(0)HTle,(r, 2)]exp(ik.2), )

where O(0) = cos 8 and &, = k cos 8 is the z component
of the propagation vector. Inverting Eq. (9), we find

e,(r, z) = HT[E(0)/O(0)Jexp(—ik,z).  (10)

Taking the derivative of both sides of Eq. (10) with
respect to z brings out a factor of cos 8, which cancels
the divisor O(9). Apart from a constant factor,
de,(r, 2)/5z and E(9) are a Hankel transform pair,
'wher'eas e,(r,2) and E() are not. This consideration
leads to the alternative near-field expression

1/2
w® = _[2 f lea’ ()2 rdr/ f |aeu'(r)/ar|2rdr] , An

If we calculate the
far-ﬁeld relation that corresponds to Eq. (11), we de-
rive Eq. (1); that is, w® = w,. This result suggests
that we adopt Eq. (11) in place of Eq. (8) as the
near-field expression for Wo. In the region near the
core, the aperture field is very nearly a TEM wave
(and is probably very nearly equal to the mode field),
50 Eq. (11) reduces to Petermann’s original definition,
Eq. (3). Eguation (9) converges, however, whereas
Eq. (B) will not converge if e(r) is replaced by the
aperturefielde,(r). Applying Eq.(9) expenmentally
to near-field scans, unfortunately, may be difficult in
cases in ‘which the aperture field is not very nearly a
TEM wave beeause the near-field scan measures in-
tensity, not the axial derivative of the field. Thuswe’
should expect small discrepancies between near-.and
far-field measurements of w,.

R. Philosophical Point 2

The wave at the end of the fiber experiences a dis-
continuity in index of refraction. Itis for this reason
that the aperture field differs from the mode field.
We may well want to know the mode field, however,
not the aperture field, as when two fibers are con-
nected end to end. If the fibers are aligned fairly
well, the field at their intersection probably closely
approximates the mode field, rather than the aper-
ture field at the end of a truncated fiber.

“We can estimate the effect of truncating the fiber
by simply assuming that the field just outside the

20 August 1998 / Vol. 37, No. 24 / APPLIED OPTICS 5617



fiber is equal to the field just inside times the trans-
mittance given by the Fresnel coefficient. ‘That is,
we assume that the transmittance of the part of the
wave inside the core is slightly different from the
transmittance of the part of the wave in the cladding.
This approximation is precisely the approximation
that K1rchhoﬂ' made in his analysis of diffraction by
an aperture in an opaque screen and js sometimes
called the Kirchhoff approximation. It ignores both
evanescent and propagating waves created as the
result of the discontinuity.

Let us assume that the beam inside the fiber is
Gaussian and hag radius w,. The fiber core has ra-
dius o and index of refraction n, = 1.4572, and the
cladding has index n; = 1.4630. The corresponding
amplitude reflectances r, and r, differ by approxi-
mately 0.002 at normal incidence. Applying the
Kirchhoff approximation, we can write the electric
field just outside the fiber as

e(r) = exp(—r*/w A1 — (ry— ro)eirc(r/a)], (12)

where cire(r/a) = 1 when r < a and 0 otherwise.
The far-ficld pattorn is then

E(sin 0)/0(0) = exp(—sin® 6/sin® 8;) — (ry ~ ry)
X exp(~—sin® §/sin’ 8p)*somb(af), (13)

where the sombrero function has been defined in Sub-
section 4.C., ¥ means convolution, and somb{a) is the
Hankel transform of circ(r/a). The far-field inten-

sity is
1(6)/0%(6) = exp(—2 sin”® §/sin® 0,)
— 2(r, — ro)exp(—sin? 8/sin® 6,)
X [exp(—sin? 8/sin’ 0g)*somb(at)], (14)

where the term that contains (r; — r)? is neglected

The second term on the right of Eq. (14) is the
result of the difference between the mode field and
the aperture field. The core radius a of the step-
index fiber is approximately 4.2 pm, so the first zero
of the sombrero function lies where sin 8 = 0.61)\/q,
or where 6 = 11°. The mode-field radius w, is 4.5
pm, so 8, = 5.3°, Thus the second term in Eq. (14)
is somewhat broader than the first and is therefore
significant at all angles. Because 2(ry —~ ry) is ap-
proximately 0.004, this term may be- 51gmﬁcant It
does not represent an error but rather is part of the
far-field diffraction pattern. That is, the difference
between the mode of the fiber and the aperture field
may appear in the measured far-field pattern. For
connector studies, there is no fiber—air interface, so
the mode field may be what is important. In the
future it may become necessary to distinguish be-
tween the aperture field and the mode field.
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