Big G workshop, NIST - Gaitersburg, 9-10 October 2014

The dual free swinging simple pendulum approach for Big \mathbf{G} determination

```
Andrea De Marchi
Politecnico di Torino, Torino, Italy
and TTPU (Tashkent Turin Polytechnic University)
```


Main features and targets

-Rejection of seismic noise
-Dual pendulum concept
-Better than 10^{-6} resolution

- 10^{-5} accuracy

Pilot experiment (2000-2005)

Based on

$$
v_{M}=v_{0} \sqrt{\left(1+2 \frac{a_{M}}{a_{g}}\right)}
$$

$$
\longrightarrow \frac{\Delta v}{v}=\frac{a_{u}}{a_{\varepsilon}}
$$

to better than 10^{-6}
$\cdot 5 \mathrm{~mm}$ diameter BK7 bob

- 2 converging 0.9 m Kevlar fibers (for degeneration removal)
$\cdot 3 \mathrm{~mm}$ diameter suspensions
- 30 mm diameter Au active masses
-Electrostatic shields
-Split PD optical detection with ns resolution

- 10^{-6} Torr vacuum
[1] A. De Marchi, M. Ortolano, F. Periale, and E. Rubiola, "The dynamic free pendulum method for G measurement," in Proc. of Sth Symposium on Frequency Standards and Metrology, Woods Hole, MA, Oct. 1995, p. 369.
[2] A. De Marchi, M. Ortolano, M. Berutto, and F. Periale, "Simple pendulum experiment for the determination of the gravitational constant G : progress report," in Proc. of 6th Symposium on Frequency Standards and Metrology, Fife, Scotland, Sept. 2001, pp. 538-540.
[3] M. Berutto, M. Ortolano, A. Mura, F. Periale, and A. De Marchi, "Toward the determination of G with a simple pendulum," IEEE Journal Instr. and Meas., vol. 56, no. 2, pp. 249-252, 2007.
[4] M. Berutto, M. Ortolano, A. De Marchi, "The Period of a Free-Swinging Pendulum in Adiabatic and Non-Adiabatic Gravitational Potential Variations", Metrologia 46, 119 (2009)

Virst verrsion 2000)

Results (2005)

- Measured Q up to $2 \cdot 10^{-6}$
-Months of total measurement time
- Repeatibility 10^{-3} (accuracy?)
-Resolution 10^{-2}
(limited by seismic angle noise)

30 mm Au spheres

Rayleigh waves

$$
\theta_{\mathrm{rms}}=\mathrm{z}_{\mathrm{rms}} \omega / \mathrm{u}_{\mathrm{R}} \text { if waves are sinusoidal }
$$

That's why

$$
\theta_{\mathrm{rms}}=10 \mathrm{n} \mathrm{rad}
$$

...we overlooked them at first

BUT, ARE THEY REALLY?

If so, the slope can be x 100 or so then $\theta_{\mathrm{rms}} \mathrm{L} / \mathrm{v}=0.3-0.5 \mu \mathrm{~s}_{\mathrm{rms}}$ which is more similar to what we have

How are Rayleigh waves excited?

Home built 200 prad tiltmeter

Angular attitude control

Work in progress with Peltier driven thermal expansion motors

The dual pendulum concept

The goal is common-moding Rayleigh wave related seismic angle noise
-Use two pendulums oscillating in the same plane with rational T ratio (e.g. 21/20)
-Measure the time delay when both pass the detector at the same time (each 20T of slower)
-Change positions of the active masses every N such events $\left(\mathrm{T}_{\mathrm{R}} / 2=\mathrm{N} 20 \mathrm{~T}=1000\right.$ s $)$

Type A uncertainty

Free from angle noise, timing should be dominated by $1-3 \mathrm{~ns}$ detection noise
\ldots say $\delta \Delta \mathrm{t}=6 \mathrm{~ns}$ counting start and stop both ends 10^{-9}

With 25 measurements (1000 s),
Then active masses are moved and same procedure applied. The obtained difference is the desired result, proportional to G
With Type A uncertainty

$$
\frac{\delta v}{v}=\frac{1.7 \cdot 10^{-12}}{3 \cdot 10^{-7}}=6 \cdot 10^{-6}
$$

