Information Technology Laboratory

Information Access Division (IAD)

XML Schema and Validation
Approaches

September 18, 2007
Shahram Orandi
Image Group

What’s on the menu...

 Brief look at origin of markup languages
« XML validation approaches and origins

 Benefit / pitfall comparison

A Brief Look at History

Everything that has happened so far...

First...there was GML (~1960s)
Then came SGML...(~1980s)

Then came XML (~1990s)
— Initial Standard Included Basic Validation (DTD)

Then came XML Schema (2001)
— Offered Better VValidation

Markup Languages

A traditional text data stream may look like
this:
John Doe 65000 (14 bytes total)
e This same data stream when marked up can
look like this:

<employeename>John Doe</employeename>
<salary>65000</salary> (60 bytes total)

o Cost Is higher, but benefits are many

Validation

Validation

 How can we make sure salary is valid?

<salary>65000</salary>
<salary>$65000</salary>
<salary>65000.00</salary> ?

<salary>65k</salary>

Popular Validation Options in the Early Days

o Standard: XML DTD (Document Type
Definition), part of the XML 1.0 spec.

 Proprietary: Write your own code or COTS

DTD (Document Type Definition)

« DTD is part of the XML spec, but limited:

<IELEMENT employee (name,salary)>
<IELEMENT name (#PCDATA)>
<IELEMENT salary (#PCDATA)>

Where #PCDATA = parsed character data
(string)

« Basically checks if something is there or not.

Code 1t Yourself

 \Write your own validation code

IT IsCurrency(sSalary$) and

val(sSalary$)> 0 and
val (sSalary$)< | MaxSalary then

return True
else

return False
endif

e |t takes lots of code to validate data

Then Came XML Schema

 Ratified a few years after 1.0 spec

e Both XML Schema and DTD allow:
Element nesting, attribute types/defaults,

element occurrence constraints.

e XML Schemas adds much more: User
defined types, namespaces, better data
constraints, etc.

Salary Validation Revisited

o Lets tighten up the rules with XML
Schema:

<xs:attribute name="'salary' type="'Xs:integer''>

<Xs:annotation>
<xs:documentation>Specifies a

salary.</xs:documentation>
</Xs:annotation>
</Xs:attribute>

How strict do you want to be?

e \What If someone sends over the wire
“65000”? Or “65000.0177?

 \WWe could loosen rules a little:

<xs:attribute name="salary" type="'xs:decimal'>
Allows “65000” or “65000.01”

* Or relax things completely...

<xs:attribute name="'salary" type="'xs:string'>

Allows “65000”, “65000.00”, “$65000” or “65k”... but everything else may
come through as well...

https://65000.00
https://65000.01
https://65000.01

Validation Challenges

Validation Challenges: Off-Spec Data

« Would ideally be relaxed enough to allow valid-
but-off-spec transactions that otherwise would be
rejected with strict validation:

65000 ok! 65000.00 ok! $65000 ok!

* Too lax and you may allow ambiguous or
Incorrect transactions through as well:

You might let “-65000.%” through

https://65000.00

Validation Challenges: Mapping Asymmetry

Conventional (Legacy) XML Standard

1 <« > 4

(Easiest Case, One to One Mapping... Life is good!)

€? ?7=>

(XML side is superset of legacy, will you accept legacy transaction?)

€ ?=>

(Legacy is a superset, will you keep extra info? reject transaction?)

Looking at some options

XML + No Validation: Not going to happen.

e What it i1s: Hope all data coming down the wire
was constructed properly, cross fingers.
e Benefits:
— Not much... maybe some development time savings?
o Pitfalls:

— Format errors, missing/ambiguous data, disasters of
grand scale.

LLooking at some options (cont’d)

XML + Custom Code Validation

« What it is: Build your own validation into business
logic to verify data

e Benefits:
— Flexibility, genetic diversity
o Pitfalls:

— Redundant work, genetic diversity, as rules change you
need to keep up, lots of effort (code)

LLooking at some options (cont’d)

XML + DTD

o What itis: A liberal contract on data format and
structure

o Benefits:
— Simple, standard, centralized

e Pitfalls:

— Simple (limited)... Much of higher level validation has
to be implemented in redundant code

LLooking at some options (cont’d)

XML + XML Schema

« What it is: A contract (liberal or strict) on data
format and structure

o Benefits:
— Comprehensive, centralized, saves code
o Pitfalls:

— Going too strict can cut certain parties out, may
lock everyone iIn... (continued on next slide)

Benefits:

Allows off-spec
transactions through.

