
Pollen grains on the stamen of a flower.

Modeling Diffusion and Capture.

Collaborators:  
Andrew Bernoff (Harvey Mudd), 
Theo Kolokolnikov (Dalhousie University), 
Daniel Scmidt (Harvey Mudd) 
Ryan Spoonmore (Notre Dame), 
Justin Tzou, (U. British Columbia),  
Michael Ward (U. British Columbia) 

A.E. Lindsay  
Applied and Computational Math & Stats

University of Notre Dame.
a.lindsay@nd.edu      www.nd.edu/~alindsa1

NIST, 
June 13th, 2017.  

Support:

NSF DMS - 1516753

mailto:a.lindsay@nd.edu


Diffusion in heterogeneous and dynamic environments.

dXt = DdWt;
Main Questions: 

• How long till a diffusing particle finds a target?  

• How does the distribution and target site mobility  
control possibility for, and time of capture?

square mean displacement  
= 

D x time

2D diffusion in bounded region. 3D diffusion in unbounded region.



• The cell nucleus - genetic material passes  
 from the interior/exterior through small pores  
celled Nuclear Pore Complexes (NPCs).  

• Nucleus ~10% of cell volume.  

• Roughly N = 2000 surface pores which  
occupy 2% of the surface area.  

• Ref: Eilenberg et.al. Science 341(6146), 2013.

Maeshima et. al. Nature Struct. & Mol. Bio. 17 (2010)

• Pore density dynamic. 

• Nuclear volume dynamic. 

• Experimentalists measure pore  
densities, not individual positions. 

Application I: Intracellular Transport.



• What is the probability of this binding occurring? 
• On average, how long does this take? 
• How does the distribution of the receptors affect this?

Antigens

T Cell

When an antigen (a toxin or a protein that promotes an immune response) 
binds to a receptor on a T-cell it can trigger the creation of antibodies.

Application II: Molecular Signaling



• General Aspects of the mathematical theory.  

• Boundary Homogenization for spheres,  
 disks and planes.  

• A spectral boundary element method for  
capture problems. 

• The roles of dynamics and cooperation  
 factors in capture problems.  

• Conclusions and Future Work.  

TalkOutline
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The probability of absorption I 



The probability of absorption II 

In N dimensional free space:

Diffusion Kernel https://en.wikipedia.org/wiki/Brownian_motion

https://en.wikipedia.org/wiki/Brownian_motion


Absorbing (or Dirichlet).

Boundary Conditions.
⌦

Reflecting (or Neumann).

 ⌧ 1 Mostly Reflecting

 � 1 Mostly Absorbing

Partially Absorbing (or Robin)



The probability of Escape 
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The importance of dimension in 
diffusion and capture problems



x0 R

Consider a delta-function release at x=R.
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Capture in 1D
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Probability of capture: 

t

Capture Time

�(R) = 1
q(⌧, 3)

⇠ 2

⌧ [ln ⌧ ]2

r=R

Consider a d-function release at r=R and a circular trap of radius a.
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Capture in 2D

FPT: Obtained with a 
 Laplace Transform 
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r=R

Consider a d-function release at r=R and a spherical trap of radius a.
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Capture in 3D
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Problem: 3D Diffusion to a surface with small 
absorbing pores.

Problem 1: Pores on sphere. Problem 2: Pores on infinite plane.

Describe the rate of capture at the pores.



Diffusion to a structured 3D target with small 
absorbing pores.

Target
Sites



Berg & Purcell, Physics of Chemoreception (1977). 1500 Citations.
Berg & Purcell - Physics of Chemoreception 1977 

(~1500 citations) 

Target
Sites

• Derived by interpolating between all absorbing and N independent pores.  
  

• No information on influence of receptor spatial arrangements.

Limitations



Important Ingredient - Single Pore on a flat plane.

Ref: Sneddon, Mixed Boundary  
Value Problems, 1966.



