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Certain commercial equipment, instruments, or materials are identified in 
this study in order to specify the experimental procedure adequately. Such 
identification is not intended to imply recommendation or endorsement by 
the National Institute of Standards and Technology, nor is it intended to 
imply that the materials or equipment identified are necessarily the best 
available for the purpose.

Disclaimer
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• NIST Neutron Source (NNS)

• Looking to replace existing 
reactor (NBSR)

• Three regions of interest to us:

• Inlet Region

• 3 Legs

• Separation-Mix-Separation

• Active Height (rectangular 
channels)

• Core

• Fuel Plates

• Outlet Region

• Cycles back

Nuclear Reactor
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Problem Area
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•Problem: May have uneven flow 
distribution into fuel plates

• Insufficient or over-cooling of fuel plates

•Previous work showed differences of >30% 
in velocity prediction based on turbulence 
model variation only.

•Needs experimental validation of the 
mixing phenomenon!

NNS Inlet Region (from previous study)
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Mixing Region

My work’s motivation!!

Ref [2,3]



• Experiment measured velocity distributions in the 
triple-channel mixing phenomenon.

• Inlet velocity was measured at a shift from the 
actual inlet (origin).

• Shift is “~ 1.25 hydraulics diameters” from 
the inlet

• This work also investigates 0.7D from the 
inlet as a shift

3-channel mixing experiment (Literature)
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• Using OpenFOAM code (v10) for simulations

• Developed mesh in OpenFOAM

• BlockMesh utility used

• Objectives

• Compare different turbulence models

• Produce contour and line plots of flows 
behavior

• Compare CFD results to literature
• Serves as validation of CFD model

Project Summary
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Goal:
Develop Computational Fluid Dynamics (CFD) model of the experiment (literature)



• Predict and model physical fluid flow

• Attempts to model the Navier-Stokes 
equations

• Reynolds-Averaged Navier Stokes 
(RANS) turbulence models are used in 
this work!

• Model different types of flow

• Laminar, Turbulent, incompressible, 
compressible, etc.

• Assess presence of turbulence

• Software: OpenFOAM

Computational Fluid Dynamics (CFD)
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• RANS resolves larger Eddies only

• Not exact solutions

• Captures up to Energy containing range

• Good for practical applications

• Most computationally efficient

• LES resolves both larger and smaller Eddy’s to a 
certain extent

• Captures up to Inertial subrange

• DNS captures everything in simulation up to 
Viscous range

• There are multiple RANS models, and this study 
will investigate 4 of them.

Reynolds-Averaged Navier Stokes (RANS)
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• RANS models used in this project

1. 𝑘-𝜖 (2-eqn model)

2. 𝑘-𝜔 (2-eqn model)

3. Spalart-Allmaras (1-eqn model, models 𝜈𝑡 transport)

4. 𝑘-𝜔 SST (shear stress transport) (2.5-eqn model)

Models
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Geometry
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Recall the shifts!!!

Note our coordinates (origin behind the shifts)!

Hydraulic diameter = D = 72.57 mm



• OpenFOAM software
• Geometry and mesh constructed in 

OpenFOAM with blockMesh utility
• Use VSCode IDE for code editing

• Specify vertices, dimensions, size, 
locations, etc. of blocks of the mesh

• View the geometry and mesh in 
ParaView

Geometry and Mesh
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• Given in Literature:
• Hydraulic Diameter (D): 0.07257 m
• Inlet Velocity (Ub): ~8.3 m/s
• Average Temperature: 24.35 °C
• Turbulence Intensity (Ti): ~0.05

• 𝐶𝜇: 0.09

• Derived Values:

• Viscosity: 𝝂 = −𝟏𝟎. 𝟗𝟏𝟖𝟒 ∗ 𝒍𝒏 𝟐𝟒. 𝟑𝟓 + 𝟒𝟖. 𝟒𝟖𝟎𝟔𝟑 = 1.36 ∗ 10−5
𝑘𝑔

𝑚∗𝑠

• Turbulent Viscosity: 𝝂𝒕 = 𝟏𝟓𝝂 = 2.04 ∗ 10−4
𝑘𝑔

𝑚∗𝑠

• Turbulent Kinetic Energy (k): 𝒖𝒓𝒎𝒔 = 𝑻𝒊 ∗ 𝑼𝒃 = 0.415, 𝒌 =
𝟑

𝟐
𝒖𝒓𝒎𝒔

𝟐 = 0.2583

• Dissipation Rate: 𝝐 = 𝑪𝝁 ∗
𝒌𝟐

𝝂𝒕
= 29.38

• Specific Dissipation Rate: 𝝎 =
𝝐

𝑪𝝁∗𝒌
= 1.26 ∗ 103

Boundary Conditions
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This is important!!!
(for normalization)



Refining Mesh

Velocity Convergence (U/Ub)

Top channel Middle channel Bottom channel

𝒌-𝝐 0.0012 0.0034 0.0011

𝒌-𝝎 0.0014 0.0075 0.0022

Spalart-Allmaras 0 0.0021 0.0001

𝒌-𝝎 SST 0.0008 0.0017 0.001
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Inlet Velocity = Ub = 8.3 m/s

All meshes were convergent to within less than 1 cm/s



Convergent Mesh Metrics

𝒌-𝝐 𝒌-𝝎 Spalart-
Allmaras

𝒌-𝝎 SST

𝒚+ Min 0.881 0.125 ~7 0.122 

Max 88.5 42.728 ~31 31.744

Avg 10.312 6.342 ~19 3.782

Max 
Skewness

5.810e-13

Volume

Min 6.034e-11

Max 4.843e-10

Avg 5.292e-05

Face Area
Min 6.034e-08

Max 3.387e-06

Max Aspect 
Ratio

36.197
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• Create Spanwise Velocity Distribution at each x/D 
location
• x/D location: 10.35, 10.67, 11, 14.25

• Plot results
• U/Ub vs y/D
• Compare with results of literature

• Do this process for each RANS model

• Plot all on the same plot

• Account for the horizontal shift

• Inlet profiles captured at 1.25 away from 
the origin (approximate value) in literature

• Shift of 1.25 and 0.7 conducted for this 
project

Spanwise Velocity Distribution
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Exit of 
channels Mixing Downstream Development

Ref [1]



Reminder
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Contour Plot
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x/D=10.35
10.67

11 14.25

Ref [1]



Contour Plots
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𝒌-𝝐

Spalart-Allmaras

𝒌-𝝎

𝒌-𝝎 𝑺𝑺𝑻



Spanwise Velocity Distribution with shift of 1.25

1.25 Hydraulic Diameters from physical 
inlet of test section

Estimated shift
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Spanwise Velocity Distribution with shift of 0.7

0.7 Hydraulic Diameters from physical 
inlet of test section

Estimated shift
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• RANS seems appropriate for modeling the mixing behavior of 
Parallel Triple-Channel Flows

• Future use: Researchers, scientists, engineers

• 0.7 shift from origin displayed closer fit to data

• Best models: k-Epsilon and Spalart-Allmaras

Conclusion
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Questions??
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