

ANSI/NIST ITL 2011 Type 98
Best Practice Implementation
Guidance
For the Assurance of Biometric Data Integrity, Authenticity and
Auditable Chain of Custod

Version 1.3
June 24 th, 2011

Page i

 Revision History

Version Date Summary of changes

1.0 14-Jan-2011 Initial Draft

1.1 14-April-2011 Updated to Reflect ANSI/NIST ITL 2011 Draft 3

1.2 24-May-2011 Updated to Reflect ANSI/NIST ITL 2011 Draft 4

1.3 24-June-2011 Updated to Reflect CMS SME Comments

Page ii

 TABLE OF CONTENTS
1. Introduction 1
1.1 Best Practices Assumptions and Requirements 1
1.2 Maximizing ITL Interoperability 1

2. Best Practice Population of Type 98 Parent Fields 2
2.1 IA Data Format Owner 98.003 2
2.2 IA Data Format Type 98.005 2
2.3 IA Audit Log Field 98.900 2
2.4 IA Audit Revision Number 98.901 2
2.4.1 Creating the Audit Log 3
2.4.2 Processing the Audit Log 3
2.4.2.1 Securing the Audit Log 3

2.4.2.2 Audit Reporting Methodology 4
2.4.2.3 Reconstruction Methodology 4

2.4.2.4 Audit Log Field Extraction 5
3. Best Practice Population of Type 98 User-Defined Security Fields 6
3.1 XML Version 6
3.1.1 XML BI Creation Guidelines 7
3.1.2 XML BI Processing\Validation Guidelines 8
3.2 Traditional Encoding Version: 9
3.2.1 Traditional Encoding BI Creation Guidelines 10
3.2.2 Traditional BI Validation Guidelines 11

Appendix A Acronyms 12
Appendix B Sample XML AuditLog Field 13

Appendix C Sample BI within XML Type 98 14
Appendix D Binding Information Specification (For Traditional Encoding) 18

Appendix E References 34

Page iii

Table 1: Best Practice XML Type 98 ... 7
Table 2: Best Practice Traditional Type 98 .. 10

 FIGURES

Figure 1: Sample XML Type 98 Audit Log Field.. 3
Figure 3: XML Audit Log Reference in Manifest.. 4
Figure 4: Sample Audit Statement.. 4
Figure 5: File Version Reconstruction.. 5

 TABLES

Page iv

1. INTRODUCTION
This document describes the best practice for implementation of the ANSI/NIST ITL-2011 Type
98 logical record. Best practices assure the integrity and authenticity of biometric modalities and
audit custody chains.
The ITL Information Assurance (IA) logical record (Type 98) contains user-defined security
information. While child standards are given the flexibility to use different mechanisms to
implement the Type 98 record, best practices include the use of Cryptographic Binding (CB)
techniques within the Type 98 IA record. The benefits of using the recommended CB
methodology in conjunction with the audit field include improved interoperability, assurance of
integrity over a file and composite logical records, aggregation of modalities, granular detection
of modifications, and assured file versioning.

Cryptographic Binding is a methodology for providing integrity and authenticity to data and data
relationships using well-known cryptographic techniques. CB provides the ability to detect
granular modifications, insertions, deletions, or unauthorized data sources and facilitates assured
synchronization of data and data collections. CB is also leveraged in combination with the Audit
Log Field (ALF) to assure chain of custody and allow for automated reconstruction of previous
versions.

This document gives detailed guidelines for defining, populating, and processing the ITL Type
98 and provides sample user-defined fields using the CB technique. Guidance is provided for
both XML and traditional encoding schemes.

1.1 Best Practices Assumptions and Requirements
• Access to Cryptographic software libraries for hashing, digital signatures, and certificate

validation
• Participation in an existing Public Key Infrastructure (PKI)
• Consistent parsing of ITL files
• Canonicalization of file formats to ensure unbroken signatures

1.2 Maximizing ITL Interoperability
To maximize interoperability on multiple domains that may not have access to the same Key
Management Infrastructures, the Type 98 best practice includes the following features:

• Asymmetric cryptography. Asymmetric cryptography allows users with access to a public
key and CA to validate integrity and authenticity, without requiring a shared secret.

• Multiple instances. The existence of multiple instances of Type 98 allows systems to use
the instances they understand and ignore the instances that cannot be validated in their
respective domains.

• Assured versioning. The ALF allows users from one domain to reconstruct and validate
previous versions of a record.

Page 1

2. BEST PRACTICE POPULATION OF TYPE 98 PARENT FIELDS
The ANSI/NIST ITL 2011 standard describes a general Type 98 record. The type exists to
provide a consistent location for IA data pertaining to the ITL file. The Type 98 record contains
several fields common across all record types (e.g. IDC, SRC). Refer to [ANSI/NIST ITL 2011]
for details on these common fields. The following subsections describe unique fields specified by
the ITL 2011 standard for Type 98 records, and guidance for population of these fields.

2.1 IA Data Format Owner 98.003
The IA data generated by the CB method is called Binding Information (BI). The format
owner for the CB BI implementation of Type 98 is NSA’s Secure Data Enabling Technologies.
This authority is assigned a four digit hex value by the IBIA.

2.2 IA Data Format Type 98.005
BI can be encoded using either an XML or binary format type. Both types are assigned a four
digit hex value by the IBIA. The combination of Format Owner and Format Type uniquely
identify the BI format.

2.3 IA Audit Log Field 98.900
The ALF (98.900) consists of a series of change statements. Each change statement describes a
discrete change made to a referenced logical record since the previous Type 98 was created (note
that this does not include the Type 98 record itself). Best practices dictate that every change
made to an ITL record SHOULD be logged in the Type 98 ALF in order to preserve chain of
custody and support reconstruction of previous versions. Moreover, if a given entity wishes to
construct multiple Type 98s for different target domains, each Type 98 must have identical ALFs
with identical revision numbers. An ALFs must be bound by the cryptographic binding (see
Figure 1 for a Sample Audit Log Field).

The Audit Log Field consists of a collection of fields and subfields as defined by the ANSI/NIST
ITL 2011 Standard.

2.4 IA Audit Revision Number 98.901
Additionally, each Type 98 needs to be marked with a unique audit log revision number (ARN)
to support identification of previous file versions. This field must be as defined by the
ANSI/NIST ITL 2011 standard.

Page 2

2.4.1 Creating the Audit Log
The Audit log consists of a series of statements for each individual change made to other logical
records since the previous Type 98 was created, such as a change in biographic data or an
addition of a new record. A Type 98 record with an audit log should be created every time an
agent saves changes to an ITL file.
Software used to modify an ITL must generate an event for each modification to the ITL, which
will be used to populate the ITL audit log on save. See Figure 1 for a sample audit log field.

