Big G workshop, NIST – Gaitersburg, 9-10 October 2014

The dual free swinging simple pendulum approach for Big G determination

Andrea De Marchi

Politecnico di Torino, Torino, Italy

and TTPU (Tashkent Turin Polytechnic University)

Main features and targets

- •Rejection of seismic noise
- •Dual pendulum concept
- •Better than 10⁻⁶ resolution
- •10⁻⁵ accuracy

- A. De Marchi, M. Ortolano, F. Periale, and E. Rubiola, "The dynamic free pendulum method for G measurement," in Proc. of 5th Symposium on Frequency Standards and Metrology, Woods Hole, MA, Oct. 1995, p. 369.
- [2] A. De Marchi, M. Ortolano, M. Berutto, and F. Periale, "Simple pendulum experiment for the determination of the gravitational constant G: progress report," in Proc. of 6th Symposium on Frequency Standards and Metrology, Fife, Scotland, Sept. 2001, pp. 538–540.
- [3] M. Berutto, M. Ortolano, A. Mura, F. Periale, and A. De Marchi, "Toward the determination of G with a simple pendulum," *IEEE Journal Instr. and Meas.*, vol. 56, no. 2, pp. 249–252, 2007.

[4] M. Berutto, M. Ortolano, A. De Marchi, "The Period of a Free-Swinging Pendulum in Adiabatic and Non-Adiabatic Gravitational Potential Variations", Metrologia **46**, 119 (2009)

First version (2000)

How are Rayleigh waves excited?

Angular attitude control

Work in progress with Peltier driven thermal expansion motors

The dual pendulum concept

The goal is common-moding Rayleigh wave related seismic angle noise

•Use two pendulums oscillating in the same plane with rational T ratio (e.g. 21/20)

•Measure the time delay when both pass the detector at the same time (each 20T of slower)

•Change positions of the active masses every N such events ($T_R/2 = N 20T = 1000s$)

Type A uncertainty

Free from angle noise, timing should be dominated by 1-3 ns detection noise

High Q is crucial in order to

•Avoid frequency locking / pulling between the two pendulums

$$\left(\frac{\Delta v}{v}\right)_{pull} \frac{v_1 - v_2}{v} = \left(\frac{\xi}{2Q}\right)^2 \quad \text{e.g.} \quad 10^{-12} \, 5 \cdot 10^{-2} < 10^{-4} / 4Q^2 \longrightarrow Q > 3 \cdot 10^4$$

Filter mechanical noise
 \checkmark Structure vibrations
 \checkmark Brownian motion
 \checkmark Thermal noise in fibers $< 10^{-13}$ in 1 s (10^{-6} on G)
 \checkmark Seismic

•Obliterate flicker noise

,

•

Operate in free ring down mode

 ✓Long time constant (2 years for Q>10⁸)
 ✓Constant oscillation amplitude → no frequency drift
 ✓No feedback noise injection

•Help guaranteeing experiment modelization, and ultimately <u>ACCURACY</u>

Q limitations

•Friction on residual air $(10^{-7} \text{ Torr for } Q > 10^8)$

•Joule effect in conducting fibers

For for $Q > 10^8$ must be $P_d < 10$ fW (1µJ stored energy)

 $P_d = 2V^2/r$ for both fibres cutting Earth's B_L with speed v

≻Must be $r > 2V^2/P_d = 2 (LvB_L)^2/P_d = 70 \Omega$

•Mechanical losses in fibers

StretchingBending at the suspensions

Loss mechanisms in the two fibers

Measurement of fiber characteristics

Total Q prediction from loss in fibers

The amplitude dependence problem

$$\frac{a_{\rm M}}{a_{\rm g}} = \frac{\rho}{\rho_{\rm E}} \frac{L}{R_{\rm E}} \left(\frac{R}{a}\right)^3 \frac{1}{\left[1 + (x/a)^2\right]^{3/2}} \left(= \frac{\Delta v}{v}\right)$$

