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Abstract

While being critical to the network management, the

current state of the art in network measurement is in-

adequate, providing surprisingly little visibility into de-

tailed network behaviors and often requiring high level

of manual intervention to operate. Such a practice be-

comes increasingly ineffective as the networks grow

both in size and complexity. In this paper, we propose

vPROM, a vSwitch enhanced SDN programmable mea-

surement framework that automates the measurement

process, minimizes the measurement resource usage, and

addresses several significant technical challenges faced

by early works. vPROM leverages the SDN programma-

bility and extends the Pyretic run-time system and Open-

Flow network interface to achieve the measurement au-

tomation. The required measurement resources are min-

imized by only acquiring the necessary statistics, made

possible with instrumented Open vSwitches with user

defined monitoring capability. By decoupling the moni-

toring from the routing, vPROM reduces the interference

between the measurement applications and other appli-

cations, and eliminates the frequent involvement of the

controller. A vPROM prototype is implemented with

DDoS and port-scan detection applications. The perfor-

mance of vPROM is evaluated and the comparison re-

sults with other existing programmable measurement ap-

proaches are also presented.

1. Introduction

SDN is an emerging networking paradigm that en-

ables the programming of the underlying network. Net-

work measurement and monitoring is an important net-

work application that can take advantage of the SDN’s

programmability. The SDN programmable measurement

automates the measurement process, minimizes the re-

source usage by acquiring only the necessary statistics,

and is able to utilize SDN switches as the measurement

points across the networks. The SDN programmable

measurement measures network traffic by actively in-

stalling rules for the flows of interest in the SDN routers’

forwarding tables. The flow stats, such as packet and

byte counts of the flows of interest, are collected through

the flow entry counts. The measurement is controlled

by the traffic measurement application programmed us-

ing network programming languages, and can be dynam-

ically adjusted based on measurement needs. The initial

endeavor on the SDN based programmable measurement

has shown promises. In [21], network measurement poli-

cies are provided that allow users to query the network

and conduct the measurement function such as sub-flow

monitoring. NetAssay [11] pursues the so-called inten-

tional network monitoring to capture the minimal set of

traffic that satisfies the operator’s monitoring goal.

While promising, the current SDN programmable

measurement faces significant technical challenges: (1)

The interference between monitoring and other applica-

tions, e.g., forwarding, is nontrivial. Each application

has its own goal and a set of policies to enforce. Flow

rules installed/removed by one application often inter-

fere with overlapping rules installed/removed by other

applications [13]. Hence any changes made by any ap-

plication may require the run-time system to recompile

to solve the conflicts. The newly generated forward-

ing entries then need to be installed into the switches’

forwarding tables - resulting in significant overhead on

the run-time system, the controller, as well as the SDN

switches. In fact, such frequent recompilation negatively

affects the system scalability as shown in [14]; (2) The

programmable measurement may require the continuous

involvement of the controller. For instance, define the

subflows to be the fine-grained flows that belong to a

mega-flow. Subflow monitoring requires the switch to

send the first packet of every subflow to the central con-

troller since the specific subflows are not known in ad-

vance. Such constant controller involvement is undesir-

able. (3) Monitoring packet and byte counts by asso-



ciation with flow entries in the forwarding table is nei-

ther flexible nor sufficient for supporting various moni-

toring applications. One reason is that the header fields

that are of interest for packet forwarding may not al-

ways overlap with those that are of interest for moni-

toring. The chances of no overlap are likely to increase

further as the number of header fields continues to grow

beyond 40 or so [9]; (4) The amount of Ternary Content-

Addressable Memory (TCAM) at hardware switches is

limited. TCAM, widely used for fast packet forwarding,

is expensive and power hungry, which limits its amount

inside a physical switch. The available TCAM may not

be sufficient for the measurement purpose;

In this paper, we propose to build vPROM, a vSwitch

enhanced SDN programmable measurement framework

that addresses the aforementioned issues. vPROM runs

on the instrumented Open vSwitches [1, 24] that decou-

ples the monitoring and the forwarding and can sup-

port user-defined monitoring capability. Furthermore,

we extend Pyretic to Pyretic+ run-time system to parse

vPROM applications into flow rule sets for both for-

warding and monitoring, and extend OpenFlow to Open-

Flow+ in order to allow applications to set up monitoring

rules. A client is also built to facilitate the communica-

tion between the controller and the run-time system.

A salient feature of vRPOM is the extensive use of

Open vSwitches (OVS) as measurement vantage points.

OVS runs on a general purpose computer and acts as the

edge router for the virtual machines (VMs) hosted on

the same machine. Compared to a physical core router,

an OVS routes at a slower speed, encounters a smaller

number of flows, and has access to much more mem-

ory and CPU resources. In addition, because the flows

monitored at an OVS are either originated or terminated

at the VMs, some management functionality, e.g., intru-

sion/anomaly detection, can be migrated from the cen-

tral administration point to the edge. The instrumented

Open vSwitch, called UMON [24], supports the explicit

measurement function that decouples the measurement

function from the packet forwarding function. The de-

coupling is achieved via the introduction of the moni-

toring flow table, which separates the monitoring rules

from the forwarding rules. Users can thus freely install

monitoring rules without worrying about the possible in-

terference with the forwarding rules.

vPROM extends the Pyretic run-time system to

Pyretic+ so that a vPROM measurement application pro-

grammed in Pyretic can seamlessly utilize the UMON

capabilities. The run-time system is modified to auto-

matically identify the measurement capability of a SDN

switch, and use the monitoring flow table if the switch is

instrumented. A Ryu SDN controller is used in vPROM.