Rain Drain Analogy - perimeter that matters in the 
biologically realistic limit!

Source: shutterstock.com

http://shutterstock.com


Literature since Berg & Purcell - How does 
clustering influence the capture rate?

• Exact analysis very difficult - classical potential theory utilizes  
 separation of variables which is tricky for mixed boundary values problems

Boundary Homogenization or ‘effective medium theory’

Ref: Muratov,  
Shvartsmam,  
Berezhkovskii, 
SIAM MMS 2006.

Exact Planar capture time distribution



Literature since Berg & Purcell - How does 
clustering influence the capture rate?

• Exact analysis very difficult - classical potential theory utilizes  
 separation of variables which is tricky for mixed boundary values problems

Boundary Homogenization or ‘effective medium theory’

Ref: Muratov,  
Shvartsmam,  
Berezhkovskii, 
SIAM MMS 2006.

• Depends on the absorbing area fraction.  

• Depends on the particular receptor clustering.



Literature since Berg & Purcell - How does 
clustering influence the capture rate?

• Exact analysis very difficult - classical potential theory utilizes  
 separation of variables which is tricky for mixed boundary values problems

Boundary Homogenization or ‘effective medium theory’

Ref: Muratov,  
Shvartsmam,  
Berezhkovskii, 
SIAM MMS 2006.

Using the Berg-Purcell 
Flux:

Ref: Shoup, 
Szabo 
BioPhys J. 
1982.



Literature since Berg & Purcell - How does 
clustering influence the capture rate?

• Exact analysis very difficult - classical potential theory utilizes  
 separation of variables which is tricky for mixed boundary values problems

Boundary Homogenization or ‘effective medium theory’

Ref: Muratov,  
Shvartsmam,  
Berezhkovskii, 
SIAM MMS 2006.

Ref: 
Berezhkovskii 
2008, 2013,  
2016.

Particle simulations fit parameters. A = 1.62, 1.75, 1.37 and B = 1.36, 2.02, 2.59, 
for triangular, square and hexagonal lattices.
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Result requires an explicit surface Green’s Function. 

Lindsay, Ward, Bernoff - SIAM MMS, Vol. 15, No. 1 (2017) 
• From a detailed singular perturbation analysis with N pores of common radius.



Surface Green’s Function of Sphere.

Ref:  Nemenman and Silbergleit,  
 J. Appl. Phys., 86 (1999), pp. 614–624.  

Gravity Probe B 

• Launched in 2004 to verify 
predictions of General Relativity.  

• Four Gyros measured the 
precessions over the period of a 
year. 

• Gyroscopes the most perfect 
spheres ever manufactured at 
time.

A gyro for GP-B



Problem: Find global minimizers of
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Boundary Homogenization Result
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Assuming a uniform distribution on points on sphere. 

Later: Numerical verification for 
realistic N (thousands).



The Equivalent 2D problem.

(`) =
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log
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Window/Pore size

Fixed ` = �N, and N ! 1, gives e↵ective Robin problem

x

-1.5 -1 -0.5 0 0.5 1 1.5 2

y

-1.5

-1

-0.5

0

0.5

1

1.5

x

-1.5 -1 -0.5 0 0.5 1 1.5 2

y

-1.5

-1

-0.5

0

0.5

1

1.5

N = 5 & ` =
1

6
N = 10 & ` =

1

2
Lindsay, Tzou, Kolokolnikov 

PRE, 91(3), 2015.



For N pores of radius a:

When the distance between pores,               . dij � a

This tells us how to replace many pores with one.

Berg & Purcell 1977

Bernoff & Lindsay 2017

J
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16a3

dijdjk

Planar Homogenization Problem



Numerical Solution of the Capacitance Problem

Target
Sites

Popular Particle Based Solutions.



Step	1:	Project	Onto	Surface	

Step	2:	Check	if	par7cle	Has	
Been	Absorbed	

Step	3:	Diffuse	Par7cle	Off	
Surface	

Kinetic Monte Carlo for periodic domain.