Figure 1: Sample XML Type 98 Audit Log Field
2.4.2 Processing the Audit Log
The Type 98 Audit Log can be leveraged both to generate audit reports and automate
reconstruction of previous ITL versions. To protect the audit log data, the audit field must be
included within the protection scheme (e.g. cryptographic binding) applied to all other records
protected by the Type 98. This section describes best practices for securing the audit log, auto-
generating previous versions, and producing audit reports for an encoding agnostic ITL file. The
audit log may be omitted in cases where it becomes a performance problem, but this will break
the chain of custody. It is also possible to extract the audit log and store it separately if
necessary.

2.4.2.1 Securing the Audit Log
The audit field must be included within the cryptographic binding applied to all other records
protected by the Type 98. For example, in XML, store a hash of the audit log in the XML
Digital Signature (DSig) Manifest. The manifest reference ID is created by concatenating the
UDC with the URI. The URI and type reference attributes may also be optionally populated.
Each reference also identifies the hash algorithm used (DigestMethod), and the hash value
(Digest Value). Figure 3 illustrates this example:

Page 3

Figure 2: XML Audit Log Reference in Manifest

2.4.2.2 Audit Reporting Methodology
The Audit Log provides secure audit data for ITL records and files by recording discrete changes
made to logical records and digital signatures to identify the agent of change. The audit log can
be parsed to and filtered to generate different types of audit reports. For example, if a report was
needed on changes made by a specific agent, events with the agent attribute matching the target
agent could be extracted and reported. Reports could also be generated based on changes made
to only to specific logical records, or different types of events, or for specific event reasons. The
XML block below shows a sample event element, with the attributes that could be leveraged for
different types of audit reports.

Figure 3: Sample Audit Statement
To audit changes made to the ITL file over time or in a given time frame, the Type 98 Data
Creation Date (98.006) should be leveraged.

2.4.2.3 Reconstruction Methodology
The Audit Log can also be leveraged for automated reconstruction with cryptographic validation.
Given an unbroken line of Type 98’s with accurate audit logs and BIs, any previous version of
the ITL file can be reconstructed and cryptographically validated. The accuracy of this
reconstruction can be verified by comparing hashes of the reconstructed version to the hashes in
the original Type 98 BI. The figure below depicts the process for automated reconstruction.

Page 4

Figure 4: File Version Reconstruction
Steps to automate reconstruction of previous versions of the ITL:

• Start with the current ITL (version n), and create a temporary empty ITL file ITL (version
n-1).

• Parse the latest Type 98 audit log field to obtain the Old Value(s) for the modified
record(s) described within the audit field.

• Populate Version n-1 using the version n values, and then replace modified fields with
the Old Value(s) specified in the latest Type 98.

• Hash each logical record within version n-1, and compare these to the hashes stored
within the previous Type 98/CB.

• Continue recursively reconstructing versions from the remaining Type 98 records
(ordered by IDC) until you come to desired version.

2.4.2.4 Audit Log Field Extraction
In cases where the audit log becomes too large for transport as part of the ITL, users may
consider parsing and removing the ALF and storing it separately from the ITL file with
appropriate metadata tags.

Page 5

3. BEST PRACTICE POPULATION OF TYPE 98 USER-DEFINED SECURITY
FIELDS

In addition to the general fields described in section 2, the Type 98 best practice relies on user-
defined fields (98.200-899) for storing BI data. While child standards are expected to utilize
these fields to define the particular IA mechanism or format which best suits their needs (e.g.
signature generated using XML DSig), best practices recommend that child standards use
“Binding Information” (BI) created by the CB process. The BI creation procedure, format, and
field location within the Type 98 user defined fields varies based on the encoding scheme. This
section describes best practices for creation and processing of BI for XML and Traditional
encoding schemas.

3.1 XML Version
When using XML encoding, the BI consists of XML Digital Signature with a manifest and
signature block. The manifest is used to allow for granularity in validation and verification1. By
placing references that do not explicitly pertain to the Type 98 record (i.e. references to the other
logical records) in the manifest it is possible to have the signature validate even if a subset of
logical records have been modified. This allows “subset validation,” assuring that subsets of
logical records ITL file have not been altered and that the hashes of the referenced data objects
(e.g. logical records) have not been altered.
The Manifest (98.200) and Signature (98.201) user-defined fields are used when creating a BI
within the Type 98 using the XML ITL encoding as illustrated by Table 1:

Mnemonic Cond code Field number Field name
Occur count

Min Max

Mandatory 98.001 Record Header 1 1

IDC Mandatory 98.002 Image Designation
Character 1 1

DFO 98.003 IA Data Format Owner 1 1

ORG 98.004 Originating Agency 1 1

ORI Originating Agency
Identifier 1 1

1 In XML Dsig, when references are contained within the signed data element any references that cannot be found because they
have been removed from the XML document will break the signature. Utilizing a manifest however allows the signature to
remain valid even when the reference to a logical record is removed from the document, thus allowing the remaining records to
be trusted.

Page 6

OAN Originating Agency Name 0 1

DFT Mandatory 98.005 IA Data Format Type 1 1

DCD Mandatory 98.006 IA Data Creation Date 1 1

RSV 98.007-
98.199

Reserved For Future
Definition

MF Mandatory 98.200 Manifest 1 1

CB Mandatory 98.201 Signature 1 1

UDF 98.202-
98.899 User-Defined Fields

ALF Mandatory 98.900 IA Audit Log Field 1 1

ARN Mandatory 98.901 Audit Revision Number 1 1

RSV 98.901-995 Reserved For Future
Definition

Table 1: Best Practice XML Type 98
3.1.1 XML BI Creation Guidelines
The goal of the CB is to assure that no modalities have been tampered with, and that their
relation to one another has integrity and authenticity (e.g. to prove that a set of fingerprints
belongs to the same person as a set of iris scans and that they come from a trusted source).

A Type 98 should be created on save, each time an ITL file is updated by an agent. To populate
the XML Type 98, logical records are parsed from the ITL, canonicalized, hashed, and used to
populate the XML Manifest and Signature. On receiving an ITL, the Type 98 is validated
through a similar process.

Processing
To create a BI within an XML ITL file, each logical record must be consistently processed in
order to maintain cryptographic interoperability of the hash values. Each logical record
corresponds to an XML element which must be identified, put into a unique, canonicalized form
and converted to bytes in order to be hashed.
In addition to canonicalization, the system must determine a unique identifier for each object
intended to be bound within the CB. NIST recommends the use of the IDC for each logical
record. Note that some logical records have non-unique IDCs (e.g. fingerprint minutiae). In cases
such as this all records with the same IDC should be treated as a single object, and bound
accordingly (as the fingerprint data is useless without the minutiae data).