A Ryu client is built so that the Pyretic+ run-time system

can communicate with the Ryu controller to configure

SDN switches and retrieve states from SDN switches. To

demonstrate the capability of vPROM, we implemented

a prototype and several vPROM applications. The per-

formance of vPROM is evaluated and the comparison

results with other existing programmable measurement

approaches are also presented.

The paper is organized as follows. Related work is

summarized in Section 2. The vPROM architecture are

described in Section 3. A vPROM application is pre-

sented in Section 4. Evaluation results are presented in

Section 5. Concluding remarks are in Section 6.

2. Related work

Network programmability has been studied exten-

sively and several network programming languages,

e.g., [12, 21, 5, 7], among others, have been developed.

The programming languages offer high level abstractions

that make the programming of complex network func-

tions/applications [18, 20, 15] possible. Sophisticated

SDN applications can be programmed and run simul-

taneously without worrying about the intricate interac-

tions among them. The study in [14], however, shows

that it may take minutes to compile policies of different

applications and generate millions of forwarding rules

that need to be installed in the data plane for a realistic

large Internet exchange point. In vPROM, measurement

points, the vSwitches, are instrumented with the explicit

measurement function. The network measurement func-

tion is thus decoupled from other functions, eliminating

the interactions.

Network measurement has been programmed as SDN

applications or query policies [21, 20, 11]. These net-

work measurement applications run on top of run-time

system and controller and often require repeated involve-

ment of both elements, e.g., when conducting sub-flow

monitoring. vPROM addresses this issue by decoupling

the monitoring from the forwarding. We further extend

the OpenFlow API to allow the measurement applica-

tions to directly control measuring switches through the

controller. Trumpet [19] takes a different approach and

designs its own distributed packet monitors and central-

ized event monitoring system. Trumpet packet monitors

collect stats associated with pre-defined 5-tuple flows.

vPROM favors customized monitoring that can dynami-

cally change monitoring resolutions demanded by user-

s/applications. In addition, vPROM leverages the exist-

ing open source software and latest research advance-

ment on network programming languages.

3. vPROM design

Fig. 1 depicts the architecture of vPROM. As shown

in the figure, vPROM consists of five major compo-
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nents: (1) UMON vSwitches, the instrumented Open

vSwitches that provide user-defined monitoring capabil-

ity and some local application functions being pushed

from the central controller to the edge; (2) OpenFlow+,

the augmented OpenFlow API that allows the applica-

tions to set the monitoring rules at UMON and to con-

trol the application threads running at the vSwitches;

(3) the Ryu client, which serves as the “interpreter” be-

tween the run-time system and the Ryu controller; (4)

Pyretic+, the extended Pyretic run-time system that can

parse a vPROM app into the flow rule sets for tradi-

tional SDN switches and the monitoring rule sets for

UMON vSwitches; and (5) vPROM applications pro-

grammed using extended Pyretic language. vPROM

applications obtain measurement stats from both tradi-

tional SDN switches and UMON switches. Below we

present the Pyretic+ and OpenFlow+, after an overview

of UMON, the instrumented OVS.

UMONUMONUMON

Ryu Controller (OpenFlow/OpenFlow+)

Pyretic+ run-time System

UMON UMON UMON UMON UMON

vPROM Applications
Network 

Routing

1

2

4

5

Ryu client 3

Figure 1: vPROM framework architecture and key

elements.

3.1 Background on UMON

The UMON design [24] strives to achieve three goals:

(1) decoupling monitoring from forwarding; (2) support-

ing subflow monitoring and monitoring based on non-

routing fields; and (3) supporting application threads. To

achieve these goals, the major challenge lies in how to

implement the decoupling in the existing vSwitch archi-

tecture. The packet forwarding pipeline is defined in the

Openflow specification [2] and implemented in the Open

vSwitch’s user space (see top part of Fig. 2). In UMON,

a new table, monitoring flow table, is designed and im-

plemented to separate monitoring rules from forwarding

rules, as shown in Fig. 2. Users can thus freely install

monitoring rules without worrying about the possible in-
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Figure 2: Packet forwarding pipeline in the UMON,

an instrumented Open vSwitch.

terferences with forwarding rules. The subflow monitor-

ing is also supported by a newly defined subflow moni-

toring action, which acts as a local controller. The sub-

flows subjected to the monitoring are inserted into the

subflow table where the monitoring results are gathered

and stored. The measurement results can be actively col-

lected by vPROM applications through the OpenFlow+

API. Application threads, such as the port-scan detec-

tion threads and DDoS attack detection threads, run in

UMON using the locally collected stats. These applica-

tion threads, running at UMONs distributed across the

network, scale up the central vPROM application, and

reduce the measurement traffic from the switches to the

central controller.

The architecture of the Open vSwitch is more com-

plex than the pipeline as depicted in Fig. 2. It includes

a kernel module which caches the flow rules to speed up

the packet forwarding. In Section 4.1, we instrumented

UMON to support quick large flow detection using co-

incidence counting scheme [16]. We address the chal-

lenge of dividing the tasks between kernel module and

user-space modules. Finally, in order to support subflow

monitoring and monitoring on non-routing fields, it is in-

feasible to employ a dedicated flow table in the Open-

Flow pipeline to replace the monitoring table.

3.2 OpenFlow+ Protocol

OpenFlow+ extends the OpenFlow protocol to enable

the SDN controller to manage the UMON monitoring ta-

ble, collect the measurement stats, and start/stop the ap-

plication threads at UMON vSwitches. The OpenFlow

protocol contains three types of messages: Controller-

to-Switch messages, Asynchronous messages, and Sym-

metric messages. The controller-to-switch messages are

initiated by the controller and may or may not require a

response from the switch. Asynchronous messages are

sent by switches to the controller without solicitation.

