NIST National Institute of **Standards and Technology** U.S. Department of Commerce

EUROPEAN MEETING ON FIRE RETARDANT POLYMERIC MATERIALS 6.-28.6.2019 TURKU FINLAND

Assessing the Effect of Barrier Fabrics on the Heat Release Rate of Residential Upholstered Furniture

Andre Thompson, Ickchan Kim, and Mauro Zammarano

Fire Research Division, Engineering Laboratory, National Institute of Standards and Technology, USA

Introduction

- In the U.S., residential upholstered furniture (RUF) fires are the single largest cause of civilian deaths in home fires (about 25%) [1].
- The fire safety community has developed test methods and mitigation strategies to assess whether certain technologies can reduce the fire hazard of RUF by suppressing smoldering and flaming combustion.
- Recent analysis of fire losses indicates that a majority of the RUF fire

Chair Mock-ups: Chair Construction

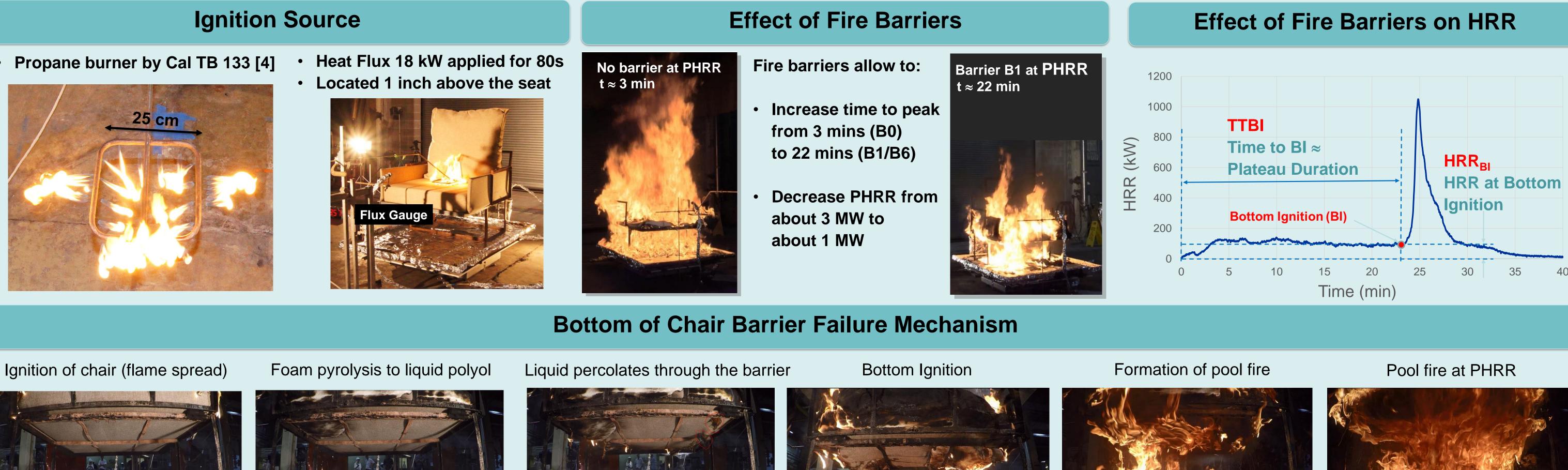
- 7 chair types
- 1 cover fabric (B0), polypropylene ○ 6 fire barriers (B1-B6)
- Triplicate tests = 21 chairs

Seams (Metal Staples)

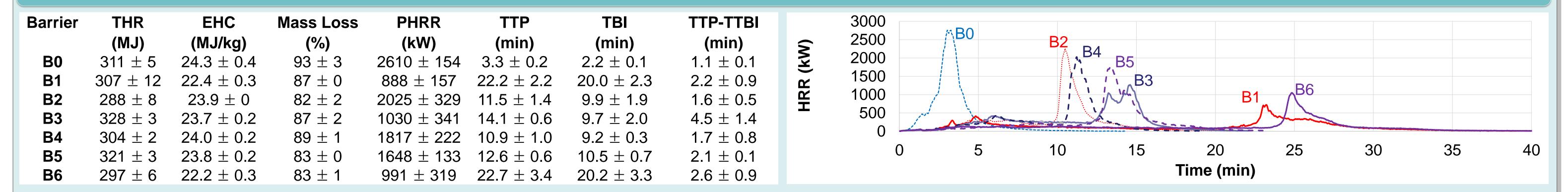
Cushion Design

Foam or Polyester Fibers Fire Barrier Cover Fabric

deaths and other losses occur during flaming, rather than smoldering combustion, regardless of the ignition source type [2].


• We conducted a series of full-scale tests focused on quantifying the ability of 6 different commercially available barrier fabrics (BFs) (compliant with California State Assembly Bill No. 2998 [3]) to reduce the heat release rate (HRR) and delay the fire growth of fullscale chair mock-ups.

Barrier Materials


Barrier	Barrier Sample	Fabric Type	Materials	Density g⋅m ⁻²	Air Perm. cm ³ ·s ⁻¹ ·cm ⁻²	Barrier	Barrier Sample	Fabric Type	Materials	Density g·m ⁻²	Air Perm. cm ³ ·s ⁻¹ ·cm ⁻²
B0		Cover fabric	Polypropylene	340 ± 7	3.9 ± 0.3	B3		Nonwoven, 5% RC ^{**} binder	Oxidized poly- acrylonitrile fibers	240 ± 22	7.1 ± 0.5
B1		Nonwoven-bonded polyester	RC**/PSA* (top), cotton (bottom)	239 ± 21	22.4 ± 1.4	B4		Woven	E glass, no sizing	50 ± 1	31.4 ± 4.6
B2		Woven	E glass, no sizing	109 ± 4	9.2 ± 2.2	B5		Woven, core spun yarns	Para-amid fiber, Fiberglass core	278 ± 3	2.7 ± 0.0
Note: RC** = Regenerated Cellulose; PSA*= Polysilicic Acid						B6		Nonwoven, Needle-punched	RC**/PSA* hybrid Yarn, glass yarn	275± 4	9.7 ± 0.7

Experiment and Results

Data Summary

References

[1] Hall, J.R., Estimating Fires When a Product is the Primary Fuel But Not the First Fuel, With an Application to Upholstered Furniture, National Fire Protection Association, (2014).

[2] Gann, Richard G. Reducing the Fire Hazard of Residential Upholstered Furniture (RUF), CPSC Meeting on Furniture Flammability, (2018). [3] A.B. 2998, Bloom. Consumer products: flame retardant materials, (Cal. 2018).

[4] California Dept of Consumer Affairs. Bureau of Home Furnishings and Thermal Insulation. *Flammability Test Procedure for Seating* Furniture for Use in Public Occupancies. [Technical Bulletin 133] (1991). Retrieved from: https://bhgs.dca.ca.gov/industry/tb133.pdf

Conclusion

- All 6 fire barriers tested (compliant with [3]) delayed the fire growth and significantly increased available time for safe egress and for firefighter response.
- B1 and B6 showed the longest time to peak (~22 mins)
- Barrier failure due to mass transfer of liquid pyrolizates percolating through the barrier and resulting in abrupt HRR increase and pool fire formation.