true only for constant a_M/a_g

... but a_M/a_g depends strongly on θ

•Reduces the size of the effect or

•Misses best Q conditions

•Makes it difficult to extrapolate to small oscillations

•Complicates the connection between $a_M^{}/a_g^{}$ and $\Delta\nu/\nu$

But there is a solution: cylinders $\frac{a_{\rm M}}{a_{\rm g}} = \frac{3}{4} \frac{\rho}{\rho_{\rm E}} \frac{L}{R_{\rm E}} \left(\frac{R}{a}\right)^2 \left\{ \frac{1}{\sqrt{1 + [(w-x)/a]^2}} - \frac{1}{\sqrt{1 + [(w+x)/a]^2}} \right\} \frac{a}{x}$ 2R214 $\lim_{x \to 0} \left\{ \right\} = \frac{2(w/a)}{[1 + (w/a)^2]^{3/2}} \frac{x}{a}$ 2aactive masses in W cylinders ; w/a = 1.25cylinders ; w/a=0.71spheres R=50mm; R/a = 50/54140 0.45 0.4 120 best Q 0.35 10⁶ • a_M/a₉₀ 0.2 100 $a_{M} \frac{a_{M}}{00} \frac{a_{M}}{80}$ 0.1 20 0.05 0 0 0 0.5 1.5 2 2.5 0 0.02 0.1 1 3 0.04 0.06 0.08 0.12 0.14 0.16 x/a17 θ_0 /rad

From frequency shift to big G

•Substitute $\rho_E R_E$ with $(3/_{4\pi})(g/_G)$ in the $\Delta v/v$ asymptotic formula and

•Extract G

$$G = \frac{2\pi v^2}{\rho} K \frac{\Delta v}{v} \quad \text{with} \quad K = \frac{R}{w} \left\{ \left(1 + \frac{b}{R} \right)^2 + \left(\frac{w}{R} \right)^2 \right\}^{3/2}$$
for cylindrical active masses case

•Introduce the asymptotic value of $\Delta v/v$ for small oscillations (experimental)

•Introduce the asymptotic value of v for small oscillations (experimental)

•Relationship between $\Delta v / v$ and a_M / a_g

Half the gap between active masses

Relationship between $\Delta v / v$ and a_M / a_g

• θ dependence of a_M

- $\left(\frac{\Delta v}{v} / \frac{\overline{a_{M}}}{a_{g}}\right) 1 < 3 \times 10^{-5}$ The model can estimate certainly better than 10%
- •Vertical displacement shift

As shown: 0.4 mm tolerance for 0.8×10^{-5}

•Adiabatic shift $\frac{\Delta v}{v} = -5x10^{-5}$ at the chosen amplitude of 0.02 rad modeling can estimate it certainly better than 10%

•Non-isochronism

 $T = 2\pi \sqrt{\frac{L}{g}} \left(1 + \frac{1}{16}\theta_0^2 + \frac{11}{3072}\theta_0^4 + \cdots \right)$ Must be modified for suspension shape

Tentative accuracy budget projection

cylindrical active masses in W (w/a = 1.25; R=50mm; R/a = 50/54)

L = 0.9 m; 7.5 μ m Carbon fibers Suspensions diameter 30 mm ϕ_b

effect	bias	uncertainty	notes
θ dependence of a_M	<3x10 ⁻⁵	<10-6	Optimization of w/a
Shift at bob's trajectory vertical position	1.44x10 ⁻³	< 10-7	300 nm uncertainty in <i>a</i> and w
uncertainty in bob's trajectory vertical position	0	2x10-6	0.2 mm tolerance interval
bob's trajectory horizontal position	0	1.7x10 ⁻⁶	0.2 mm tolerance interval
adiabaticity	-2.5x10 ⁻⁵	2x10-6	0.02 rad peak swing amplitude
non isochronism	2.5x10 ⁻⁵	< 10-6	
gap width	0	5x10-6	100 nm gap uncertainty
active masses dimensions (diameter, length)	0	3x10-6	300 nm uncertainty
active masses density	0	5x10-6	??
Total Type B uncertainty		8.5x10-6	
Total Type A uncertainty		< 3x10-7	