

Physics-based Machine Learning to Enable Reliable Modules & Sustainable Solar Farms

M. A. Alam, X. Sun, R. Khan, and T. Patel (alam@purdue.edu)

A magnificent multiscale problem: Atom-to-farm perspective

Vertical Bifacial Solar Farms: Physics, Design, and Global Optimization

M. Ryyan Khan ^{b,1}, Amir Hanna ^{a,1}, Xingshu Sun ^{b,1}, Muhammad A. Alam^{b,1,*}

UPPSALA UNIVERSITET

SF

SCIENTIFIC REPORTS OPEN Directing solar photons to sustainably meet food, energy, and

BAPVC

us Cells olf.

Module

Device

Process

COLUMBIA UNIVERSITY ක්ත 00

IIT BOMBAY

Los Alamos

NATIONAL LABORATORY - EST.1943 ·

۵

Thermodynamic

Muhammad A. Alamay and M. Ryyan Khan School of Electrical and Computer Engineering, Purdue University, W

(Received 15 September 2012; accepted 15 June 2013)

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Thermodynamic Efficiency Limits of Classical and Bifacial Multi-junction Tandem Solar Cells: An Analytical Approach

Muhammad A. Alam^{a)} and M. Ryyan Khan School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN-47907, USA

Bifacial Farm: Global Optimization

Deline, Stein, Woodhouse, Silverman, Kurtz 4

Missing: Geography-specific Reliability

Degradation Rate: Hot = $8 \times Cold$

"All-India Survey of Photovoltaic Module Degradation: 2013."

Data is not information: How did they fail? Hot-humid? Technology? Company?

Approach: PV Heartbeat interpreted by physics-based model

Can you hear the shape of a drum? ... M. Kac, 1966

Outline

- Introduction: Atom-to-farm perspective
- Approach: Physics-based inverse modeling
 - Concept: Vmp-Imp as an in-situ EKG
 - Four steps for inverse modeling
 - Results: Parameter degradation
- Future prediction: physics-based degradation
- Conclusions: Data vs. Information

Devices model as a "neural" network

Concept: In-situ parameter-extraction

I

Step 1: Physics-Based Compact Models

Compact Model Library

Circuit Network Library

monolithic solar module

Electrical Network

Si-based solar module

Sun, PVSC, 2015. Chavali, JPV, 2016.

https://nanohub.org/publications/20/1

TAG Solar Cell Model (p-i-n thin film) 1.0.1

~5000 total views and ~1000 downloads

Purdue Solar Cell Model (PSM) Version 2.0.0

Step 2: Time-zero model calibration

12

Step 3: Preprocessing of weather data

Module temperature

Irradiance data

Missing Data

SAPM model

NSRDB PUMET model

Faiman model

Step 4: On-line characterization

500 points to fit a dozen parameters

Results: Extracted Model Parameters

Results: Independent Validation

Year

D. Jordan, P. Hacke, et al., JPV, 2017

Outline

- Introduction: Atom-to-farm perspective
- Approach: Physics-based inverse modeling
 - Concept: Vmp-Imp as an in-situ EKG
 - Four steps for inverse modeling
 - Results: Parameter degradation
- Future prediction: physics-based degradation
- Conclusions: Data vs. Information

Time-dependent power output

Electrical Signature Correlated to Degradation Phenomena

Physics-based Degradation models

Solder-Bond Failure Exclusively Correlated to Series Resistance Increase

Dana, Johnston, NREL

24

PID affects Shunt Resistance

$$\Delta P(t) = \Delta P_{\infty} \left[1 + \exp(-(t - t_{0.5})R_D)^{-1} \right]$$

Reliability prediction

Our framework allows inverse modelling of **3-year** simulated field data, and predict the energy yield for total **15 years**

DEEDS For Solar Farm EKG

Conclusions: PV Heartbeat interpreted by physics-based model

EKG Diagram

Solar Panels at Knoy Hall

Inverter as a Fitbit ...