Integral equation over  
the support of the pores.

Boundary Integral solution of the Capacitance 
Problem

p(y) =
x∈∂Ωa

G(x;y)q(x)dS. Neumann to
Dirichlet Map

Pores on a plane Pores on a sphere

Sphere Case

Planar Case



Integral equation over  
the support of the pores.

Boundary Integral solution of the Capacitance 
Problem

p(y) =
x∈∂Ωa

G(x;y)q(x)dS. Neumann to
Dirichlet Map

Pores on a plane Pores on a sphere

Main Difficulty:  
Flux has an (integrable) singularity 
on the edge of each each pore.

Solution:  
Expand surface potential and flux in 
basis which mimics the known 
singularity on boundary of pores.



The Zernike Polynomials.
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Surface 
Flux
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At each pore, expand flux and potential:



• Dutch Physicist. 

• 1953 Physics Nobel Prize for  
phase-contrast microscope. Imaging 
translucent samples by change in light 
phase, not intensity. 

• Zernike Polynomial derived in 1934 and 
form a complete basis for square 
integrable functions with circular support. 

• Used extensively in beam optics for 
analyzing waveforms entering through 
circular apertures.  

• Quantifying and correcting ocular 
aberrations (e.g. astigmatism) in 
optometry. 

Frits Zernike (1888-1966)



p(y) =
x∈∂Ωa

G(x;y)q(x)dS. Neumann to
Dirichlet Map

Boundary Integral solution Procedure

1. Expand flux and potential with M Zernike modes at the N pores.  

2. Gives N*(M+1)*(M+2)/2 unknowns for the system.  

3. Form dense system for unknowns by projecting the flux onto Zernike modes. 

4. Solve linear system and calculate the flux

Advantages
• Spectral accuracy. 
• Runs very quickly for low modes.

Disadvantages
• Relies on explicit Green’s Function.  
• Circular pore geometry assumed.



Numerical Results Sphere:

N=1:

N>1:

Relative Error - One Pore Agreement - Platonic Solids
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Relative error resolved to 1 part in 10^8!



d1 1

Two Planar Pores

Ref: Strieder, 
J. Chem, Phys, 2012.

Accuracy as function of pore separation.
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Validation of the homogenized sphere condition.

Fibonacci Spiral Points and 2% absorbing fraction.

Homogenized Formula  
 accurately predicts the 

 flux to the target in biologically 
realistic examples!!



Ongoing Work: The full First Passage Time (FPT) 
distribution.

Ωε∂Ωε

Ω

x

The MFPT overestimates typical capture times.  
Important to get the full capture time distribution
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The Mean.



Ongoing Work II: Formulation of Capture 
problems in a dynamical setting.



Rotating Trap

Tzou & Kolokolnikov  
SIAM MMS 2015

Optimal radius for  
a given speed of 
rotation.



Ongoing Work II: Trap Cooperation Strategies I

Absorbing Boundaries

Random Motion

Random Motion

Absorbing Boundaries

x = x1(t)

x = x1(t)

x = x2(t)

x = x2(t)

A
d
vection

x

t

Out-of Phase In Phase
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Ongoing Work: Trap Cooperation Strategies II



1. Showed explicitly how pore/receptor clustering influences diffusive sensing 
rates, resolving a long standing problem postulated by Berg & Purcell.  

2. Derivation of macro scale capture laws from microscale clustering pattern. 

3. These averaged features can be used to give insight and reduce 
challenging computational aspects of these multi scale problems.  

4. Developed a precision numerical tools for studying receptor clustering.  

Conclusions.

1. Formulate and solve problems for capture in more general dynamic 
environments. (e.g. moving domains, transient and growing pores). 

2. On top of this, get the full distribution of capture times! Is the homogenized 
boundary condition verified here valid for the time dependent problem?  

 

Future Work.



Thank you for your attention!!
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