Provides some tolerance
for slight changes due to
improvements in

technology or precision.

Pitfalls:

May allow incorrect or
ambiguous data through.

May muddy the database
as more and more off-spec
data is enrolled.

Puts greater burden on
individual
implementations for
higher-level error

checking.

Lax vs. Strict

More Strict

Less Strict

Benefits:

Ensures consistency in
data, facilitates inter-op.

Reduces additional
validation workload from
core application.

Pitfalls:

Greater chance of
rejecting transactions
(some of which may be
off-spec but valid)

Any changes to
underlying data due to
improvements in
technology will require a
new (updated) schema.

Partings thoughts...

Prepare to be open minded on validation approach
after an XML data standard has been agreed to.

Try to think about what we can and can’t live with
early In the process of defining strictness.

There are some lessons learned by other
enterprises in going to XML (HL7) that may be
helpful to examine.

Genetic diversity In the user population can be a
strength not a weakness, but can push limits of
Inter-op. Try to build in some flexibility.

Q&A / Contact Info

Shahram Orandi
NIST Image Group
sorandi@nist.gov

	Structure Bookmarks
	September 18, 2007 Shahram Orandi Image Group
	XML Schema and Validation Approaches
	What’s on the menu…
	• Brief look at origin of markup languages • XML validation approaches and origins • Benefit / pitfall comparison
	A Brief Look at History
	Everything that has happened so far…
	– Offered Better Validation
	Markup Languages
	• A traditional text data stream may look like this:
	John Doe 65000 (14 bytes total)
	• This same data stream when marked up can look like this: <employeename>John Doe</employeename> <salary>65000</salary> (60 bytes total)
	• Cost is higher, but benefits are many
	Validation
	• How can we make sure salary is valid? <salary>65000</salary> <salary>$65000</salary> ? <salary>65000.00</salary> ? <salary>65k</salary> ?
	Popular Validation Options in the Early Days
	DTD (Document Type Definition)
	• DTD is part of the XML spec, but limited: … <!ELEMENT employee (name,salary)> <!ELEMENT name (#PCDATA)> <!ELEMENT salary (#PCDATA)>
	…
	Where #PCDATA = parsed character data (string)
	• Basically checks if something is there or not.
	Code it Yourself
	• Write your own validation code
	If IsCurrency(sSalary$) and
	val(sSalary$)> 0 andval(sSalary$)< l_MaxSalary then return True
	else return False endif
	• It takes lots of code to validate data
	Then Came XML Schema
	Salary Validation Revisited
	• Lets tighten up the rules with XML Schema:
	<xs:attribute name="salary" type="xs:integer">
	<xs:annotation> <xs:documentation>Specifies a salary.</xs:documentation>
	</xs:annotation> </xs:attribute>
	How strict do you want to be?
	<xs:attribute name="salary" type="xs:decimal">
	Allows “65000” or “65000.01”
	• Or relax things completely…
	<xs:attribute name="salary" type="xs:string">
	Allows “65000”, “”, “$65000” or “65k”… but everything else may come through as well…
	Validation Challenges
	Validation Challenges: Off-Spec Data
	incorrect transactions through as well: You might let “-65000.%” through
	Validation Challenges: Mapping Asymmetry
	Conventional(Legacy) XML Standard
	 1
	(Easiest Case, One to One Mapping… Life is good!)
	(XML side is superset of legacy, will you accept legacy transaction?)
	(Legacy is a superset, will you keep extra info? reject transaction?)
	Looking at some options
	XML + No Validation: Not going to happen.
	– Format errors, missing/ambiguous data, disasters of grand scale.
	Looking at some options (cont’d)
	XML + Custom Code Validation
	– Redundant work, genetic diversity, as rules change you need to keep up, lots of effort (code)
	Looking at some options (cont’d)
	XML + DTD
	– Simple (limited)... Much of higher level validation has to be implemented in redundant code
	Looking at some options (cont’d)
	XML + XML Schema
	– Going too strict can cut certain parties out, may lock everyone in… (continued on next slide)
	Lax vs. Strict
	Benefits:
	Benefits:
	Partings thoughts…
	Q&A / Contact Info
	Shahram Orandi NIST Image Group sorandi@nist.gov