Page 7

In order to ensure consistency of the hashes for records with identical IDCs, records with the
same IDC should be aggregated into a canonical form prior to hashing. NIST recommends
constructing this canonical form by appending the logical records in order of increasing record
type (e.g. append Type_17 to Type_13 to Type_7).

Field Population
The Manifest field (98.200) should contain a reference to each logical record, the ALF (98.900)
and ARN (98.901) of the current record, and the IA Data Creation Date (98.006). These objects
should be parsed and hashed and the hash stored in the reference along with the algorithm used
to generate the hash. The resource should also have an ID attribute set to give a unique name to
the resource. The Image Designation Character is the recommended ID attribute. Though not
required, it is suggested that URI and Type attributes be used as well. The URI to the referenced
resource and its type can assist automated validations. The following is an example of a
reference:

<Reference Id="500#98.900" URI="#98.900" Type="AuditLogField">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>60NvZvtdTB+7UnlLp/H24p7h4bs=</DigestValue>

</Reference>
The ID attribute should contain the IDC number for the asset. For the ALF it should be the
Image Designation Character with ‘#98.900’ appended.
The signature block (98.201) should include a reference with a hash to the BindingAttributes,
Image Designation Character (98.001), IA Data Creation Date (98.006), and the Manifest
(98.200) inside a SignedInfo element. Each logical record must have a unique canonicalization
transform, which (in addition to standard XML canonicalization) sets a fixed structure for the
order of all attributes and child elements within the logical record structure in order to ensure
hash digest consistency. The SignedInfo field should also contain information about the
canonicalization method and SignatureMethod used. The SignedInfo should be canonicalized
and the signature method should be applied over the SignedInfo field and stored in the
SignatureValue field. The relevant KeyInfo should also be stored as shown in Appendix C.

3.1.2 XML BI Processing\Validation Guidelines
To validate the Type 98 record, the signature must first be verified followed by validation of the
individual references within the manifest (as needed).

Page 8

The validation of the signature will ensure that the BindingAttributes, Image Designation
Character (98.001), IA Data Creation Date (98.006), and the Manifest (98.200) have not
changed. However, the items referenced in the manifest must be validated separately as the
signature only validates that the hash values were not changed.

After the signature is validated the references in the manifest should be hashed using the
algorithm specified in the manifest reference. Once generated, hashes are compared to the hashes
contained in the manifest. If the hashes match then the asset has integrity.

3.2 Traditional Encoding Version:
When using the Traditional ITL encoding, the BI consists of an ASN.1 Cryptographic Message
Syntax object called a ContentCollection (See: RFC 4073) which is embedded within field
98.200.

To create BI within a Traditional ITL Type 98, use the following user-defined fields:

Mnemonic Cond code Field number Character Type Field name
Occur count

Min Max

Mandatory 98.001 Record Header 1 1

IDC Mandatory 98.002 Numeric Image Designation
Character 1 1

DFO 98.003 AlphaNumericIADB Format Owner 1 1

ORG 98.004 AlphaNumericOriginating Agency 1 1

ORI
Originating
Agency
Identifier

1 1 ORI

OAN Originating
Agency Name 0 1 OAN

DFT Mandatory 98.005 AlphaNumeric IADB Format Type 1 1

DCD Mandatory 98.006 Numeric IA Data Creation
Date 1 1

RSV 98.007-
98.199

Reserved For Future
Definition

CB Mandatory 98.200 Binary
(ASN.1) Binding Information 1 1

Page 9

UDF 98.201-
98.899 User-Defined Fields

ALF Mandatory 98.900 AlphaNumeric IA Audit Log 1 1

ARN Mandatory 98.901 Audit Revision
Number 1 1 ARN

RSV 98.901-995 Reserved For Future
Definition

Table 2: Best Practice Traditional Type 98

3.2.1 Traditional Encoding BI Creation Guidelines
The goal of the CB is to assure that no modalities have been tampered with, and that their
relation to one another has integrity and authenticity (e.g. to prove that a set of fingerprints
belongs to the same person as a set of iris scans).
A Type 98 should be created on save, each time an ITL file is updated by an agent. To populate
the Traditional Type 98, logical records are parsed from the ITL, canonicalized, hashed, and used
to populate the BI object. On receiving an ITL, the Type 98 is validated through a similar
process.

Parsing
To create a CB BI within a Traditional ITL file, each logical record must be consistently parsed
in order to maintain cryptographic interoperability of the hash values. Consistent parsing of
records is beginning with the first bytes of an ITL file, which always correspond to the Type 1
record. The first field of every type indicates the length of that record. The records can then be
individually parsed out recursively according to the following pseudo-code:

for (i=1; i<=99; i++)
• Locate field 1 of record type I;
• Determine length type I;
• Parse out type I;
• Pass parsed bytes to hashing method;

In addition to consistent parsing, a system must determine a unique identifier for each object
intended to be bound within the CB. NIST recommends the use of the IDC for each logical
record. Note that some logical records have non-unique IDCs (e.g. fingerprint minutiae). In cases
such as this all records with the same IDC should be treated as a single object, and bound
accordingly (as the fingerprint data is useless without the minutiae data).

In order to ensure consistency of the hashes for records with identical IDCs, records with the
same IDC should be aggregated into a canonical form prior to hashing. NIST recommends
constructing this canonical form by appending the logical records in order of increasing record
type (e.g. append Type_17 to Type_13 to Type_7).

Page 10

Field Population
Once all hashes have been created, Binding Information (See Appendix Error! Reference
source not found.) must be generated. Once the Binding Information is generated, it must be
inserted into field 98.200.
The Binding Information protects the integrity and authenticity of the data assets (i.e. biometric
modalities) using a single ContentCollection object (as defined by RFC 4073). The IDCs should
be used as “BindingDataReference” objects as defined by Appendix D. The
BindingDataReference objects allow the hashes to be uniquely mapped to the corresponding data
objects (i.e. logical records), and disambiguate each data asset’s hash from the hash collection.

3.2.2 Traditional BI Validation Guidelines
In order to process a Traditional ITL file containing a Type 98 with BI, the system must first
locate the binding information and verify the digital signature. After which the system must
parse each logical record in the same manner as described in section 3.2.1 and compare these
hashes to the hashes stored within the BI’s ContentCollection.