Switches send asynchronous messages to the controllers

to signal a packet arrival, change of switch state, or an

error. Symmetric messages, such as Hello and Echo, are

sent without solicitation in either direction. We next de-
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scribe the additional messages added in OpenFlow+ and

their implementation.

• Monitoring Table Management. Each OpenFlow

message begins with the OpenFlow header, which in-

cludes a type field indicating the type of a message.

We introduce a new type OFPT MONITOR MOD to in-

dicate that the message is related to the monitoring table.

Table 1 lists six new commands. Among them, five com-

mands, OFPMMC ADD, OFPMMC MODIFY, OFP-

MMC DELETE, OFPMMC MODIFY STRICT, and OF-

PMMC DELETE STRICT, are similar to the forwarding

flow table modification commands. The last one, OF-

PMMC DELETE SUBFLOWS, enables the controller to

delete the subflow tables to save the storage space.

Besides the new commands, we add two types of new

monitor actions: OFPAT MONITOR for monitoring non-

routing fields and subflow monitoring, and actions to

control application threads. The OFPAT MONITOR ac-

tion structure is as follows:

struct ofp_action_monitor {

ovs_be16 type;

ovs_be32 monitor_flag;

uint8_t subflow_flag;

struct ofp_match_header subflow;

...

};

The field monitor flag allows users to define the

monitoring of non-routing fields. For instance, moni-

tor flag values of OFPMT SYN, OFPMT SYNACK, OF-

PMT FIN, etc., instruct to collect packet/byte counts of

TCP SYN, SYN/ACK, and FIN. The two parameters,

subflow flag and subflow mask, are for subflow monitor-

ing purpose. The first parameter is a boolean value in-

dicating if subflow monitoring is turned on. If it is on,

struct ofp match header subflow contains the wildcard

mask for subflow monitoring. The action for application

thread control is described later.

• Stats collection. The stats request from the con-

troller to the switch is a new multipart message defined

as OFPMP MONITOR STATS. This stats request allows

the controller to collect the stats of the entire monitoring

table, or the stats of a specific monitoring rule. The sub-

flow tables associated with the monitoring rules can also

be reported when available. We use the following data

structure for OFPMP MONITOR STATS:

struct ofp_monitor_stats_request {

uint8_t type;

uint8_t with_subflows;

uint8_t threshold_type;

ovs_be32 threshold_value;

/* Followed by an ofp_monitor_match

structure for exact match rule request. */

...

};

We define two new types: OFPMR ALL and OF-

PMR EXACT. OFPMR ALL requests the stats of the en-

tire monitoring table, while OFPMR EXACT requests

the stats of a specific rule or rules matching the

ofp monitor match field. The field with subflows in-

dicates if the subflow tables should be reported. If

with subflows is on, we also control the granularity at

which the subflow tables are reported. The field thresh-

old value allows to set up a threshold and only the sub-

flow entries whose byte count or packet count surpasses

the threshold will be reported to the controller. The

field threshold type defines whether byte count (OF-

PMRT BYTE) or the packet count (OFPMRT PKT) is

chosen in the threshold comparison.

After receiving the stats request, the switch generates

a reply message including information concerning the

matching monitor rules, the related statistics, and the

subflows, if any.

struct ofp_monitor_stats {

uint8_t stat_count;

ovs_be16 n_subflows;

/* Monitor rule match */

/* uint64_t monitor_stats[] */

/* struct ofp_monitor_subflow flows[] */

...

};

In the reply message as shown above, the counter

n subflows represents the number of subflows from the

matching monitor rules. If this value is 0, then there is

no subflow reported. Otherwise, all the subflow info will

be gathered together within a dynamic array.

• Application thread management. For each ap-

plication thread, we introduce an action to control this

thread. Application threads are implemented as UMON

threads that use the measurement stats for various pur-

poses. For instance, we implement the vertical port-

scan detection thread, the horizontal port-scan detection

thread, and quick large flow detection thread (see Sec-

tion 4.1). Using the port-scan thread as an example, we

introduce the action OFPAT PRTSCAN DETECTION

for its control. The action structure is defined as follows:

struct ofp_action_prtscan_detection {

ovs_be16 type;

uint8_t detector_switch;

uint8_t detection_type;

ovs_be64 interval;

ovs_be16 vthresh;

ovs_be16 hthresh;

struct ofp_match_header submatch;

...

};

The parameter detector switch is the knob to enable

or disable the local detection thread. The detection

is achieved by periodic analysis of the subflow stats.

The parameter interval defines the period at which

the port-scan detector runs to analyze the subflow stats.

Moreover, we enable two types of scanning behavior

detection, i.e., vertical scan and horizontal scan. The

parameter detection type dictates which scan is
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Table 1: OpenFlow+ commands managing monitor table

Command Functionality

OFPMMC ADD add new monitor rules

OFPMMC MODIFY modify all matching monitoring rules

OFPMMC MODIFY STRICT modify monitoring rules strictly matching wildcards

OFPMMC DELETE delete all matching monitor rules

OFPMMC DELETE STRICT delete monitoring rules strictly matching wildcards

OFPMMC DELETE SUBFLOWS delete subflow tables collected by matching monitor rules

running. For the purpose of detection, this action ac-

cepts threshold for each type. Parameters vthresh and

hthresh are thresholds used by vertical and horizon-

tal detection, respectively. During local port-scan detec-

tion, whenever suspicious activities are detected by the

application thread, we use the Asynchronous message

for the application thread to send alert messages to the

controller. The data structure for the alert message is as

follows:

struct ofp_prtscan_alert{

uint8_t detection_type;

ovs_be16 n_ports;

ovs_be16 n_attackers;

ovs_be16 n_victims;

ovs_be32 n_subflows;

/* Monitor rule match */

/* uint16_t victim_ports[] */

/* list of attacker ip addresses*/

};

The message includes the flow rules where attacks are

detected.

