

1

Thermodynamics and Correlation Effects on Diffusion in Al-Ni Melts

A. Griesche¹, J. Horbach², A. Meyer³

¹Federal Institute for Materials Research and Testing (BAM) Berlin, Germany

> ² Heinrich-Heine-Universität Düsseldorf Institut für Theoretische Physik II - Soft Matter Düsseldorf, Germany

³German Aerospace Center (DLR) Institute of Materials Physics in Space Cologne, Germany

Diffusion Workshop, May 3 - 4, 2012 – NIST, Gaithersburg

Outline

- Motivation
- Darken's equation for liquids
- Experimental methods

Quasielastic Neutron Scattering (QNS) Capillary techniques + X-ray Radiography (XRR) Molecular Dynamic Simulation (MDS)

- Results in Al-Ni
- Conclusions

Motivation

- Materials Design from the Melt
- ⇒ Interplay of interdiffusion and crystal growth
- ⇒ thermophysical properties
- \Rightarrow Influence of thermodynamics on diffusion

X-ray radiography: Al-Cu

L. Arnberg, R.H. Mathiessen, JOM 8 (2007) 20

Columnar to Equiaxed Transition (CET) in AI-Ti

analytical Hunt model parameters:

- $-N_0 = 10^9 \text{ m}^{-3}$
- $\Delta T_N = 3.8 \text{ K}$
- $-c_0 = 47 \text{ at}\%$

→ factor 8 difference

CET prediction depends sensitively on $D_{L}(c,T)$

D_{AICu} = 4.8 x 10⁻⁹ m²s⁻¹

micrograph section

 $D_{AICu} = 1.0 \times 10^{-9} \, \text{m}^2 \text{s}^{-1}$

- microstructure and phase distribution: best agreement for exp. D_{AICu}
- model predictions require as input accurate liquid diffusion data

500 x 430 µm²

Kasperovich, Meyer, Ratke, Int. Foundry Res. (2010)

Darken's equation in Liquids?

• solids:

$$D_{AB} = (D_B N_A + D_A N_B) \Phi S$$

S as additional factor ("vacancy wind")

• liquids:

$$D_{AB} = (D_B N_A + D_A N_B + D_{cross}) \Phi = (D_B N_A + D_A N_B) \Phi S$$

$$S = 1 + \frac{D_{cross}}{N_A D_B + N_B D_A}$$

Darken, Trans. AIME (1948) Manning, Phys. Rev. B (1961) Kehr et al., Phys. Rev. B (1989)

Quasielastic Neutron Scattering (QNS)

 △D*/D < 5%, incoherent scatterer only (Cu, Ni, Ti,...), convection free

Meyer, Phys. Rev. B. (2010)

X BAM

Capillary Techniques with X-ray Radiography

• $\Delta D_{AB}/D < 20\%$, contrast required

Griesche et al., Mat. Sci. For. (2010)

Al vs. AlNi₁₀ at.-%

Griesche et al., Rev. Sci. Instr. (2010)

Image Analysis

- $\Delta x^2 = 2D\Delta t$
- good statistics
- deviations from pure diffusion detectable (convection)
- no black box (better accuracy)
- D(T) measureable

Zhang et al., Phys. Rev. Lett. (2010)

... more movies: AICu₃₀ at.-%

Molecular Dynamic Simulation

- D_A, D_B, D_{AB}
- D_{cross} from velocity correlation functions

•
$$S = 1 + \frac{D_{cross}}{N_A D_B + N_B D_A}$$

•
$$\Phi = \frac{Nk_{\rm B}Tx_{\rm A}x_{\rm B}}{S_{\rm cc}(q=0)}$$

$$D = \lim_{t \to \infty} C \frac{\left\langle \left(\vec{r}(t) - \vec{r}(0) \right)^2 \right\rangle}{6t}$$

• $L = S (D_B N_A + D_A N_B)$

Mishin et al., Phys. Rev. B (2002)

Results Al₈₀Ni₂₀

- Φ (Pandat) ~ Φ (MDS)
- strong temperature dependence of *Φ* in undercooled melt

• S≈0,8

R. Schmid-Fetzer, Pandat calculations (2004) Horbach et al., Phys. Rev. B (2007)

Results Al₈₀Ni₂₀

- sim. & exp. show excellent agreement
- *D*^{*}_{Ni} ≈ *D*^{*}_{Al}
- $D_{AINi} > D_{Ni}^*$, D_{AI}^*
- slowing down of diffusivity in undercooled region (arresting of atoms)
- change in diffusion mechanism

Horbach et al., Phys. Rev. B (2007)

AI-Ni (MDS): D_{AB}

- D_{AB} increases with T
- Maximum of *D*_{AB} in equilibrium melt
- Minimum of *D*_{AB} in undercooled melt

AI-Ni (MDS): Φ

- Φ decreases with T
- always a maximum for concentrated solution
- Φ overcompensated by "cage effect "

AI-Ni (MDS): S

• increasing S with undercooling

AI-Ni (MDS): $(N_B D_A + N_A D_B)$, L

- $L = S (N_B D_A + N_A D_B)$
- slowing down due to cage effect

Conclusions

- coupling of experimental techniques (QNS, diffusion capillary techniques + in situ diagnostics) with simulation methods (MDS) helps revealing mechanisms
- slowing down of dynamics in undercooled melts due to collective effects (arresting of atoms)
- cross-correlation effects decrease with increasing undercooling

Thank you for your attention !