Page 11

Appendix A Acronyms

BI Binding Information

CB Cryptographic Binding

RI Reference Implementation

IDC Image Designation Character

SRC Source Agency

DFO Data Format Owner

DFT Data Format Type

DCD Data Creation Date

RSV Reserved

MF Manifest

UDF User-Defined Field

ALF Audit Log Field

RSV Reserved

Page 12

Appendix B Sample XML Audit Log Field

Page 13

Appendix C Sample BI within XML Type 98

Page 14

Page 15

Page 16

Page 17

Appendix D Binding Information Specification (For Traditional
Encoding)

 This Appendix describes conventions for assuring the relationship between
one or more distinct data assets. Note that for the purposes of this Appendix
“Distinct Data Assets” Refers to any data that can be expressed as a byte array,
such as the logical records of an ITL file.

1. Introduction

 This appendix describes a convention for providing integrity and
 authenticity to a given relationship between one or more distinct

data assets via a process known as Cryptographic Binding (CB), which will
be referred to simply as Binding. Binding produces a Binding

 Information (BI) which can then be used to verify the relationship
at a later date.

 The integrity and authenticity of a cryptographically bound
relationships is verified by a Cryptographic Binding Validation (CV)
process that uses the BI. This process is referred to simply as

 Validation.

1.1 Rationale

 This section provides a simple example to illustrate the motivation for
BI. Consider the scenario where person X authors several
document portfolios, each of which is composed of many distinct documents,
and X wishes to pass these portfolios to person Y. If X is
required to pass one document separately (perhaps one at a time due to
file size concerns, or through different media for security

 considerations) the relationship among documents (namely which documents
belong to which portfolio) could be confused or maliciously tampered with
(without tampering with the documents themselves) unless an additional
explicit description of the relationships(e.g. a BI) is also passed.

 Person X would pass each document and the BI for each portfolio to Y.
Y would assemble the portfolios as each document is received, and upon
completion of a portfolio, use the BI to validate that the correct documents
were put into the correct portfolios, and that none of the data assets were
tampered with or modified, implying that the portfolios themselves have
integrity and authenticity.

1.2. Terminology

 In this document, the key words MUST, MUST NOT, REQUIRED, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL are to be interpreted as

described in [STDWORDS].

2. BI Components

 BI is an explicit representation of a relationship
between distinct data assets. It MUST include Binding Attributes (BA) and

 Data Asset List (DAL). It MAY accommodate contents with varying levels of
protection as well.

Page 18

 Figure 1. Generalized View of Binding Information (BI)

 Figure 1 shows the general order and placement of the components of
a BI. Exact syntax and placement depends on the encoding standard
and method used.

2.1. Binding Attributes (BA)

 Binding Attributes (BA) provide additional information that describes the
 relationship represented by the BI, as well as information describing the BI

itself. For example: the Binding Version and Binding Method are REQUIRED for
correct parsing of the BI. The Bind ID, Binder ID, and Requestor ID are

 OPTIONAL but RECOMMENDED for audit and provenance reasons. The Security
Label is OPTIONAL and SHOULD be used when security information about the
relationship between the data assets is available.

2.1.1. Binding Version (REQUIRED)

 Binding Version is a Binding Attribute expressed as
 an integer and used to denote the version of the BI

specification that was used to create a Binding Information. This is
important for interoperability reasons as it allows a validator
to correctly parse multiple versions of BIs.

2.1.2. Binding Method (REQUIRED)

 Binding Method is a REQUIRED Binding Attribute expressed as
integer used to denote the methodology used
to establish the relationship between assets as well as the method by
which the data assets are included in the DAL. There are three defined
methods:

 1. Digitally Signed Digest of Data Asset List
2. Encrypted Digest of Data Asset List
3. Hash-based Message Authentication Code(HMAC) of Data Asset List

 Other cryptographic methods not explored in this document that use
encryption and decryption may be appropriate for creating a BI. For example,
the asset(or its hash) can be encrypted so that the validator must prove
that it can decrypt the encrypted value correctly for the BI to have

Page 19

 integrity. Authenticity is assured by appropriately managing the encryption
key. This is slightly different than using a signature because the signature
“sign” and signature “validate” operations are not required to use
encryption. Note that certain signature algorithms such as RSA do encrypt
the hash of the signed message; but, other algorithms such as the Digital
Signature Algorithm (DSA) do not. Another approach is to use the residue or
last n bits) of the encryption of an asset.

2.1.3. Bind ID (RECOMMENDED)

 Bind ID is a RECOMMENDED unique identifier for the Binding Information
itself. It MAY be used by an enterprise to uniquely identify each BI for
auditing or tracking purposes.

2.1.4. Binder ID (RECOMMENDED)

 The Binder ID SHOULD identify the instance of the software or service
creating the BI. This is especially useful within a large scale enterprise
or a load balanced environment since it allows for the identification of the

 particular software or service that created the BI if it was given a unique
identifier.

2.1.5. Requestor ID (RECOMMENDED)

 The Requestor ID SHOULD identify the entity requesting the BI be created.
This is useful for auditing, authoring and tracking purposes. In most cases

 this should be a unique identifier for a user, such as a name or certificate.

2.1.6. Security Label (OPTIONAL)

 The Security Label MUST describe the sensitivity level of the BI.

2.2 Data Asset List (DAL)(REQUIRED)

 The Data Asset List (DAL) MUST be a list containing a representation of
each data asset in the relationship. That representation SHOULD be a
unique identifier and either the entire data asset (depending on size

 restrictions) or a trustworthy representation such as a hash of the
data asset. Using a unique identifier and hash of the data asset is
RECOMMENDED.

3. General Requirements of Cryptographic Binding and Validation Systems

 Because producing a binding requires both computational resources and
the requester’s time there may be tradeoffs associated with who should
bind and when the binding should occur. In order to make the integrity
and authenticity information available to other applications, discovery

 services or other users as soon as possible, the binding is expected to
occur in a timely fashion. This is not always practical in
tactical environments where authorized personnel may be fully engaged in

 a critical activity (war-fighting) or when bandwidth, storage capacity,
or other computation resources are simply not available.

Enterprises SHOULD establish policy that addresses who and when to
create a binding. For example, radio links may be the only available

 communication medium at the edge or front line battle space; the speed
and capacity of those links may be too slow to request and complete a
binding efficiently. Here, binding by the enterprise, perhaps at the

 platoon level, makes more sense. A local enclave could aggregate binding
requests from the field and provide binding enterprise services locally.
Best Practice guidance SHOULD be to implement cryptographic binding as close

 to the user as feasible without compromising the users primary concern.

Page 20

3.1. General Requirements of Cryptographic Binding (CB)

 Regardless of the Binding Method chosen(Methods 1 through 3 are described in
2.1.2), the information needed to apply the protection scheme (i.e.

 private key, shared secret, etc), the data assets, and the information
to create the Binding Attribute are REQUIRED.

The general process involves creating BA and processing the data
assets to create the DAL. Once the BA and the DAL are created, the

 protection scheme is applied.

