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Abstract—We propose an improved model for TCP flow
level congestion performance. Conventional fluid approximation
models yield incorrect results for TCP congestion at the flow
level due to throughput overestimation. We introduce a more
accurate model incorporating some of the packet level burstiness,
by approximating TCP sources as on-off fluid sources. Our
model is largely based on the work of D.Anick, D.Mitra and
M.M.Sondhi exploring buffer statistics of the superposition of
on-off sources. Incorporating some of the TCP burstiness at
the packet level while retaining the over all fluid approximation
framework allows us to substantially improve the accuracy of
the flow level congestion model at the price of a relatively small
increase in mathematical complexity. The model is extensively
validated against ns2 simulations and shown to perform better
than the M/M/1/B based model typically used in this context.

Index Terms—TCP, flow level congestion, fluid approximation,
congestion control

I. INTRODUCTION

It is a well known fact that TCP is currently responsible for
transporting the bulk of Internet traffic. This makes models of
TCP performance essential tools for network operators as well
as application designers. Significant progress has been made
in understanding the steady state behavior of multiple TCP
flows traversing a network, e.g. [6],[10],[3],[7],[11,[11] to cite
just a few of the many publications on the topic. However,
in real networks, like the Internet, the number of active
flows is constantly changing and, in recent years, particular
attention has been given to the study of TCP performance
under a steady arrival stream of document transfer flows.
This mimics what has been dubbed elastic traffic, comprising
web page, music, video, and miscellaneous file downloads.
Performance of such flows is measured by their duration and
the degree to which they accumulate in the network reducing
individual user throughput. Note that this type of models is
different from the class of models with a fixed number of
continuously transmitting flows. The latter are mainly used to
study equilibrium properties and near equilibrium dynamics
of TCP on the timescales much shorter than the duration of a
typical document download. On the other hand, in the models
with elastic traffic, often called flow level congestion models
since the quantity of interest is the number of concurrent flows
in the network, the number of flows changes as active flows
finish and new flows arrive.

Flow level congestion can be studied by running detailed
packet level simulators such as ns2. This approach while
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giving highly accurate results is computationally intensive
and for realistic networks prohibitively so. Moreover, sim-
ulations yield information about specific combinations of
network parameters, requiring a large number of simulations to
map out performance over the range of operational network
conditions. At the opposite extreme are fluid approximation
based mathematical models, which assume separation of time
scales between flow duration and convergence to equilibrium
transmission rate under TCP. These models ignore the details
of packet traffic all together, instead assuming efficient, i.e.
without waste, link bandwidth partitioning between concurrent
flows [5]. The latter approach while lacking the extensive
computational requirements of the packet level simulations is
also significantly less accurate. Thus, as is often the case we
are faced with a trade off between accuracy and computational
intensiveness. Our goal is to improve this trade off by introduc-
ing a fluid approximation based, and hence computationally
undemanding, model, which at the expense of some increase
in mathematical complexity performs better than the currently
available fluid approximation models.
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Fig. 1. Number of concurrent flows vs. load based on 1 (red), ns2 (blue)
and the proposed model (black).

As a reference point we take the flow level congestion
model studied in [5], which has gained wide acceptance in
the literature. In [5] the number of concurrent flows on a link
is hypothesized to behave as the number of customers in an
M/G/1 processor sharing queue. Assuming efficient bandwidth



utilization by TCP this gives
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A=q_ 5 (1)
for the mean number of concurrent flows on the link, where
p is the offered load. Figure 1 compares n(p) deduced from
ns2 simulations and the equation (1) for a 1 Gbps link loaded
with a Poisson arrival stream of exponentially distributed file
transfers of mean size 100KB. We note that we concentrate
on the case of a single link as a fundamental test case on
which a model claiming any degree of accuracy must perform
adequately and on which results about more complicated
networks may be built.

It is clear from the diagram that the analytical model (1)
significantly underestimates the number of concurrent flows.
For comparison we also include the corresponding plot for the
proposed model. The main reason for this discrepancy is the
assumption of efficient capacity utilization under TCP. As our
results show TCP throughput can be as low as 60% of the raw
link capacity depending on the propagation delay and router
buffer size.

We propose to correct the above shortcoming by bringing
some of the packet level dynamics back into the model.
The proposed modification is based on the Anick-Mitra-
Sondhi(AMS) model introduced in [2] to study queuing statis-
tics of multiplexed on-off sources. Certain aspects of TCP
packet dynamics, described in Section III, make the model
particularly well suited for representing multiplexing of a large
number of TCP flows on a link. In spite of the complexity of
the AMS model a relatively simple and accurate approximation
can be easily deduced based on the work presented in [2].