All the new commands introduced in OpenFlow+ are

compatible with the early versions of OpenFlow. Extra

data structures are necessary on both the controller and

the switch to support the implementation of OpenFlow+.

3.3 Ryu Client

The controller client serves as an interface for the run-

time system to communicate with the SDN controller. Its

main function is to translate the Pyretic messages (of the

run-time system) to the OpenFlow messages (used by the

SDN controller), and vice versa. We choose to use the

Ryu controller in the vPROM framework over the POX

controller used by the original Pyretic run-time system.

Ryu is a long-term supported project. The Ryu controller

continuously upgrades itself to support newer versions of

OpenFlow releases, which will allow vPROM to support

newer version OpenFlow in the future with minor change

to the controller client. In addition, the implementation

of OpenFlow+ in Ryu is quite manageable.

In the Ryu client, an OpenFlow+ interface conducts

the message translation. Furthermore, the Ryu client al-

lows the Ryu controller to inform the run-time system if a

SDN switch is instrumented, i.e., if a switch is a UMON

switch, and if so, what edge management threads it sup-

ports. Such information will be stored in the run-time

system and be used in meeting vPROM app requirement.

The Ryu client also provides the stats collection ser-

vice for run-time system. The stats collected in UMON

switches can be pulled by the Ryu controller. A stats

collection module in the Ryu client periodically instructs

the Ryu controller to pull the stats. The collected stats are

then forwarded to the run-time system and the vPROM

applications.

3.4 Pyretic+ and its run-time system

Pyretic is a Python style network programming lan-

guage that offers high-level abstractions for users to write

compact programs to define what the network switches

should do with incoming packets. Pyretic has a cor-

responding run-time system that takes multiple Pyretic

programs as input, compiles them together and gen-

erates flow rule sets to be installed at the underlying

SDN switches. These flow rule sets satisfy the collec-

tive Pyretic programs’ requirements. We call the ex-

tended Pyretic Pyretic+. Below we first describe how

the Pyretic+ language supports UMON switches seman-

tically. We then describe how the Pyretic+ run-time sys-

tem generates the forwarding rules and monitoring rules

separately.

3.4.1 Pyretic+ language

Pyretic defines polices and operators [3]. The basic

polices includes match, drop, identity, forward, flood

, if_, etc., and the operators include + (parallel compo-

sition), >> (sequential composition), etc. Pyretic further

defines three query polices:

• packets(limit=n,group_by=[f1,f2,...]),

which callbacks on every packet received for up to

n packets identical on fields f1,f2,...;

• count_packets(interval=t,group_by=[f1,f2

,...]), which counts every packet received.

Callback every t seconds to provide count for each

group;

• count_bytes(interval=t,group_by=[f1,f2

,...]), which counts every byte received.
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Callback every t seconds to provide count for each

group.

For instances, in the following example, all TCP traffic

incoming from inport=1 are sub-flow monitored based

on their ‘srcip’ and ‘dstip’. The traffic is then for-

warded to outport=2.

Q = count_packets(interval=t, group_by=[‘srcip’

,‘dstip’])

match(inport=1) >> if_(match(protocol=6), Q,

identity) >> fwd(2)

To support UMON TCP flagged packets monitoring,

Pyretic+ adds the ‘tcpflag’ option in the query policies’

group_by parameter. Using ‘tcpflag’ option alone,

namely group_by=[‘tcpflag’] indicates that the action

OFPAT MONITOR as defined in OpenFlow+ is active. In

contrast, if the ‘tcpflag’ option is used along with other

options such as srcip and dstip, the subflow monitoring

will be executed.

New policies are introduced to control individual edge

management threads. For instance, the new policy

prtscan_detection can activate/deactivate local port-

scan detector. The parameter options are defined the

same as in the action OFPAT PRTSCAN DETECTION in

OpenFlow+. The callback function can also be defined

and registered to react to the received alert messages.

3.4.2 Pyretic+ run-time system

The Pyretic run-time system compiles the programs

and generates an abstract syntax tree (AST) that repre-

sents the policies and their inter-relationship as defined

by the operators. For example, the abstract syntax tree

(AST) as shown in Fig. 3 is derived from the count_

packets example in Section 3.4.1. In this figure, all the

operator nodes are marked in green and the polices are in

yellow. The tree is built by parsing the application pro-

grams. The run-time system then generate the flow rule

sets for individual SDN switches based on this AST.

In Pyretic+, the run-time system needs to generate

both the forwarding rules and monitoring rules for a

UMON switch. This is achieved by deriving separate

forwarding AST and monitoring AST using the general

AST as in Pyretic run-time system. The forwarding rules

and monitoring rules are created thereafter.

• Deriving monitoring AST. The Algorithm MON-

AST-GEN describes how to generate monitoring AST

and flow rules. The algorithm starts with finding the

query policy nodes and UMON specific policy nodes as

defined by the set C. For each identified such node, e.g.,

policy Q in Fig. 3, the while-loop between line 9 and 15

collects all the operator nodes from the identified node

up to the top-left node. The nodes posterior to the iden-

tified node are ignored since they have no effect on the

monitoring policy. The nodes are further processed to

remove the nodes operated in parallel with the identi-

>>

>>

match(inport=1) +

>>

match(protocol=6) Q

>>

negate

match(protocol=6)

identity

fwd(2)

Figure 3: Abstract syntax tree (AST) of a measure-

ment application example

fied nodes, as shown between line 14 and 18 in the al-

gorithm. As a result, the sub-trees of any of the opera-

tors intersection, sequential and difference are pre-

served to build monitoring policy. The generated moni-

toring AST is shown in Fig. 4(a).