3.2. General Requirements of Cryptographic Binding Validation (CV)

 A successful Validation proves that the relationship between the
data assets is authentic and has integrity and that the assets themselves

 have not been modified(or tampered with) since the BI was created.
Validation of a BI MAY occur in three ways: Binding Only, Subset, and Full.

For performance reasons, it is RECOMMENDED that comparisons occur as
 data assets are received so that failure of one data asset MAY terminate

the processing of subsequent data assets if bandwidth is a concern.
There are cases however where it is preferential to compare all of the
data assets and return a list of the individual results.

3.2.1. Binding Only

 Binding Only validation MUST verify that the protection scheme used to
protect the BA and DAL is valid. No data asset validation occurs during
a Binding Only validation. For example, the Digitally Signed Digest of DAL

 binding method MUST verify only the signature and Shared Secret and the
Digest of DAL binding method MUST verify only the Shared Secret.

3.2.2. Subset

 A subset validation MUST perform a Binding Only validation prior to
 comparing the data assets requested. The comparison of at least one data

asset is REQUIRED for a subset validation. The result of a subset
validation SHALL be the result of the Binding Only validation and the

 results of the comparison of each data asset (i.e. Binding Only Result +
Data Asset 1 Comparison + Data Asset 2 Comparison...). Data assets not
found in the BI SHOULD be considered a failed comparison for the
purposes of the overall result, though providing and explanation as well

 is RECOMMENDED.

3.2.3. Full

 A full validation MUST perform a Binding Only validation prior to
comparing the data assets requested. The comparison of all data asset is
REQUIRED for a full validation. The result of a full validation SHALL be
the result of the Binding Only validation, the results of the comparison
of each data asset, and whether or not every data item in the BI was
validated(i.e. Binding Only Result + Data Asset 1 Comparison + Data

 Asset 2 Comparison... + Every data asset compared). Data assets not
found in the BI SHOULD be considered a failed comparison for the
purposes of the overall result, though providing and explanation as well
is RECOMMENDED.

4. Sample Binding Information(BI) For Method 1 using Cryptographic Message

Page 21

 Syntax (CMS)

Page 22

Page 23

Figure 2. Cryptographic Message Syntax Binding Information (BI) Diagram

 Figure 2 shows the order and placement of the components of a BI utilizing
[CMS] and [CNTCLLTN].

The following is a textual description of the same Binding Information (BI)
and its source documentation.

 ContentInfo (CMS2004)
contentType ::= SignedData (CMS2004)
content
 version ::= CMSVersion (CMS2004)
digestAlgorithms ::= DigestAlgorithmIdentifiers (CMS2004)
encapContentInfo ::= EncapsulatedContentInfo (CMS2004)

eContentType ::= (ContentCollection)
eContent
 SEQUENCE OF ContentInfo

 contentType ::= ContentWithAttributes (ContentCollection)
content
 content ::= ContentInfo

 contentType ::= DigestedData (CMS2004)
content
 version ::= CMSVersion

 digestAlgorithm ::= DigestAlgorithmIdentifier (CMS2004)
encapContentInfo ::= EncapsulatedContentInfo

 eContentType ::= id-Data (CMS2004)
eContent (Not Used)

digest ::= Digest (CMS2004)
attrs ::= SEQUENCE OF Attribute (CMS2004)

reference ::= BindingDataReference (CBInfoSyntax)
 …

 certificates ::= CertificateSet (CMS2004) (Optional)
crls (Not Used)

 signerInfos ::= SignerInfos (CMS2004) ::= SET OF SignerInfo (CMS2004)
version ::= CMSVersion

 sid ::= SignerIdentifier (CMS2004)
digestAlgorithm ::= DigestAlgorithmIdentifier
signedAttrs ::= SignedAttributes (CMS2004)

 bindingAttr ::= BindingAttr (CBBindingInfoSyntax)
signingTime ::= SigningTime

signatureAlgorithm ::= SignatureAlgorithmIdentifier (CMS2004)
signature ::= SignatureValue (CMS2004)
unsignedAttrs (Not Used)

Page 24

4.1. Supporting Types

4.1.1. Binding Data Reference Type

 The BindingDataReference type is used to uniquely identify the external data
asset that the Digested Data represents. The syntax supports multiple
methods of identifying the external data asset. For example, the

 BindingDataReference could contain a PrintableString with the value of the
asset's file name and extension.

 The following object identifier names the BindingDataReference type:

 id-cryptographicBindingDataReference OBJECT IDENTIFIER ::=
 {joint-iso-ccitt(2) country(16) us(840) organization(1) gov(101) dod(2)

infosec(1) attributes(5) cryptographicBinding(73) 0 }

 The BindingDataReference has the following syntax:

 BindingDataReference ::= CHOICE {
uuid [0]UUID,
printableString PrintableString (SIZE(1..MAX)),
octetString [1]OCTET STRING (SIZE(1..MAX)),
attribute BindingDataReferenceAttribute

}

 The BindingDataReference type has three defined choices and a fourth choice,
the BindingDataReferenceAttribute type, that allows for more flexibility
in uniquely identifying external data assets.

 The BindingDataReferenceAttribtue has the following syntax:

 BindingDataReferenceAttribute ::= Attribute

4.1.2. Entity Identifier type

 The EntityIdentifier type is used to uniquely identify an entity, such as a
person, business, system, government agency, etc.

 The EntityIdentifier type has the following syntax:

 EntityIdentifier ::= CHOICE {
issuerSerial [0]IssuerSerial,
uuid [1]UUID,
printableString PrintableString (SIZE(1..MAX)),
attribute EntityIdentifierAttribute

}

 The EntityIdentifier type has three defined choices and a fourth choice,
the EntityIdentifierAttribute type, that allows for more flexibility
in uniquely identifying external data assets.

 The EntityIdentifierAttribute has the following syntax:

 EntityIdentifierAttribute ::= Attribute

4.1.3. Binding Attribute Type (REQUIRED)

 The BindingAttribute type is used to consolidate important processing and
audit data about the BI. A BindingAttribute is expected to be protected. In

 this case the BindingAttribute is placed as a SignedAttribute of each
SignerInfo. It could also be placed inside of the EncapsulatedData type
however that reduces the flexibility of the binding if countersignatures are
utilized.