The rest of the paper is arranged as follows. We begin with
a discussion of existing TCP throughput models and a brief
literature review in Section II. In Section III we present the
case for using the AMS model followed by an adaptation of
the AMS model to the present setting in Section I'V. In Section
V we derive a simple approximation for packet loss probability
based on the dominant eigenmode approximation introduced
in [2]. The model is validated in Section VI against ns2
simulations. We then show that the mean-field approximation
for the flow level congestion model based on AMS performs
substantially better than (1 and tolerably well when compared
with ns2 simulations. Section VII summarizes our findings and
discusses directions for future work.

II. THE PROBLEM

The main shortcoming of the model in (1) is that it
completely disregards packet level dynamics of TCP assuming
instead that the all available bandwidth is completely divided
between concurrent flows. This would be an adequate approx-
imation if TCP was at least approximately efficient in taking
advantage of the link capacity. However, the actual throughput
of a link multiplexing even a very large number of TCP flows
can be far below its raw capacity depending on the round-trip
propagation delay and buffer size. The main problem, thus,
is to find an accurate approximation for the TCP throughput

in terms of the intrinsic link parameters and the number of
concurrent flows, where by throughput we mean the number
of packets successfully delivered per second on a link with the
given parameters and a given number of concurrent flows, and
by TCP we mean TCP-Reno. (Note, however, that the packet
loss probability model derived below may be applicable to
other versions of TCP using the “self-clocking” mechanism
of sending a new packet only when an acknowledgment is
received.) Since what can actually be computed based on
the mechanics of the congestion avoidance algorithm is the
transmission rate, throughput is computed as

throughput = transmission rate x (1—packet loss probability)

(@)

TCP transmission rate is closely linked with packet loss

probability on the link since TCP relies on packet loss for

detecting network congestion and controlling its transmission

rate. The square root relationship between packet loss proba-
bility and transmission rate

1 [8/3

where z stands for throughput and p for packet loss probability
is well known and has been substantially validated by live In-
ternet measurements [4], [6]. However, packet loss probability
is not an intrinsic property of the link since it itself depends
on the transmission rate. Thus, (3) gives only the general
form of the fixed point equation determining throughput. To
obtain an equation for throughput in terms of the intrinsic link
parameters p must in turn be expressed in terms of these same
parameters and transmission rate.

If the aggregate packet arrival process were a Poisson
process the packet loss probability could be approximated by
the buffer overflow probability from an M/M/1/B or M/M/1/oc0
(if the buffer is very large) queuing model. However, it has
been demonstrated that TCP packet arrival process is not a
Poisson process even when the number of multiplexed flows
is large [8]. In any case, it is easy to see that M/M/1/* models
yield incorrect throughput by simply comparing the graphs of
the solution to (3) with

p(z) = (z/c)P (1 —z/c)/(1 = (x/c)"T) @
p(z) = (1 —c/x)7, Q)

where c is router capacity, corresponding to buffer overflow
probabilities for M/M/1/B and M/M/1/co respectively, and
results of ns2 simulations. As Figure 6 shows M/M/1/* model
predict that throughput is essentially equal to raw link capacity
while ns2 simulations show that depending on the propagation
delay and buffer size the throughput can be as low as 60%
of the raw link capacity. In spite of this apparently stark
inaccuracy M/M/1/* packet loss models continue to be used
in fluid flow approximation models [9].
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Fig. 2. Packet arrival times separated by flow number

III. STRUCTURE OF TCP PACKET ARRIVAL PROCESS

Poor performance in M/M/1/* based packet loss models is
due mainly to the non-Poisson character of the packet arrival
process. Under TCP packets tend to arrive in tight batches (or
bursts) which greatly increases the number of dropped packets
relative to a Poisson stream with the same average rate.

To obtain a more accurate picture of the packet arrival
process we studied the ns2 simulation traces (for configuration
details see Section VI). Figure 2 diagrams packet arrival times
split vertically by flow number on a timescale of a round
trip propagation time. As can be seen from the figure packets
from a given flow arrive in tight batches. For the purposes of
the discussion we will define a batch as a group of packets
belonging to the same flow and such that the inter-arrival time
between successive packets is less than 1% of the round-trip
time.

We make the following observations about the structure of
the arrival process.