1: function MON-AST-GEN(rrrttt aaasssttt)

2: init pppooollliiiccciiieeesss = LIST()

3: C=SET([count_packets, count_bytes,

counts, packets, prtscan_detection])

4: Q=SET([intersection, sequential,

difference])

5: L← all leave nodes of rrrttt aaasssttt

6: for lll ∈ L do

7: if ISINSTANCE(TYPEOF(lll)) ∈ C then

8: set rrr nnndddsss = LIST()

9: while ppp nnnooodddeee 6= the top-left node do

10: rrr nnndddsss.append(ppp nnnooodddeee)

11: ppp nnnooodddeee← ppp nnnooodddeee.GETPARENT()

12: end while

13: set nnnddd lllsssttt = SET()

14: for oooppp ∈ rrr nnndddsss do

15: if ISINSTANCE(TYPEOF(oooppp)) ∈ Q

then

16: nnnddd lllsssttt.add(relevant nodes from

subtree of oooppp)

17: end if

18: end for

19: pppooollliiiccciiieeesss.append(BUILDPOLICY(nnnddd lllsssttt))

20: end if

21: end for

22: return pppooollliiiccciiieeesss

23: end function

The function BUILDPOLICY further compiles the

monitoring AST into policy, i.e., flow rules, similar to a

stack machine compiler. A stack machine uses a last-in,

first-out(LIFO) stack to hold the temporary values. Most

of its instructions assume the operands are popped from

the stack and the operation results are pushed back to
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>>

match(inport=1) +

>>

match(protocol=6) Q

identity

(a) Monitoring AST

>>

>>

match(inport=1) +

identity >>

negate

match(protocol=6)

identity

fwd(2)

(b) Forwarding AST

Figure 4: Derived forwarding and monitoring ASTs

the stack. In MON-AST-GEN, BUILDPOLICY creates an

empty stack and continuously reads nodes from nnnddd lllsssttt.

If it reads an operand, the node will be pushed into the

stack. Otherwise, operands will be popped from the stack

based on the operation types.

The algorithm is run once for each SDN switch since

the policies may be different for different switches. For

example, monitoring policy match(protocol=6)>>if_(

match(switch=1,srcip=‘10.0.0.1’),Q,Q) will gener-

ate different rules on switch 1 and other switches.

• Deriving forwarding AST. The gist of deriving

forwarding AST is to remove the nodes relevant to the

monitoring functions. Notice that the forwarding AST

is not complementary to the monitoring AST entirely as

shown in Figure 4. The node match(protocol=6) is un-

related to the forwarding policy. However, node match

(inport=1) is shared by both ASTs. As a result, al-

gorithm FORWARD-AST-GEN cannot simply remove all

the nodes in monitoring AST. Function FORWARD-AST-

GEN starts from the query policy nodes and UMON spe-

cific policy nodes in the AST. For each such node, the

algorithm iterates upward until it hits the first parallel

operator node. This process will remove all the nodes

that are exclusive to the monitoring AST as identified

between line 9 and 15 in the algorithm. Finally, function

BUILDPOLICY is called to build forwarding rules/poli-

cies based on the nodes in the forwarding AST.

4. vPROM-GUARD: a vPROM use case

To demonstrate vPROM’s effectiveness, we build

vPROM-GUARD, a vPROM application that detects

DDoS and port-scan attacks automatically. Distributed

Denial of Service (DDoS) attacks and port-scan attacks

are significant threats to the Internet. The challenge in

DDoS and port-scan defense is the ability to detect pat-

terns of abusive behaviors amongst a vast sea of be-

nign individual network exchanges. Security monitor-

ing systems often utilize the signature-based and/or the

behavior-based approach to detect DDoS attacks. Fine

grained packet-level or microflow-level measurement at

line rate is often required. Such fine grained real-time

function FORWARD-AST-GEN(rrrttt aaasssttt)

2: init pppooollliiiccciiieeesss = LIST()

C=SET([count_packets, count_bytes,

counts, packets, prtscan_detection])

4: L← all leave nodes of rrrttt aaasssttt

for lll ∈ L do

6: if ISINSTANCE(TYPEOF(lll)) ∈ C then

set nnnddd lllsssttt = SET()

8: set rrr nnndddsss = LIST()

while ppp nnnooodddeee 6= the top-left node do

10: if ISINSTANCE(TYPEOF(ppp nnnooodddeee))

== parallel then

break

12: end if

rrr nnndddsss.append(ppp nnnooodddeee)

14: ppp nnnooodddeee = ppp nnnooodddeee.GETPARENT()

end while

16: prune subtree of ppp nnnooodddeee

nnnddd lllsssttt ← all the relevant nodes

18: pppooollliiiccciiieeesss.append(BUILDPOLICY(nnnddd lllsssttt))

end if

20: end for

return pppooollliiiccciiieeesss

22: end function

measurement is extremely demanding on the hardware

and requires sophisticated technologies, resulting in ex-

pensive network security middle-boxes.