 The following object identifier names the BindingAttribute type:

 id-cryptographicBindingDataReference OBJECT IDENTIFIER ::=
 {joint-iso-ccitt(2) country(16) us(840) organization(1) gov(101)

dod(2) infosec(1) attributes(5) cryptographicBinding(73) 1 }

Page 25

 The BindingAttribute type has the following syntax:

 BindingAttribute ::= SEQUENCE {
version BindingVersion,
method BindingMethod,
securityLabel SecurityAttribute OPTIONAL,
bindID BindingIdentifier,
binderID EntityIdentifier,
requestorID EntityIdentifier OPTIONAL

}

4.1.3.1. Binding Version (REQUIRED)

 Binding Version is defined in the BindingAttribute type as:

 version BindingVersion

 The BindingVersion type has the following syntax:

 BindingVersion ::= INTEGER

4.1.3.2. Binding Method (REQUIRED)

 Binding Method is defined in the BindingAttribute type as:

 method BindingMethod

 The BindingMethod type has the following syntax:

 BindingMethod ::= INTEGER

4.1.3.3. Bind ID (REQUIRED)

 Bind ID is defined in the BindingAttribute type as:

 bindID BindingIdentifier

 The BindingIdentifier type has the following syntax:

 BindingIdentifier ::= UUID

 In this particular example and most other cases, it will be REQUIRED.
However it is not necessarily vital for processing the BI, so the overall
specification lists it as RECOMMENDED.

4.1.3.4. Binder ID (REQUIRED)

 Binder ID is defined in the BindingAttribute type as:

 binderID EntityIdentifier

 It utilizes the EntityIdentifier type to uniquely identify the entity that
created the binding.

4.1.3.5. Requestor ID (RECOMMENDED)

 Requestor ID is defined in the BindingAttribute type as:

 requestorID EntityIdentifier OPTIONAL

 In this example it is marked OPTIONAL, however it is generally RECOMMENDED
that it be filled for audit purposes.

4.1.3.6. Security Label (OPTIONAL)

 Security Label is defined in the BindingAttribute type as:

 securityLabel SecurityAttribute OPTIONAL

Page 26

 The SecurityAttribute type has the following syntax:

 SecurityAttribute ::= Attribute

 The SecurityAttribute has a type of Attribute so that many different
 security methodologies can be supported without the need to redefine the

BindingAttribute type for each specific methodology.

4.2. Data Asset List (DAL)(REQUIRED)

 The Data Asset List using [CMS] and [CNTCLLTN} SHOULD be comprised of a
 ContentCollection containing a collection of ContentWithAttributes as

described in 1.2 of [CNTCLLTN]. Each ContentWithAttributes SHOULD contains a
DigestedData as the content, and a BindingDataReference as an attribute.
Additional attributes SHOULD be supported.

4.3. Protection Scheme

 This example utilizes digital signatures and the SignedData type described
in [CMS] to protect the BA and DAL.This example could be modified for other
methods by utilizing the other CMS protecting content types.

4.4. ASN.1 Modules

 The ASN.1 module contained in this appendix defines the structures
that are needed to implement this specification. It is expected to
be used in conjunction with the ASN.1 modules in [CMS], [CNTCLLTN]
and[COMPRESS].

 CryptographicBindingInformationSyntax { joint-iso-ccitt(2) country(16)
us(840) organization(1) gov(101) dod(2) infosec(1) attributes(5)
cryptographicBinding(73) }

 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

-- EXPORTS ALL

 IMPORTS
-- Imports from RFC 3852

Attribute
 FROM CryptographicMessageSyntax2004

{ 1 2 840 113549 1 9 16 0 24 }

-- Imports from RFC 3281
IssuerSerial

 FROM PKIXAttributeCertificate
 { 1 3 6 1 5 5 7 0 12 };

 id-cryptographicBindingInfo OBJECT IDENTIFIER ::= { joint-iso-ccitt(2)
country(16) us(840) organization(1) gov(101)
dod(2) infosec(1) attributes(5)
cryptographicBinding(73) }

 id-cryptographicBindingDataReference OBJECT IDENTIFIER ::=
 { joint-iso-ccitt(2) country(16) us(840)
 organization(1) gov(101) dod(2) infosec(1)

attributes(5) cryptographicBinding(73) 0 }

 id-cryptographicBindingAttribute OBJECT IDENTIFIER ::= { joint-iso-ccitt(2)
country(16) us(840) organization(1) gov(101)
dod(2) infosec(1) attributes(5)
cryptographicBinding(73) 1 }

 BindingAttribute ::= SEQUENCE {
version BindingVersion,
method BindingMethod,

 securityLabel SecurityAttribute OPTIONAL,

Page 27

 bindID BindingIdentifier,
binderID EntityIdentifier,
requestorID EntityIdentifier OPTIONAL

}

 BindingDataReference ::= CHOICE {
uuid [0]UUID,
printableString PrintableString (SIZE(1..MAX)),

 octetString [1]OCTET STRING (SIZE(1..MAX)),
attribute BindingDataReferenceAttribute

}

 EntityIdentifier ::= CHOICE {
issuerSerial [0]IssuerSerial,
uuid [1]UUID,
printableString PrintableString (SIZE(1..MAX)),

 attribute EntityIdentifierAttribute
}

 BindingIdentifier ::= UUID
BindingVersion ::= INTEGER
BindingMethod ::= INTEGER
BindingDataReferenceAttribute ::= Attribute
EntityIdentifierAttribute ::= Attribute

 SecurityAttribute ::= Attribute
UUID ::= OCTET STRING (SIZE(16))

 END

5. Security Considerations

5.1. Algorithm and Key Strength Guidance

 This section looks at expectations for how well hash algorithms,
 cryptographic algorithms, and keys protect the integrity and

authenticity of a BI. Each has an impact on the cryptographic binding
 and validation system when considering the strength-of- mechanism in

specific development and execution environments. The material in this
 section is organized to address the cryptographic nature of the five

cryptographic methods envisioned for use when creating and validating a
binding. The material in this section is drawn from [NSP80057] and
[NSP800107]. These documents offer the following working definitions

 needed to describe strength-of-mechanism:

1. Collision – Two different known messages that have the same hash value
(message digest).

 2. Entropy – A measure of the disorder, randomness, or variability in a
closed system. The entropy of X is a mathematical measure of
the amount of information provided by an observation of X
(i.e. a key can have 128 bits of entropy).

 3. Security strength – A number associated with the amount of work, the
number of operations or work factor that is required
to break a property of a cryptographic algorithm or

 system; security strength is specified in bits.

 4. Work factor – A number of executions of an algorithm by an adversary
that is required to break some property of the algorithm.

 For example, for SHA-256, a work factor of 2128 executions
of the algorithm is required by an adversary to find a
collision.

5.2. Hash Algorithm Strength

 A hash or message digest produced by an approved hash algorithm has one or
 more of the following properties:

Page 28

 1. Collision resistance – It is computationally infeasible to find two
different inputs to the hash function that have the same hash value.

 The amount of collision resistance provided by a hash-function cannot
 exceed half the length of the hash value produced by a given hash

function. Collision resistance is measured in bits. For example,
 SHA-256 produces a (full length) hash value of 256 bits; SHA-256 cannot
 provide more than 128 bits of collision resistance.

