
vPROM: vSwitch Enhanced
Programmable Measurement In SDN

An Wang*, Yang Guo†, Songqing Chen*, Fang Hao‡, 
T.V. Lakshman‡, Doug Montgomery†, Kotikalapudi Sriram†

† ‡*



PROGRAMMABILITY IN SDN

§ Low-level programming interfaces

§ Explicit resource control

§ Monolithic control platform

1st generation 2nd generation

§ High-level abstractions

§ Extensible packet model 

§ Modular programming framework

*	Pyretic,	Kinetic,	Frenetic	Ocaml,	etc.

– Data Plane 

OpenFlow provides an open protocol to program the flow table in 
different switches and routers

– Control Plane 



§ Interfaces between monitoring and other applications
rule overlapping and conflicts

§ Continuous involvement of the controller may be required
subflow collections

§ Associating with forwarding entries in the flow table is neither 
flexible nor sufficient for supporting various monitoring applications

forwarding and monitoring applications have different header fields of 
interest

CHALLENGES IN PROGRAMMABLE MEASUREMENT



§ Runs on instrumented Open vSwitches
decouples monitoring from forwarding and support user-defined monitoring 
capability*

§ Extend Pyretic to Pyretic+ to generate different rule sets; Extend 
OpenFlow to OpenFlow + to allow applications to setup of monitoring 
rules 

§Client to facilitate the communication between the Pyretic run-time 
system and the Ryu controller

Ryu supports OpenFlow 1.0 - 1.5 with access to over 40 fields 

*UMON: Flexible and fine grained traffic monitoring in open vswitch, CoNEXT 2015

VPROM PROGRAMMABLE FRAMEWORK



POX Controller Platform
POX Client

Pyretic Runtime

Network 
routing

PYRETIC ARCHITECTURE

Serialized Messages (TCP socket) 

OpenFlow Message

High-level 
Abstraction

Control
Paltform

OpenFlow
Switches

Control 
Plane

Data Plane



Ryu Controller Platform
Ryu Client

Pyretic+ Runtime

Network 
routing

VPROM ARCHITECTURE

Serialized Messages (TCP socket) 

OpenFlow/OpenFlow+

Message

High-level 
Abstraction

Control
Paltform

OpenFlow
Switches

Control 
Plane

Data Plane

vPROM
applications… …

UMON
Switches

POX Controller Platform
POX Client

Pyretic Runtime

OpenFlow Message

UMON UMONUMON UMON



UMON RECAP

periodic update monitoring table 
with kernel flow table info

Packet
In

Table
0

Table

1
● ● ● Table

n

Monitoring
Table

Execute
Action

Set

Packet
Out

Subflow
Tables

Application
Threads

userspace

kernel

OpenFlow+

UMON① Subflow monitoring

② Monitoring on non-routing
fields



VPROM COMPONENTS
1) Pyretic+ Language

Three query policies are defined to collect statistics of packets of each group

• group_by defines the granularity of subsets of flows; To support TCP flagged packets 
monitoring, we introduce ‘tcpflag’ to  the group_by parameter

• new policy ‘prtscan_detection’ could activate/deactivate local port-scan detector

Syntax Summary

packets(limit=n, group_by=[f1,f2,...]) callbacks on every packet received for up to n
packets identical on fields f1,f2,...

count_packets(interval=t, group_by=[f1,f2,...]) counts every packet received. Callback every t
seconds to provide count for each group

count_bytes(interval=t, group_by=[f1,f2,...]) counts every byte received. Callback every t
seconds to provide count for each group



VPROM COMPONENTS

2) Pyretic+ Run-time System
compiles application programs and generate abstract syntax tree (AST), 
which represents the policies and their inter-relationship 

e.g.
match(inport=1) >> if_(match(protocol=6), Q, 

identity) >> fwd(2)

Q = count_packets(interval=t, 
group_by=[‘srcip’, ‘dstip’])

>>

fwd(2)>>

match(inport=1) +

>>
>>

match(protocol=6) Q identity

match(protocol=6)

~

Preorder Traversal



VPROM SYNTAX PARSER
A. Deriving Monitoring AST

I. identify all the nodes of query policies

II. for each node, find all its anterior nodes by following the 
parents nodes iteratively
the posterior nodes have no effect on the monitoring rules

III. for operator nodes that ∈
[‘intersection’, ‘sequential’, ‘difference’], all the nodes in its subtrees 

should be included
IV. monitoring AST is compiled into policy with a stack machine compiler 

that maintains a first-in, first-out (FIFO) stack
match(inport=1) >> match(protocol=6) >> Q

>>

match(inport=1) +

>>

match(protocol=6) Q

identity

p



VPROM SYNTAX PARSER
B. Deriving Forwarding AST (complementary to monitoring AST)