In one cycle T_{R} of 2000 s

averaging 36 cycles (20 hours) yields $1 \cdot 10^{-6}$ uncertainty

High Q is crucial in order to

-Avoid frequency locking / pulling between the two pendulums

$$
\left(\frac{\Delta v}{v}\right)_{\text {pull }} \frac{v_{1}-v_{2}}{v}=\left(\frac{\xi}{2 Q}\right)^{2} \quad \text { e.g. } 10^{-12} 5 \cdot 10^{-2}<10^{-4} / 4 \mathrm{Q}^{2} \longrightarrow \mathrm{Q}>3 \cdot 10^{4}
$$

-Filter mechanical noise
$\begin{aligned} & \checkmark \text { Structure vibrations } \\ & \checkmark \text { Brownian motion }\end{aligned} \sigma_{y}(\tau)=\frac{1}{\vartheta_{p} \sqrt{2 \pi \tau}} \sqrt{\frac{k T}{m g L v Q}} \begin{aligned} & <10^{-12} \text { in } 1 \mathrm{~s} \\ & \left(10^{-5} \text { on G }\right)\end{aligned}$
\checkmark Thermal noise in fibers $<10^{-13}$ in $1 \mathrm{~s} \quad\left(10^{-6}\right.$ on G)
\checkmark Seismic

- Obliterate flicker noise
-Operate in free ring down mode
\checkmark Long time constant (2 years for $\mathrm{Q}>10^{8}$)
\checkmark Constant oscillation amplitude \longrightarrow no frequency drift
\checkmark No feedback noise injection
-Help guaranteeing experiment modelization, and ultimately ACCURACY

Q limitations

-Friction on residual air $\quad\left(10^{-7}\right.$ Torr for $\left.\mathrm{Q}>10^{8}\right)$
-Joule effect in conducting fibers
$>$ For for $\mathrm{Q}>10^{8}$ must be $\mathrm{P}_{\mathrm{d}}<10 \mathrm{fW}$ ($1 \mu \mathrm{~J}$ stored energy)
$>\mathrm{P}_{\mathrm{d}}=2 \mathrm{~V}^{2} / \mathrm{r}$ for both fibres cutting Earth's B_{L} with speed v
\Rightarrow Must be $\mathrm{r}>2 \mathrm{~V}^{2} / \mathrm{P}_{\mathrm{d}}=2\left(\operatorname{LvB}_{\mathrm{L}}\right)^{2} / \mathrm{P}_{\mathrm{d}}=70 \Omega$

- Mechanical losses in fibers
$>$ Stretching
$>$ Bending at the suspensions

Loss mechanisms in the two fibers

Fiber stretching, period T/2

$$
\varepsilon_{0}=\frac{\mathrm{mg}}{2 \mathrm{AE}} \quad \text { with } \quad \mathrm{A}=\pi \mathrm{D}_{\mathrm{f}}^{2} / 4
$$

Measurement of fiber characteristics

	$\mathrm{E}(\mathrm{GPa})$	$\mathrm{Q}_{\text {mat }}$	D_{f}
Kevlar 29	50	120	12
Carbon	240	1000	7,5
SiC	420	250	12

$-\mathrm{Q}_{\text {mat }}$ from resonance width

- E from v_{0}
-Non-linearity check

laser

Total Q prediction from loss in fibers

- Fiber and suspension diameters as indicated
$\cdot \mathrm{L}=0.9 \mathrm{~m}$
$\cdot \mathrm{m}=0.16 \mathrm{~g}$

Experimental points

The amplitude dependence problem

$$
\frac{\mathrm{a}_{\mathrm{M}}}{\mathrm{a}_{\mathrm{g}}}=\frac{\rho}{\rho_{\mathrm{E}}} \frac{\mathrm{~L}}{\mathrm{R}_{\mathrm{E}}}\left(\frac{\mathrm{R}}{a}\right)^{3} \frac{1}{\left[1+(\mathrm{x} / a)^{2}\right]^{3 / 2}}\left(=\frac{\Delta v}{v}\right.
$$

...but $\mathrm{a}_{\mathrm{M}} / \mathrm{a}_{\mathrm{g}}$ depends strongly on θ

-Reduces the size of the effect or

- Misses best Q conditions
- Makes it difficult to extrapolate to small oscillations
- Complicates the connection between $\mathrm{a}_{\mathrm{M}} / \mathrm{a}_{\mathrm{g}}$ and $\Delta \mathrm{v} / \mathrm{v}$