 2. Preimage resistance – It is computationally infeasible to find a message
that hashes to a given value. This property is also called the

 one-wayness property. Preimage resistance is measured by the amount of
work that would be needed to find a preimage for a hash function. The

 amount of preimage resistance provided by a hash-function cannot exceed
the length of the hash value produced by a given hash function. For

 example, SHA-256 cannot provide more than 256-bits of preimage
resistance; this means that a work factor of 2256 operations will likely

 find a preimage of a (full length) SHA-256 hash value.

 3. Second preimage resistance – It is computationally infeasible to find
another different message that has the same hash value as the first
message. Second preimage resistance is measured by the amount of work

 that would be needed to find a second preimage for a hash function.
 The amount of second preimage resistance provided by a hash-function

cannot exceed the length of the hash value produced by a given hash
function. For example, SHA-256 cannot provide more than 256-bits of
second preimage resistance.

Hash
Algorithm

SHA-1 SHA-224 SHA-256 SHA-384 SHA-512

Collision
Resistance <80 112 128 192 256

Preimage
Resistance 160 224 256 384 512

Second
Preimage
Resistance

160 – K
(105-160)

224 – K
(201-224)

256 – K
(201-256)

384 512 – K
(394-512)

 Table 1. Strength (In Bits) of Hash Algorithms

 Table 1 lists the strength in bits of the hash algorithms approved for use
in U.S. Government systems. The following two notes apply to Table 1:

 1. The second preimage resistance strengths of the hash functions depend
not only on the functions themselves, but on the sizes of the messages
that the hash functions process. As shown in the third row of Table 1,

 the second preimage resistance strength is (L – K), where L is the
output block size of the hash algorithm. For instance, in SHA-256 L =
256, and K is a function of the input block size. The strength in bits

 is given by 2k = message length/block size. The values in parentheses
show the limits for the block sizes of each function. As discussed in
detail in the appendix of [35], the second preimage resistance of

 SHA-384 does not depend on the message length because the Second
Preimage Attack requires the work of more than 2384, and to break the

 second preimage resistance of SHA-384, the required work is only 2384.

 2. The preimage resistance is stronger than its collision resistance
strength. Therefore, if a hash algorithm satisfies a collision
resistance requirement it also satisfies any preimage resistance
requirement. Similarly, if K is not greater than L/2 (half of the

 output block size in bits) or (L - K) = L/2, then the second preimage
resistance strength is equal to or greater than its collision resistance
strength. In this case, if the hash function satisfies a collision

 resistance requirement then it also satisfies any second preimage
resistance requirement. A value of K that is less than or equal to L/2
is very common, in practice. For example, if a hash function in a

Page 29

 digital signature application satisfies the collision resistance
requirement, and the messages hashed by the application is not longer
than 2 (L/2) input blocks of the hash function in length, then it also
satisfies the second preimage resistance requirement.

5.3. Hashes for Method 1

 The security strength of a hash function for digital signatures as used
in cryptographic binding methods 1 is its collision resistance strength.
However, when using the randomized hashing technique as specified

 in [NSP800106], the security strength of the hash algorithm is the
second preimage resistance strength, not the collision resistance
strength. It is observed that when using XML DSIG or the equivalent CMS

 signature, the value of K as described in note 2 above will typically be
much less than L/2 therefore if a hash algorithm satisfies a collision
resistance requirement it also will likely satisfy any preimage or
second preimage requirement.

5.4. Hashes for Method 3

 The security strength of a hash function for HMAC applications as used
in method 3 is its preimage resistance strength and the strength of the
authenticated shared secret key. The key must contain at least L/2 bytes

 (i.e., 8 * L/2 bits) of entropy, so that at least (8* L/2) bits of
security are provided, where L is the length (in bytes) of the hash
function output . Approved key generation methods include the generation
of random bits using a random bit generator as specified in [NSP80090],
and the use of an approved key establishment method (e.g., a method
specified in [NSP80056]).

5.5 Encryption, Signature and Key Exchange Algorithm Strength

 Encryption, signature, and key exchange algorithms provide different
 strengths depending on the algorithm, its modes of operation, and the

key size used. Two algorithms are considered of comparable strength for
a given key size if they require approximately the same resources to

 break. Given a few plaintext blocks and a corresponding cipher, an
 algorithm that provides X bits of security would, on average, take 2X-1

operations for a full exhaustive attack. In general, this is
oversimplified as determining the strength of an algorithm relies on
other factors. A more detailed description of algorithm strength is
found in [NSP80057] from which Table 2 is abstracted for use in creating
and validating cryptographic bindings.

 The Bits are the number of bits of security provided by the algorithms
and key sizes in a particular row. The bits of security are not
necessarily the same as the key sizes for the algorithms in the other
columns, due to attacks on those algorithms that provide computational

 advantages. 2TDEA and 3TDEA are specified in the recommendations for the
[NSP80067]. For the RSA column, k is the key size; and, for the EDCSA
column, f is the range of key sizes.

Bits of Security Symmetric Key RSA ECDSA

80
2TDEA k = 1024 f = 160-223

112
3TDEA k = 2048 f = 224-255

128
AES-128 k = 3072 f = 256-383

192
AES-192 k = 7680 f = 384-511

256
AES-256 k = 15360 f = 512+

Page 30

 Table 2. Comparable Cryptographic Algorithm Strength

5.6 Comparable Hash Function Strength

 For hash algorithms, the size of the hash function will be determined
by the algorithm or scheme in which the hash is used. For example, the
appropriate hash algorithm for a digital signature algorithm depends
upon the chosen key and parameter size, and the security strength to be
provided by the digital signature. To further illustrate this concept,
Table 3 indicates the hash size with comparable bit strength for the

 listed parameter and key sizes for digital signatures, HMAC, key
derivation functions, and random number generation as they might be used
for cryptographic binding and validation functions using methods 1
through 3.

Bits of Security Signature and
Hash Only
Applications

HMAC Key Derivation Random Number
Generation

80 SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512,

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512,

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512,

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512,

112 SHA-224,
SHA-256,
SHA-384,
SHA-512,

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512,

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512,

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512,

128 SHA-256,
SHA-384,
SHA-512,

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512,

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512,

SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512,

192 SHA-384,
SHA-512,

SHA-224,
SHA-256,
SHA-384,
SHA-512,

SHA-224,
SHA-256,
SHA-384,
SHA-512,

SHA-224,
SHA-256,
SHA-384,
SHA-512,

256 SHA-512, SHA-256,
SHA-384,
SHA-512,

SHA-256,
SHA-384,
SHA-512,

SHA-256,
SHA-384,
SHA-512,

Table 3. Comparable Hash Algorithm Strength

 This table implies a rather subtle performance enhancement possibility:
 The use of SHA-1 with HMAC can produce 112 bits of security as shown in

the 112 row under the HMAC column. To obtain the same 112 bits of
security with a digital signature requires SHA 224. This has

 implications for recommendations through the year 2030 as shown in Table
4 which recommends algorithm and key sizes for cryptographic binding.