In contrast, vPROM is a distributed measurement

framework that can be programmed and reconfigured in

real time to respond to ever changing attack vectors. The

key idea of vPROM-GUARD is to employ efficient at-

tack detectors and monitor the attack cues at a coarse

measurement granularity when the network is not un-

der attack, and switch to the fine-grained network mon-

itoring and attack detection/validation when suspicious

activities are detected. The benefits of such an ap-

proach are multifold: (1) the distributed edge measure-

ment and coarse grained measurement level reduce the

overall measurement burden on the network; (2) when

under attack, only the alerted hosts need to conduct fine

granularity measurement and local detection; (3) local

detection at edge mitigates the burden of the central de-

tector; and (4) false alarms are more tolerable because

the detection is controlled by a program and a false alarm

merely triggers the extra fine-grained measurement at

vSwitches rather than frequent human interventions. If

proven to be effective, vPROM-GUARD has the poten-

tial to replace the middle-box solution in a data center

with a pure low cost software solution. Next, we present

the detection methods used in vRPOM-GUARD.

4.1 Coincidence counting based large flow
detection

7



Quick detection of large flows at the incipient of

DDoS attack is vital for DDoS detection. The authors

in [16] developed the Coincidence Base Traffic Estimator

(CATE) that can estimate flow rates quickly with prov-

able bounds on estimation error. CATE maintains a pre-

decessor table and a coincidence count table, as shown

in Fig. 5. The predecessor table includes the most re-

cently received k packet headers. A flow is defined as

f = r&m with r being the packet header and m the flow

mask. Upon the arrival of a new packet, its correspond-

ing flow id f is compared with every flow id in the pre-

decessor table. The number of coincidences for the flow

f , l f , is the number of times the flow f occurs in the

predecessor table. If l f > 0 and flow f is not in the Co-

incidence count table, f is added into the coincidence

count table with count of l f . If f is already in the coin-

cidence count table, then the count for f is incremented

by l f . Let M(N, f ) be the number of coincidences for

3

1

3

8

2

7

Flow Id Count

3 2

7 5

new 

arrival

Predecessor Table

Coincidence Count Table

Figure 5: CATE scheme.

flow f after N arrivals with k comparisons for each ar-

rival. The estimated proportion of traffic from flow f ,

p̂ f , is p̂ f =

√

M(N, f )
Nk

.
While the CATE scheme is reasonably simple, instru-

menting UMON to support CATE is not trivial. The co-

incidence counting is conducted for every new arrival.

If CATE is implemented in the kernel module of OVS,

it can slow down the data path forwarding speed. We

adopt a strategy that offloads the CATE from the crit-

ical data forwarding path. Specifically, we implement

the CATE scheme as a user-level thread in the OVS. A

copy of the incoming packet header is made in the ker-

nel module, and a batch of packet headers is periodically

delivered to the user-level CATE. User-level CATE exe-

cutes the coincidence counting upon receiving the newly

arrived packet headers. The strategy minimizes the over-

head imposed on the UMON data path.

4.2 Change-point monitoring for attack
cues

The authors in [25] developed the change-point moni-

toring for TCP based attack detection. The technique is

based on the observation that TCP {SYN, SYN/ACK}
and {SYN, FIN} are request-response pairs that should

be balanced in a normal network environment, and they

deviate from the balanced state when under attacks. The

Cumulative Sum Method [10, 26] is employed to detect

the deviation. Specifically, let qi and pi be the number of

requests and responses, respectively, in the i-th measure-

ment epoch. The difference, δi, is δi , qi− pi. Define δ̃i

to be the normalized difference,

δ̃i = δi/Pi, (1)

with Pi = αPi−1 +(1−α)pi and α being a positive con-

stant less than one. To detect the deviation of δ̃i from

its mean, which should be close to zero, the Cumulative

Sum method is used. Define Si to be the cumulative sum:

Si = (Si−1 + δ̃i− t)+, (2)

where t is a constant threshold and (·)+ takes the positive

value or zero. The value of t is chosen such that δ̃i > t

indicates a potential attack. When the cumulative sum Si

becomes greater than the threshold T , Si > T , a poten-

tial TCP based attack is detected. The value of t and T

are design parameters that affect the attack detectability,

false alarm interval and detection delay.

In order for the change-point monitoring to detect an

attack, δ̃i needs to be greater than t, δ̃i > t when the attack

is on. Otherwise δ̃i− t is negative in Eqn (2), and does

not contribute to the cumulative sum Si. Therefore the

average number of on-going TCP connections, i.e., the

value of Pi, needs to be comparable to that of δi (see Eqn

(1)). Otherwise the attack becomes either not detectable,

or the variation in the normal TCP connections is greater

than the value of t, which leads to a large number of false

alarms (see Eqn (2)). For example, if the goal is to detect

if one machine inside a large organization is under attack,

conducting the change-point monitoring at the gateway

for the entire organization likely does not work since the

number of on-going TCP sessions is much larger than the

attacking sessions. vPROM-GUARD addresses the is-

sue by conducting the monitoring at individual machines

host a small number of VMs.

4.3 Attack detection in vPROM-GUARD

The attack detection in vPROM-GUARD is accom-

plished in two phases: big flow and coarse-grained indi-

cator/cue monitoring and fine-grained attack detection/-

validation. In the first phase, vPROM-GUARD periodi-

cally detects big flows (via CATE), and collects packet

counts of TCP SYN, SYN-ACK, FIN, and RST and

runs Cumulative Sum (CUSUM) algorithm. Assume that

there are J hosts in total. The change-point monitoring at
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host j is:

δ
j

i = q
j
i − p

j
i , (3)

δ̃
j

i = δ
j

i /P
j

i , (4)

S
j
i = (S j

i−1 + δ̃
j

i − t)+, (5)

for j = 1,2, . . . ,J. Comparing to the centralized change-

point monitoring [25], the distributed change-point mon-

itoring at individual hosts shortens the detection delay

and localizes the attacks. For instance, if only host j is

under SYN flood attack, then δ
j

i = δi but P
j

i ≤ Pi. Thus

δ̃
j

i ≥ δ̃i and S
j
i ≥ Si, leading to early detection. Further-

more, the distributed change-point monitoring localizes

the detection. Only the hosts whose cumulative sum S
j
i

is greater than threshold T need to be further examined.