But there is a solution: cylinders

$$
\frac{\mathrm{a}_{\mathrm{M}}}{\mathrm{a}_{\mathrm{g}}}=\frac{3}{4} \frac{\rho}{\rho_{\mathrm{E}}} \frac{\mathrm{~L}}{\mathrm{R}_{\mathrm{E}}}\left(\frac{\mathrm{R}}{a}\right)^{2}\left\{\frac{1}{\sqrt{1+[(\mathrm{w}-\mathrm{x}) / a]^{2}}}-\frac{1}{\sqrt{1+[(\mathrm{w}+\mathrm{x}) / a]^{2}}}\right\} \frac{a}{\mathrm{x}}
$$

$$
\lim _{x \rightarrow 0}\{ \}=\frac{2(\mathrm{w} / a)}{\left[1+(\mathrm{w} / a)^{2}\right]^{3 / 2}} \frac{\mathrm{x}}{a}
$$

active masses in W
$\mathrm{R}=50 \mathrm{~mm} ; \mathrm{R} / a=50 / 54$

Sensitivity to bob trajectory

$1.0 \cdot 10^{-4}$

spheres
cylinders ; $\mathrm{w} / a=0.71$
cylinders ; $\mathrm{w} / a=1.25$

From frequency shift to big G

-Substitute $\rho_{E} R_{E}$ with $(3 / 4 \pi)(8 / G)$ in the $\Delta v / v$ asymptotic formula and Half the gap between
-Extract G
active masses

$$
\mathrm{G}=\frac{2 \pi v^{2}}{\rho} \mathrm{~K} \frac{\Delta v}{v} \quad \text { with }
$$

$$
K=\frac{R}{w}\left\{\left(1+\frac{b}{R}\right)^{2}+\left(\frac{w}{R}\right)^{2}\right\}^{3 / 2}
$$

for cylindrical active masses case
-Introduce the asymptotic value of $\Delta v / v$ for small oscillations (experimental)
-Introduce the asymptotic value of v for small oscillations (experimental)

Relationship between $\Delta v / v$ and $\mathrm{a}_{\mathrm{M}} / \mathrm{a}_{\mathrm{g}}$

$\cdot \theta$ dependence of a_{M}

$$
\left(\frac{\Delta v}{v} / \frac{\overline{a_{M}}}{\mathrm{a}_{\mathrm{g}}}\right)-1<3 \times 10^{-5}
$$

The model can estimate certainly better than 10%

- Vertical displacement shift

As shown: 0.4 mm tolerance for 0.8×10^{-5}

- Adiabatic shift $\frac{\Delta v}{v}=-5 \times 10^{-5}$ at the chosen amplitude of 0.02 rad modeling can estimate it certainly better than 10%
-Non-isochronism

$$
T=2 \pi \sqrt{\frac{L}{g}}\left(1+\frac{1}{16} \theta_{0}^{2}+\frac{11}{3072} \theta_{0}^{4}+\cdots\right)
$$

Must be modified for suspension shape

Tentative accuracy budget projection

$$
\begin{gathered}
\text { cylindrical active masses in } \mathrm{W} \\
(\mathrm{w} / a=1.25 ; \mathrm{R}=50 \mathrm{~mm} ; \mathrm{R} / a=50 / 54)
\end{gathered}
$$

$\mathrm{L}=0.9 \mathrm{~m} ; 7.5 \mu \mathrm{~m}$ Carbon fibers Suspensions diameter $30 \mathrm{~mm} \phi_{\mathrm{b}}$

effect	bias	uncertainty	notes
θ dependence of a_{M}	$<3 \times 10^{-5}$	$<10^{-6}$	Optimization of w/a
Shift at bob's trajectory vertical position	1.44×10^{-3}	$<10^{-7}$	300 nm uncertainty in a and w
uncertainty in bob's trajectory vertical position	0	2×10^{-6}	0.2 mm tolerance interval
bob's trajectory horizontal position	0	1.7×10^{-6}	0.2 mm tolerance interval
adiabaticity	-2.5×10^{-5}	2×10^{-6}	0.02 rad peak swing amplitude
non isochronism	2.5×10^{-5}	$<10^{-6}$	
gap width	0	5×10^{-6}	100 nm gap uncertainty
active masses dimensions (diameter, length)	0	3×10^{-6}	300 nm uncertainty
active masses density	0	5×10^{-6}	$? ?$
Total Type B uncertainty		8.5×10^{-6}	
Total Type A uncertainty		$<3 \times 10^{-7}$	