I) The aggregate batch arrival process is well approxi-
mated by a Poisson process (Fig. 3). This is a conse-
quence of it being a superposition of a large number
of periodic processes with nearly identical periods and
random phases. Periodicity in this case refers only to the
time of arrival and not to the batch size. Furthermore, the
batch arrival rate is very close to RTT /N, where RT'T
is the round-trip propagation delay and NV the number of
concurrent flows, suggesting that each batch corresponds
to a congestion window’s worth of packets sent in reply
to the acknowledgments for the previous congestion
window. We make this our working hypothesis (to be
validated by comparison with ns2 simulations in Section
VI

The batch size distribution is well approximated by a
Gaussian tail distribution for most parameter values
(Fig. 4). Assuming that our hypothesis about the corre-
spondence between batch and congestion window sizes
is correct, the parameters of the batch size distribution
are determined by the operation of the TCP congestion
control. Bacelli et al. [1] have deduced the congestion
window size distribution based on the assumption that
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Fig. 3. Sample log probability plot of batch inter-arrival time distribution

based on ns2 packet traces.
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Fig. 4. Sample log plot of ns2 empirical batch size distribution (red) and

the approximating Gaussian tail distribution (blue).

the packet loss process is a variable rate Poisson process.
It is interesting to note that the stationary congestion
window size distribution obtained in [1] is an infinite
sum of functions of the form exp(—aw?), where a > 0
is a constant coefficient and w is the congestion window
size, which are exactly Gaussian tail distributions.
Sizes of consecutive batches in the aggregate stream
are very nearly uncorrelated. Although, the sizes of
consecutive batches for a given flow are correlated since
if the batch size is equal to the congestion window size
then the size of the succeeding batch is either 1 greater
or is half of the size of the preceding one. On the other
hand, when batch arrivals from all flows are aggregated
in a single stream then the sizes of consecutive batches
are very nearly uncorrelated.

1)

IV. ANIK-MITRA-SONDHI MODEL ADAPTATION

A simple fluid approximation model capable of reproducing
the main features of the arrival process described above is the



Annik-Mitra-Sondhi model [2], originally developed to model
queuing statistics of ATM multiplexers.

We briefly describe an adaptation of the AMS model to
the present setting. The arrival process is modeled as a
superposition of N on-off sources. The “on” periods arrive
according to a Poisson process with rate A\ = 1/RTT.
The duration of “on” periods is taken to be exponentially
distributed with parameter p, pu~!' = w/C, where w is
the mean batch (or congestion window) size and C' is the
router capacity. According to the observations of the previous
section a more accurate model would probably result if the
“on” periods were distributed according to a Gaussian tail
distribution but as results of Section VI show, exponential
distribution may already provide an adequate approximation
and is much easier to deal with mathematically. During an
“on” period data arrives at a constant rate C' (same as the router
capacity). Arriving data is processed and discharged from the
queue at the same rate C'. The buffer can hold up to B units
(packets) of data. Once the buffer is full any subsequently
arriving data is discarded.

The mean number of concurrently active sources is easily
computed to be NA/u since if “on” periods are treated
as customers then the system is isomorphic to an M/M/oco
queuing system. Given that source transmission rate is C, we
have the necessary stability condition in terms of the offered

load
Nw

=_—— <
P=cr
In TCP terminology this translates into the natural requirement
that for the queue to remain finite the aggregate congestion
window must be smaller than the bandwidth-delay product.

1. 6)

V. MANY FLOW ASYMPTOTIC LIMIT

In spite of certain mathematical complexity of the AMS
model it turns out, nevertheless, to be explicitly solvable in
the case when the buffer is infinite. The reduction to a linear
system of ordinary differential equations (o.d.e.’s) and an
elegant solution utilizing a generating function of eigenvectors
is lucidly laid out in [2]. The end result is a closed formula
for stationary probability of buffer overflow beyond = solely
in terms of the parameters of the model — A, u, C, and
N. We note that there are some minor differences in model
parametrization between [2] and the present exposition so not
all formulas translate directly.

Serious mathematical difficulties arise when the buffer size
is taken to be finite, which, of course, is the case we are
most interested in. It is quite likely that explicit formula for
buffer overflow probability in this case cannot be found due
inherent non-linearity of the problem. In view of these math-
ematical difficulties we make the crude assumption (justified
by numerical simulations) that the buffer overflow probability
for finite buffer AMS has the same exponential form as the
infinite buffer AMS but with a scaled exponent. Note that this
adds only one extra degree of freedom to the model.