vPROM-GUARD starts the detection process by turn-

ing on CATE monitoring, and installing monitoring rules

for TCP SYN, SYN/ACK, FIN, and RST packet counts

into UMON at each hosting machine. Then the big flow

info and the packets counts are collected periodically

by vPROM-GUARD using OpenFlow+ stats collection

commands. The change-point monitoring is conducted

for individual hosts using the collected stats. If a big flow

is detected and the the change-point monitoring detects

the deviation, a TCP SYN flood attack is likely to be de-

tected. We further install rule to collect TCP flag packet

counts associate with this big flow to validate the type of

attack. If a big flow is detected but the TCP flag packet

counts do not deviate from the balance, it still indicates a

potential DDoS attack. The vPROM-GUARD controller

can implement whatever policy the users prefer to fur-

ther classify this flow. Finally, if no big blow is detected

but the change-point monitoring issues potential attack

alerts to/from a host, the vPROM-GUARD starts the sub-

flow monitoring and port-scan detection threads on that

host. The vPROM-GUARD, running at a central loca-

tion, also periodically collects the subflow stats from the

hosts under alert, and runs DDoS detection and port-scan

detection across the subflow stats collected from these

suspected hosts. This allows the detection of attacks that

may spread across multiple hosts.

5. Evaluation

We instrument the Open vSwitch (version 2.3.2) and

run it on a four-core, 3.2GHz CPU machine with 10GB

memory. The machine is equipped with an Intel NIC

with two 10GHz ports. The Ryu controller (version

3.25), Ryu client, Pyretic+, and vPROM apps run on an-

other machine of the same configuration. Both machines

use the Ubuntu 14.04.3 LTS kernel. We use a third ma-

chine as both the packet generator and the packet sink so

as to avoid clock synchronization problem. The packet

generator and sink are connected to the vSwitch via two

10GHz ports. The packet generator uses Tcpreplay [6]

to replay a data center traffic trace collected by Benson

et al. [8]. The trace lasts for a period of about 65 minutes.

5.1 Comparison of subflow monitoring:
vPROM vs Pyretic

Subflow monitoring is an important monitoring capa-

bility for applications such as heavy-hitter flow detection

and port scanning attack detection. Subflow monitoring

is supported in Pyretic by so-called query policies [3],

which can be conjoined to any of the other policies, e.g.,

routing policies. It is straightforward to program for the

subflow monitoring in Pyretic:

m=[‘srcmac’,‘dstmac’,‘srcport’,‘dstport’]

Q=count_packets(interval=t,group_by=m)

match(srcip=A, dstip=B) >> Q

The first line defines the subflow mask that is based

on source MAC address, destination MAC address,

source port Id, and destination port Id. The function

count packets() returns the packet counts every t seconds

for each subflow. The megaflow is defined using match().

match(srcip=A, dstip=B) captures all packets from A to

B and hands them to subflow monitoring policy Q.

Below we compare the performance of vPROM and

Pyretic in supporting subflow monitoring. In the Pyretic

experiment, we employ a simple routing that forwards

all packets from the input port in port to the output port

out port that connects to the sink. The Pyretic routing

policy is:

match(inport=in_port) >> fwd(out_port)

This routing policy runs in parallel with the subflow

monitoring policy. The same routing and subflow mon-

itoring are conducted using UMON in vPROM. In addi-

tion, since the subflow monitoring is a built-in capability

of UMON, vRPOM can directly insert the monitoring

rules for each monitored source-destination pair into the

monitoring table with the subflow mask of srcmac, dst-

mac, srcport, and dstport on.

We first evaluate the subflow monitoring overhead im-

posed on the switches, an UMON vSwtich in vPROM

and an non instrumented Open vSwitch in Pyretic. Over-

head is measured using the CPU utilization of three types

of threads: handler, revalidator, and ovs-vswitchd [1,

24]. ovs-vswitchd is a user space daemon that handles the

communication with the SDN controller, among other

things. Figure 6 depicts the CPU utilization of differ-

ent threads for vPROM and Pyretic. We vary the num-

ber of monitored source-destination pairs, from three to

thirty-three, to change the monitoring workload. In all

cases, the CPU utilization of all threads increases with

the number of monitored pairs. The CPU utilization of

threads handler and revalidator is similar for vPROM

and Pyretic, but differs for ovs-vswitchd thread. For

vPROM, no CPU resources are consumed by thread ovs-

vswitchd since all packet processing decisions are made

9



(a) vPROM

(b) Pyretic

Figure 6: Overhead in Data Plane

locally and there is no need to communicate with the con-

troller. In contrast, the subflow monitoring in Pyretic re-

quires the visibility of every matching subflows. Thread

ovs-vswitchd needs to forward the matching packets to

the controller, resulting in CPU consumption.

Figure 7: Overhead in Control Plane

Next we measure the control plane overhead. Figure 7

depicts the number of Packet In messages received at the

controller (curves with the left Y -axis) and CPU utiliza-

tion of the controller (bars with the right Y -axis) against

the number of monitored src/dst pairs. Since UMON has

no interactions with the controller, the CPU utilization

and Packet In count remain at zero throughout the ex-

periment. For Pyretic, the number of Packet In messages

increases when more pairs are monitored. The CPU uti-

lization of the controller also increases proportionally to

the number of received Packet In messages.

To further compare the scalability of both solutions,

we increase the number of monitored pairs to stress both

the vSwitch and the controller. The test results are shown

in Figure 8. In this figure, we present two sets of results.

