Development of an Exosuit to Support the Back During Lifting

Amanda Manna - Lowe's Innovation Labs Alan Asbeck – Virginia Tech

LowesInnovationLabs.com

to help people love where they live

an allow have the first of sale of a second and the second s

to help people love where they live

an and an at the state of an a second an at some of the second and the second and the second and the second and

by seeding the future

CHANGE

ΤΙΜΕ

ΤΙΜΕ

CHANGE TODAY IS EXPONENTIAL

ш

CHANG

Wall Street is expecting the worst of the retail apocalypse this week

Retail funk: Stores face biggest challenges since recession

What caused the retail apocalypse?

What in the World Is Causing the Retail Meltdown of 2017?

DECEPTIVE DISAPPOINTMENT

CHANGE

CHANGE

LOWEBOT

fellow

LOWES

THE CHINE

1

POWERED BY Fellow

1010

INVENTORY SCANNING IN PROGRESS

-

m

NAVI

The Problem

- People get injured at work
- \$15 billion in 2016 in direct costs for injuries related to lifting, pushing, pulling, holding, carrying or throwing objects [1]
- Incidence rate of ~3% per year for laborers and freight, stock, and material movers (private industry) – around 59,000 injuries [2]

Why the back?

- Back injuries are 17.3% of all injuries in 2016 [2]
- Workers' compensation costs for an average losttime back injury are \$25,000 [4]
- Average lost time is 7-8 days for a back injury [2]

The Solution: Build an Exosuit

Project Progression

Need finding and Store visits: observe Lowe's processes, talk to employees In-storeIn-store testing,IMU studyemployee feedback

Exosuit development and manufacturing

Modifications and improvements based on employee feedback Next steps: Additional Modifications, TBD

In-lab Biomechanics Testing

Rapid Feedback

- Christiansburg Lowe's is 10 minutes from Virginia Tech
- Informal verbal feedback
- Paper surveys
- Focused discussions
- Ongoing feedback as changes are made

IMU Study

- Goal: Understand lifting and motion in a real-world environment
- XSens MVN Link IMU-based motion capture system
- 4 subjects, ~20 hours of data
- XSens does on-body recording
- Normal store activities

Motion Capture System Output

Motion in the store

- Walking as well as lifting
- XSens tracks motion accurately

Different Lifting Style Tradeoffs

Squat ----> Stoop

Legs together \leftarrow Legs apart sideways

Both legs grounded \longleftrightarrow One leg in air

Different Lifting Style Tradeoffs

Legs together - One leg behind

One-handed ←→ Two-handed

Lift ←→ Tilt

Other activities

- Walking
- Pushing, pulling
- Kneeling
- Crawling
- Climbing stairs
- Driving a forklift
- Using a lift

• Using pens, box cutters

Summary of Back Support Exoskeleton Requirements

- Support the weight of the torso during stoop lifting
- Unrestrictive: easily permit walking, sitting, stair climbing, kneeling, crawling
- Light-weight
- Low-profile
- High energy return

Goal

- Build an exosuit that offsets the weight of the torso (during stoop lifting)
- Picking up a ~50 pound box feels like picking up nothing to the back muscles

• Start simple and learn!

Stoop vs. Squat

• Center of Mass moves further down with a squat lift, requiring more energy

Rough Calculations

Upper

Body

Center

of Mass

Round numbers:

- 200 pound (90 kg) person
- Torso weighs around half of the body's mass: 100 pounds (45 kg)
- Moves down around 1.5 feet (45cm) – around 25% of body height
- Requires around 200
 Joules of energy

How much energy does it take to lift?

Rough calculations:

- Suppose one stoop bend per minute, not lifting anything
 - → ~3.33W Mechanical
- Metabolic efficiency ~ 0.25
 ~13.33W Metabolic
- Actual number: 16W

How much energy does it take to lift?

How much energy does it take to walk?

37.5 pounds

Data from Weyand et al. 2009 "Assessing the metabolic cost of walking: the influence of baseline subtractions" Walking continuously **Squat lifting** Walking 50% **Stoop lifting** Walking 25% **Standing still** 150W Walking

 \bullet

400 355W Metabolic Cost [W] 300 252W 200 200W 100 0 0 17kg =

Weight Lifted

How much does the weight of the exoskeleton matter? . Data from Browning et al. 2007, "The Effects

Summary of energetic calculations

- Walking uses a lot more energy (~2x) than lifting at low frequencies
- An exosuit/exoskeleton will ideally offset around 16-50W depending on the lift frequency
 - 10-20% of total energy expenditure
 - Assuming the exosuit/exoskeleton offloads 100% of torso weight; in reality it will be less than this
- Exoskeleton weight matters primarily during walking
 - affects energy use comparatively less
- More important effect: exosuit reduces muscle strain

Our Exosuit

Chest harness-

Waist belt

Waist belt buckle-

Thigh pad supports

Thigh pads-

Back carbon fiber leaf springs

Back of chest harness

Support blocks

Leg carbon fiber leaf springs

-Pads

Webbing straps
Leg sliders

Next Steps

- In-lab biomechanics experiments
- Improved exosuit design
- Additional in-store testing

Acknowledgements

Mehdi Alemi

Emily Beauchamp

Taylor Pesek

Tim Pote

Jack Geissinger

Josh Hull

David Weisbrodt

Chris Loll

Bonham Ekleberry

References

- [1] = 2016 Liberty Mutual Workplace Safety Index
- [2] = BLS Nonfatal Occupational Injuries and Illnesses Requiring Days Away from Work, 2015
- [3] = DHHS (NIOSH) Publication No. 2007-131 Ergonomic Guidelines for Manual Material Handling
- [4] = DHHS (NIOSH) Publication No. 2013-111 Simple Solutions for Home Building Workers Manual Material Handling Injuries, 2013
- [5] = https://www.c-motion.com/v3dwiki/index.php?title= Marker_Set_Guidelines