In the infinite buffer case the stationary buffer content
probability distribution is described by a linear system of

o.d.e.’s. The solution of such a system is a linear combination
of eigenmodes corresponding to eigenvalues of the coefficient
matrix. However, as is often the case the dominant eigen-
mode carries most of the weight with higher eigenmodes
contributing relatively little so that the dominant eigenmode
alone is already a good approximation to the exact solution.
The dominant eigenmode approximation for buffer overflow
beyond « for the infinite buffer case is [2]

N-lC]-1
G(z) ~ pN i —re 7
@™ Il =)™ ™
=1
where z; are the eigenvalues of the linear system, r = —zg

and p is the offered load. The eigenvalues z; turn out to be
solutions of a family of quadratic equations parametrized by ¢
(see [2] for details). Since we are interested in the statistics for
large N we approximate z; and p by their values in the limit
of large N with C' = ¢N, where c is the per flow capacity.
Passing to the limit we get

A
©w—A

p =

r o= -
c

for very large N. Furthermore, straightforward computations
show that products of conjugate eigenvalues (eigenvalues come
in pairs corresponding to quadratics) converge to p~2 as N
tends to infinity, so that

N—|C]|-1

A | Iy (®)

Zq T
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for very large N. Putting this all together and substituting
for A and p from Section IV we obtain an approximation
for probability of buffer overflow as a function of congestion
window size w
_ W _a(c/w—1/T)B/c
p(w) = e . 9)
where « is the unknown factor compensating for the finite
buffer size.
Observe that p(w) has the correct behavior at the extremes:

1imop(w) =0
Jim,pl) =1

and is monotonically increasing in w.

VI. VALIDATION

We validate the model derived in Section V by comparing
its predictions with ns2 simulations. The model network we
use for validation consists of 1000 TCP sources aggregated at
a bottleneck router with 1Gbps capacity and a buffer of size B
pkts ranging from 50 pkts to 300 pkts in increments of 50 pkts
(Fig. 5). The sources are limited only by the capacity of the
router. The main component of propagation delay is the delay
on the link connecting the router and the sink node, is denoted
by T ms and ranges from 50 ms to 300 ms in increments of 50
ms. The propagation delay 7' on the access links, connecting
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Fig. 5. Simulated network configuration.

individual sources to the router, is uniformly distributed in
the interval [0,10%Tp]. This variability in the propagation
delay is introduced to avoid phase-locking between flows.
All sources are controlled by TCP-Reno with fast retransmit
disabled. The sources begin transmitting after a small random
delay uniformly distributed in [0,.1] seconds and transmit
continuously throughout the simulation. The delay in the start
of transmission is also meant to destroy any correlation that
may arise had the flows been started simultaneously.

The finite buffer correction factor, o, was calibrated against
numerical simulations of the finite buffer AMS model executed
over a three dimensional grid spanned by 7T', B and w. The
least squares fit over the resulting data produced av = 1.4 so
that the AMS model packet loss probability is given by
26—1.4(c/w—1/T)B/c'
cT
Finally, combining (10) with (3) and using 2 = w/T we have
an equation for the approximate mean congestion window size
in terms of the basic link parameters

p(w) = (10)

B 8/3
w= (w/cT)e—1A(e/w=1/T)B/c"
Figure 6 compares throughput computed from ns2 simula-

tions (blue), AMS model (black) and M/M/1/B model (red).
For the analytical models the throughput was computed as

Y

throughput = (1 — p(x))z, (12)

where x is the equilibrium transmission rate computed from
the square root law (3). The 36 link parameter pairs of T and
B are sorted into six groups of six, first, by increasing 7¢ and,
then by increasing B. In Figure 6 each pane corresponds to
a group of six combinations with the same Tp. This format
permits us to display all 36 parameter combinations on an
easily readable two dimensional graph. As the figure indicates
the AMS model is generally closer to the ns2 throughput curve,
although, for low propagation delay and for large buffer sizes
AMS error is similar to or larger than the M/M/1/B error.
As we will see shortly, however, where flow level congestion
is concerned, overestimating throughput causes much larger
errors than underestimating. Note, also, that it is the non-trivial
lower bound on TCP throughput that is important in practice
since the upper bound is obvious.