5.7 Recommended Algorithms and Key Sizes for Cryptographic Bindings

 The different cryptographic binding methods require the use of several
different cryptographic algorithms and hash functions. Method 1 uses
hashes and signatures, method 2 uses symmetric algorithms and method 3
uses symmetric algorithms and hashes. Methods 2 and 3 will likely use
some mechanism to generate and protect the exchanged authenticated key
which is likely generated using a random number generator (optionally
based on [NSP80090]) and a hash algorithm in concert with an appropriate
authenticated shared secret communications protocol. Some algorithms can

Page 31

 be used to perform the same service more efficiently because of their
design. For example AES has been designed to be more efficient than
TDEA. In many cases, a variety of key sizes may be available for an
algorithm. For some of the algorithms (e.g., public key algorithms, such
as RSA), the use of larger key sizes than are required may impact
operations, e.g., larger keys may take longer to generate or longer to

 process the data. However, the use of key sizes that are too small may
not provide adequate security.

Table 4 abstracted from [NSP80057] provides recommendations that may be
used to select an appropriate suite of algorithms and key sizes for

 Federal Government unclassified applications. For the protection of
Federal Government unclassified but sensitive information, [NSP80057]
states that, “A minimum of eighty bits of security shall be provided

 until the year 2010. Between 2011 and 2030, a minimum of 112 bits of
security shall be provided. Thereafter, at least 128 bits of security
shall be provided.”

Table 4 shows these time periods in column 1 and indicates the estimated
 time periods during which data protected by specific cryptographic

algorithms remains secure. (i.e., the algorithm security lifetimes).
Column 2 indicates the equivalent minimum key size when RSA is used for
digital signatures in methods 1 or 2 and Column 3 indicates the
equivalent minimum key size when ECDSA signatures are used in methods 1
and 2. Column 4 identifies appropriate symmetric key algorithms and key
sizes for 2TDEA, 3TDEA and AES.

Algorithm
Lifetime

Method 1 Method 2 Method 3
RSA ECDSA Symmetric Key HMAC

Through 2010
(Minimum of 80
bits of strength)

Minimum
k = 1024

Minimum
f = 160

2TDEA
3TDEA
AES-128
AES-192

SHA-1

AES-256
Through 2030
(Minimum of 112
bits of strength)

Minimum
k = 2048

Minimum
f = 224

3TDEA
AES-128
AES-192
AES-256

SHA-224

Through 2030
(Minimum of 128
bits of strength)

Minimum
k = 3072

Minimum
f = 256

AES-128
AES-192
AES-256

SHA-56

 Table 4. Recommended Algorithm and Key Size for Cryptographic Bindings

 While no data is specified for HMAC (column 5) in [NSP80057], using the
HMAC Publication [7] suggests that the size of the key, K, shall be
equal to or greater than L/2, where L is the size of the hash function

 output. Note that keys greater than L bytes do not significantly
increase the function strength. Applications that use keys longer than

 B-bytes, where B is the block size of the input to the hash function,
 shall first hash the key using H and then use the resultant L-byte

string as the HMAC key, K. Keys shall be chosen at random using an
approved key generation method and shall be changed periodically. Note
that the keys should be protected in a manner that is consistent with
the value of the data that is to be protected (i.e., the binding that is
authenticated using the HMAC function).

The successful verification of a MAC does not completely guarantee that
the accompanying binding is authentic: there is a chance that a source
with no knowledge of the key can present a purported MAC on the
plaintext message that will pass the verification procedure. For
example, an arbitrary purported MAC of t bits on an arbitrary plaintext

 message may be successfully verified with an expected probability of
(1/2)t. This limitation is inherent in any MAC algorithm. With these
ideas in mind, appropriate Hash algorithms are suggested in column 5 of

Page 32

 Table 4 for HMAC.

 These recommended algorithms and key sizes for cryptographic bindings
lend themselves to many different possible implementations based on
methods, algorithms and key size options. The prototype implementations

 described in Section 2.1 represent design points in this space:

• The XML DSIG implementation [5] meets the conditions of Row 1 where
the algorithm lifetime is useful through 2010. It uses RSA for
Method 1 with a key size of 1024. It uses SHA – 1 providing a
minimum of 80 bits of strength;
• The ASN.1 CMS implementation [6] is very flexible meeting or
exceeding the conditions of all three Rows. It optionally uses RSA
or ECDSA for Method 1 with RSA key sizes of 1024 or 2048 and ECDSA

 key sizes with NIST P256 or NIST P384 named curves. Each option
works with SHA – 1, 256, 384, or 512 depending on the X.509 PKI
certificate used.

Page 33

Appendix E References
6.1. Normative References

 [ASN1] CCITT. Recommendation X.680: ISO/IEC 8824 (All parts)
ITU-T Recommendation X.680-series, Information Technology
- Abstract Syntax Notation One (ASN.1) 2008.

 [CMS] Housley, R., "Cryptographic Message Syntax (CMS)", RFC
5652, September 2009.

 [COMPRESS] Gutmann, P., "Compressed Data Content Type for
Cryptographic Message Syntax (CMS)", RFC 3274, June 2002.

 [CNTCLLTN] Housley, R., "Protecting Multiple Contents wit the
 Cryptographic Message Syntax (CMS)", May 2005.

 [STDWORDS] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

6.2. Informative References

 [MIME] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies", RFC 2045, November 1996.

 [MSG] Ramsdell, B., "Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 3.1 Message Specification",
RFC 3851, July 2004.

 [NSP80056] NIST Special Publication 800-56 B, "Recommendation for Pair-Wise
Key Establishment Schemes Using Integer Factorization
Cryptography", August 2009.

 [NSP80057] NIST Special Publication 800-57, Part 1 "Recommendation for Key
Management" March, 2007

 [NSP80067] NIST Special Publication 800-67, "Recommendation for the Triple
 Data Encryption Algorithm (TDEA) Block Cipher", Revised 19 May

2008.

 [NSP80090] NIST Special Publication 800-90, "Recommendation for Random
Number Generation Using Deterministic Random Bit Generators

(Revised)", March 2007.

 [NSP800106] NIST Special Publication 800-106, "Randomized Hashing for
Digital Signatures", February 2009

 [NSP800107] NIST Special Publication 800-107, "Recommendation for
Applications Using Approved Hash Algorithms" February 2009.

Page 34