I. identify all the nodes of query policies
II. for each node, go upward iteratively until it hits first ‘parallel’ operator 

node
III. prune subtrees that are exclusive 

to the monitoring AST
identity

>>

fwd(2)>>

match(inport=1) +

>>
>>

match(protocol=6) Q identity

match(protocol=6)

~
p

p

match(inport=1) >> identity >> fwd(2)



VPROM COMPONENTS
3) OpenFlow+ Protocol

§ Monitoring Table Management

§ Stats Collection
define a new multi-part message OFPMP_MONITOR_STATS with two types: 
OFPMR_ALL and OFPMR_EXACT 

§ Application Thread Management
define new action OFPAT_PRTSCAN_DETECTION for vertical and horizontal scanning 

detections

ofp message type ofp commands

OFPT_MONITOR_MOD
OFPMMC_ADD, OFPMMC_MODIFY, OFPMMC_DELETE, 
OFPMMC_MODIFY_STRICT, OFPMMC_DELETE_STRICT

4) Ryu client
serialize/deserialize messages to Pyretic backend process; later release of 
OpenFlow protocol could be easily integrated to the client



VPROM-GUARD
§ vPROM could respond to the ever changing attack vectors 
dynamically
§ vPROM-GUARD detects coarse-grained attack cues by default and 
switches to fine-grained detection when suspicious activities are 
detected

v coarse-grained attack cues: big flows and CUSUM (imbalance between TCP SYN 
and TCP FIN packets)

v fine-grained detection: dynamically changing the monitoring granularities 

Pyretic+

Controller

UMON

UMON



BIG FLOW DETECTION
We employ Coincidence Base Traffic Estimator (CATE*) mechanism

3

Predecessor Table Coincidence Count Table

new 
arrival

② if 𝑙# > 0 
𝑓 ∈ CCT, update CCT with 𝑙#

otherwise, insert CCT with 𝑙#

① Upon new arrival, iterate Predecessor Table to count 
flow appearance as  𝑙#

flow id is defined as tuple of 
dstip and protocol in our case ③ big flows have 𝑝# =

'(),#)�

)#
≥ 0.05

*Fast, memory-efficient traffic estimation by coincidence counting, INFOCOM 2005

3
1
8

…
	…

2
7

Flow id Count

3 2
7 5
… …



CUSUM (CHANGE POINT DETECTION)
TCP {SYN, SYNACK} and TCP {FIN, FINACK, RST} should be balanced in 
normal network environment, Cumulative Sum Method (CUSUM*) is utilized to 
detect deviations

*Change-point monitoring for the detection of DoS attacks, TDSC 2004

Let 𝑞2 and 𝑝2 be the number of requests and responses in 𝑖-th measurement epoch

Then, normalized difference 𝛿5 = (67897)
:7

, where 𝑃2 = 𝛼𝑃28= + 1 − 𝛼 𝑝2

Cumulative sum 𝑆2 = (𝑆28= + 𝛿5 − 𝑡)C, 𝑡 is a constant threshold and (D)C takes 
positive value or zero
Potential attacks exists if 𝑆2 > 𝑇, with 𝑇 being a tunable parameter
UMON keeps increasing the monitoring granularity until desired information of 
the attacker has been obtained



USE CASES

Pyretic+

Controller

Big	
Flow

CUSUM

CUSUM

CUSUM
Big	
Flow

Big	
Flow

CUSUM

Flag Indicators Potential Attacks

+ TCP SYN flooding attack 

other types of DDoS attacks 

vPROM-GUARD starts collecting subflows and 
detecting port scanning attacks



EVALUATIONS
Open vSwitch 2.3.2 is instrumented to implement the schemes; Use Tcpreplay to 
replay data center traces* of ~65 minutes

*Network traffic characteristics of data centers in the wild, SIGCOMM 2010

Pyretic vPROM



EVALUATIONS
CPU stress test by increasing the number of srcip/dstip pairs

OVS generated > OVS sent > Pyretic received

Open vSwitch
ofagent overflow

controller event   
queue overflow



EVALUATIONS

87.51.34.132

69.63.178.11

NUST SEECS trace* containing labeled SYN flood attacks

*On mitigating sampling-induced accuracy loss in traffic anomaly detection systems, ACM CCR 2010

≤ 𝟔	s



EVALUATIONS
MAWILAB trace* containing labeled port scanning attacks

*Traffic data repository at the wide project, USENIX ATC 2000

Port 22



CONCLUSIONS

§ We design and implement a vSwitch enhanced programmable 
measurement framework

§ We extend the Pyretic platform to generate separate rule sets and 
corresponding APIs for monitoring and forwarding purposes, 
respectively 

§ Pyretic+ could detect DDoS and port scanning attacks effectively
and efficiently

§ More applications could be easily integrated with Pyretic+



Thank	You!

awang10@gmu.edu