Figure 7 compares relative error in predicted throughput
for AMS and M/M/1/B models, computed relative to the
throughput measured in ns2 simulations. Although, AMS per-
forms better than M/M/1/B the relative error is still substantial
reaching as high as 35% in the worst case. While the AMS
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packet loss probability formula is a product of a large number
of approximations and simplifying assumptions our numerical
experiments suggest that the bulk of the error is caused by the
passage from the discrete packet model to continuous fluid
approximation. We note in passing that increasing « to 4
significantly improves the performance of the model (Figure
7 dashed line),but this parameter choice can only be justified
a posteriori by comparison with ns2 data and we have no
theoretical justification for selecting this particular value.

We return now to the question of flow level congestion
model. Instead of continuously transmitting flows we now have
a steady stream of arriving document transfer flows. Let the
flow arrival rate be [ flows per second and the mean document
size be b bytes then the aggregate load is (b B/s. Let ¢(n) be
the throughput of the link when the number of active flows
is n. If the aggregate load does not exceed the capacity of
the link the number of concurrent flows will converge to an

equilibrium value 7 which must satisfy
én)=1b (13)

This is a mean-field approximation which is asymptotically
exact as the flow arrival rate and capacity tend to infinity,
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Fig. 8. Mean number of active flows as a function of utilization for 1Gbps
link with B = 100 pkts and 7o = 100 ms (a) and Tp = 300 ms (b). Flow
size is exponentially distributed with mean 100 KB.

diminishing the relative size of fluctuations about the equi-
librium. Thus, given the throughput in terms of the link
parameters it is possible to estimate the equilibrium number
of flows in the system. Figure 8 shows mean number of flows
on a 1Gbps link as a function of utilization, {b/C, under a
load of exponentially distributed elastic flows with mean size
100 KB, for ns2, the flow congestion model (1) and the AMS
based mean-field model. We note that to compute ¢ for the
AMS mean-field model we used a modification of the square
root law (3) for large p

8(1 —p)
3p

found in [6]. While the AMS based mean-field model is far
from perfect it can be seen to predict the equilibrium number
of flows in the system much more accurately than (1).
Figure 8 also raises several questions. First, it appears to
indicate that for the same average number of flows on the
link the TCP throughput is lower when flows come and go
than when flows transmit continuously. This can be seen from
the AMS model underestimating the number of flows for a
given utilization compared with the ns2 simulations in Figure
8 (a), which corresponds to link parameters for which AMS
underestimates TCP throughput for continuously transmitting

(14)

w =

flows by about 15%. If the TCP throughput was the same
for elastic traffic as for continuously transmitting flows the
order of curves in Figure 8 (a) would have been opposite. The
reason for decrease in throughput under elastic traffic could be
the cost of setting up and tearing down of TCP connections.

Figure 8(a), also, shows that at high loads the AMS model
departs from ns2 simulations in another critical way. The
reversal in the AMS curve shows that increasing the number of
active flows beyond a certain threshold causes the throughput
to decrease contrary to what ns2 indicates. The reason for
this behavior is that the transmission rate under AMS model
cannot exceed router capacity C, while packet loss probabil-
ity approaches 1 as the bandwidth per flow tends to zero,
leading to a corresponding drop in throughput. This picture
might indeed have been accurate if TCP always remained in
congestion avoidance mode. In congestion avoidance mode at
most one packet per round-trip time can be sent without a
corresponding acknowledgment from the sink and the rate of
acknowledgment packets clearly cannot exceed the router ca-
pacity. At very high loads, however, time-outs and subsequent
slow start phases begin to account for a significant portion
of transmitted data. This appears to be born out by ns2 data
showing that the mean transmission rate exceeds the router
capacity when the number of flows is very large (even when
flows are transmitting continuously).

VII. CONCLUSION

We presented a new model for TCP throughput based
on an old model of Anick, Mitra and Sondhi for modeling
buffer statistics of ATM multiplexers. Additional accuracy is
achieved by accounting for some of the packet level burstiness,
while retaining fluid approximation approach yields an explicit
formula in terms of the basic link parameters. The presented
model provides a lower bound on the TCP throughput and is
typically within 20% of the ns2 simulation throughput, which
under most circumstances is better than the commonly used
M/M/1/B based models. Using the AMS-based throughput
formula in the simple mean-field model of flow level conges-
tion also gives substantially better results than the commonly
used formula based on the assumption of efficient bandwidth
partitioning.

On the other hand, the AMS model clearly still has a lot
of room for improvement. The fluid approximation itself is
a major cause of error in the model eliminating which, even
partially, is likely to substantially boost the accuracy of the
model. At high loads the accuracy of the model will also be
improved by accounting for the TCP slow start phase. Finally,
more data is necessary to address validity of the AMS mean-
field approximation for flow level congestion performance.
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