Figure 8: Stress Test Results

First, we plot the number of delivered data packets by

vPROM and Pyretic (curves with Y -axis on the right).

The trace used for the evaluation contains 19,855,388

packets in total. The curves of delivered packets show

that vPROM is able to deliver all packets as more and

more pairs are monitored, while Pyretic starts to suffer

from the packet losses when the number of monitored

pairs is greater than 67 pairs.

We investigate the cause of the data path packet losses

in Pyrectic. For that we examine the Pyretic’s control

plane overhead. We plot the number of Packet In mes-

sages generated by Open vSwitch, sent by Open vSwitch,

and received by the Pyretic (see bar charts with Y -axis

on the left in Figure 8). We observe that Pyretic starts

to lose Packet In messages at both vSwitch and Pyretic

(which runs on top of the SDN controller) when the num-

ber of monitored pairs surpasses 67 pairs. The difference

between the number of OVS generated Packet In mes-

sages and the number of Packet In messages being sent

out indicates the packet loss inside the vSwitch, which

is due to the overflow of the Packet In queue inside the

vSwitch. Meanwhile, the difference between the num-

ber of sent-out Packet In and the number of Packet In

received by the Pyretic application indicates the packet

loss at the controller. The controller employs the event

queue for dispatching various events, such as Packet In

event, to the applications. The losses are due to the over-

flow of event queues maintained by Pyretic [21]. The

results show that the frequent communications between

the vSwitch and the controller greatly degrade the per-

formance of both the vSwitch and the controller. Due

to the Packet In message loss, the Pyretic monitor ap-

plication can not offer accurate subflow monitoring re-

sults. vPROM addresses the problem by instrumenting

the vSwitch and localizing the subflow monitoring task.

5.2 vPROM-GUARD attack detection

We use two data traces containing verified attacks to

evaluate the effectiveness of vPROM-GUARD. For the
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SYN Flood attack, we use Endpoint Traffic collected

from three different deployment points in NUST SEECS

labs [4]. In this data-set, eight ports on two hosts are un-

der known SYN Flood attacks. The attacking rate varies

from 10 pkts/second to 1000 pkts/second and the aver-

age background traffic rate varies between 200 to 650

pkts/second. There are in total 2325 hosts in this data

trace. For the port scanning attack, we use the trace col-

lected by Mawilab [22]. In this data-set, one horizontal

scanning attack and three vertical scanning attacks are

known. We use Emulab in our lab to conduct the exper-

iments. vRPOM-GUARD runs on the vPROM frame-

work at one machine, and two UMON switches and a

CATE capable switch controlled by vPROM-GUARD

are running on another machines. The CATE capa-

ble switch emulates the gateway switch; While the two

UMON machines emulate the vSwitches at two host ma-

chines in a data center, each hosting about 20 IPs with

some of IPs being under attack. We set the polling inter-

vals for all the detection to be one second, and t to be 0.4
and T to be 1. For the CATE scheme, we set the threshold

for the large flow detection at 0.05, i.e., a flow is deemed

to be large if it is more than 5% of overall traffic rate.

The detected big flows are reported to vPROM-GUARD

every one second.

vPROM-GUARD manages to detect all attacks in the

data traces. Fig. 9(a) shows the eight SYN flood attack

detection time. Attacks target the two hosts, with IP ad-

dress of 87.51.34.132 (top of Fig. 9(a)) and 69.63.178.11

(bottom of Fig. 9(a)) with different port ids, as shown in

the Y-axis. The horizontal bar indicates the starting and

finishing time of the attack, with the vertical line indi-

cating the moment at which the CATE issues a big-flow

warning. Once a big flow is detected, a monitoring rule

collecting TCP flag packet counts is installed to validate

if the large flow is a SYN flood attack. The dot indicates

the moment at which the vPROM-GUARD actually val-

idates the attack as SYN flood attack. The lightweight

design and implementation of CATE enables vPROM-

GUARD to detect such attacks quite efficiently. The av-

erage detection time is about 3 seconds, including the

attack validation time.

For the port-scan attacks in our trace, they do not gen-

erate big enough traffic flows to be detected by CATE.

As a result, change-point monitoring and subflow collec-

tions are required for the detection. Fig. 9(b) shows the

detection time of the vertical and horizontal port-scan at-

tacks. The detection time for vertical port-scan attack is

about 10 seconds. The horizontal port scan attack detec-

tion takes about 25 seconds. The horizontal port-scan

spreads the attack traffic among multiple IPs, hence a

smaller attacking rate for one IP and takes longer time

to detect.

6. Conclusions and future work
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Figure 9: Attack detection in vPROM-GUARD

In this paper, we present the design and implemen-

tation of vPROM, a vSwitch enhanced programmable

measurement framework that allows users to program the

network measurement applications. vPROM uses instru-

mented Open vSwitches as the measurement points, and

augments the OpenFlow API so that the UMONes can be

directly controlled by the applications. We also extend

the Pyretic programming language and run-time system,

and build a controller client in order to support automated

programmable measurement. To demonstrate its useful-

ness, we build the vPROM-GUARD, a DDoS and port-

scan attack detection application that demonstrates the

major features of vPROM. Performance evaluations and

comparisons with other approaches show the advantages

of vPROM.

Moving forward, we will investigate to use both soft-

ware switches and physical switches as the monitoring

points, and instrument physical switches with monitor-

ing capabilities. We are studying to improve the forward-

ing performance of UMON with hardware support, e.g.,

DPDK [17]. Our preliminary results have shown that

DPDK can greatly improve UMON’s performance [23].

Finally, we are studying to employ the Machine Learning

based anomaly detection to guide the vPROM-GUARD.
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