Table of Contents

Teaching and Learning The Metric System
Unit 1 1

- Suggested Teaching Sequence 1
- Objectives 1
- Rules of Notation 1
- Metric Units, Symbols, and Referents 2
- Metric Prefixes 2
- Linear Measurement Activities 3
- Area Measurement Activities 5
- Volume Measurement Activities 7
- Mass (Weight) Measurement Activities 9
- Temperature Measurement Activities 11
Unit 2 12
- Objectives 12
- Suggested Teaching Sequence 12
- Metrics in this Occupation 12
- Metric Units For Air Conditioning and Refrigeration, Heating, Ventilating 13
- Trying Out Metric Units 14
- Cooling With Metrics 15
- Heating With Metrics 16
- Venting With Metrics 17
Unit 3 18
- Objective 18
- Suggested Teaching Sequence 18
- Metric-Metric Equivalents 18
- Changing Units at Work 20
Unit 4 21
- Objective 21
- Suggested Teaching Sequence 21
- Selecting and Using Metric Instruments, Tools and Devices 21
- Which Tools for the Job? 22
- Measuring Up in Air Conditioning/ Refrigeration 22
- Which Tools for the Job? 23
- Measuring Up in Heating 23
- Which Tools for the Job? 24
- Measuring Up in Ventilating 24
Unit 5 25
- Objective 25
- Suggested Teaching Sequence 25
- Metric-Customary Equivalents 25
- Conversion Tables 26
- Any Way You Want It 27
Testing Metric Abilities 28
Answers to Exercises and Test 30
Tools and Devices List
References

$$
\begin{aligned}
& \text { metrics for metrics for } \\
& \text { for metrics for metrics } \\
& \text { metrics for metrics for } \\
& \text { for metrics for metrics } \\
& \text { metrics for metrics for } \\
& \text { for metrics for metrics } \\
& \text { metrics for metrics for } \\
& \text { for metrics metrics for } \\
& \text { air conditioning \& refrigeration, } \\
& \text { heating, ventilating }
\end{aligned}
$$

TEACHING AND LEARNING

THE METRIC SYSTEM

This metric instructional package was designed to meet job-related metric measurement needs of students. To use this package students should already know the occupational terminology, measurement terms, and tools currently in use. These materials were prepared with the help of experienced vocational teachers, reviewed by experts, tested in classrooms in different parts of the United States, and revised before distribution.

Each of the five units of instruction contains performance objectives, learning activities, and supporting information in the form of text, exercises, and tables. In addition, suggested teaching techniques are included. At the back of this package are objective-based evaluation items, a page of answers to the exercises and tests, a list of metric materials needed for the activities, references, and a list of suppliers.

Classroom experiences with this instructional package suggest the following teaching-learning strategies:

1. Let the first experiences be informal to make learning the metric system fun.
2. Students learn better when metric units are compared to familiar objects. Everyone should learn to "think metric." Comparing metric units to customary units can be confusing.
3. Students will learn quickly to estimate and measure in metric units by "doing."
4. Students should have experience with measuring activities before getting too much information.
5. Move through the units in an order which emphasizes the simplicity of the metric system (e.g., length to area to volume).
6. Teach one concept at a time to avoid overwhelming students with too much material.

Unit 1 is a general introduction to the metric system of measurement which provides informal, hands-on experiences for the students. This unit enables students to become familiar with the basic metric units, their symbols, and measurement instruments; and to develop a set of mental references for metric values. The metric system of notation also is explained.

Unit 2 provides the metric terms which are used in this occupation and gives experience with occupational measurement tasks

Unit 3 focuses on job-related metric equivalents and their relationships.

Unit 4 provides experience with recognizing and using metric instruments and tools in occupational measurement tasks. It also provides experience in comparing metric and customary measurement instruments.

Unit 5 is designed to give students practice in converting customary and metric measurements. Students should learn to "think metric" and avoid comparing customary and metric units. However, skill with conversion tables will be useful during the transition to metric in each occupation.

Using These Instructional Materials

This package was designed to help students learn a core of knowledge about the metric system which they will use on the job. The exercises facilitate experiences with measurement instruments, tools, and devices used in this occupation and job-related tasks of esimating and measuring.

This instructional package also was designed to accommodate a variety of individual teaching and learning styles. Teachers are encouraged to adapt these materials to their own classes. For example, the information sheets may be given to students for self-study. References may be used as supplemental resources. Exercises may be used in independent study, small groups, or whole-class activities. All of the materials can be expanded by the teacher.

Gloria S Cooper
Joel H. Magisos
Editors

[^0]
UNIT

SUGGESTED TEACHING SEQUENCE

1. These introductory exercises may require two or three teaching periods for all five areas of measurement.
2. Exercises should be followed in the order given to best show the relationship between length, area, and volume.
3. Assemble the metric measuring devices (ruies, tapes, scales, thermometers, and measuring containers) and objects to be measured.*
4. Set up the equipment at work stations for use by the whole class or as individualized resource activities.
5. Have the students estimate, measure, and record using Exercises 1 through 5.
6. Present information on notation and make Table 1 available.
7. Follow up with group discussion of activities.
\# Other school departments may have devices which can be used. Metric suppliers are listed in the reference section.

OEJECTIVES

The student will demonstrate these skills for the Linear, Area, Volume or Capacity, Mass, and Temperature Exercises, using the metric terms and measurement devices listed here.

SKILLS	EXERCISES				
	$\begin{gathered} \text { Linear } \\ \text { (pp. 3-4) } \end{gathered}$	$\begin{gathered} \text { Area } \\ (\text { pp. } 5 \cdot 6) \end{gathered}$	Volume or Capacity $\text { (pp. } 7.8 \text {) }$	$\begin{gathered} \text { Mass } \\ (\mathrm{pp.} 9-10) \end{gathered}$	Temperature (p. 11)
1. Recognize and use the unit and its symbol for: 2. Select, use, and read the appropriate measuring instruments for: 3. State or show a physical reference for:	millimetre (mm) centimetre (cm) metre (m)	square centimetre (cm^{2}) square metre (m^{2})	cubic centi- metre (cm^{3}) cubic metre (m^{3}) litre (1) millilitre (ml)	gram (g) kilogram (kg)	degree Celsius (${ }^{\circ}$)
4. Estimate within 25% of the actual measure	height, width, or length of objects	the area of a given surface	capacity of containers	the mass of objects in grams and kilograms	the temperature of the air or a liquid
5. Read correctly	metre stick, metric tape measure, and metric rulers		measurements on graduated volume measuring devices	a kilogram scale and a gram scale	A Celsius thermometer

RULES OF NOTATION

1. Symbols are not capitalized unless the unit is a proper name (mm not MM).
2. Symbols are not followed by periods (m not m .).
3. Symbols are not followed by an s for plurals (25 g not 25 gs).
4. A space separates the numerals from the unit symbols (4 l not 41).
5. Spaces, not commas, are used to separate large numbers into groups of three digits (45271 km not $45,271 \mathrm{~km}$).
6. A zero precedes the decimal point if the number is less than one $(0.52 \mathrm{~g}$ not .52 g$)$.
7. Litre and metre can be spelled either with an -re or -er ending.

METRIC UNITS, SYMBOLS, AND REFERENTS

Quantity	Metric Unit	Symbol	Useful Referents
Length	millimetre	mm	Thickness of dime or paper clip wire
	centimetre	cm	Width of paper clip
	metre	m	Height of door about 2 m
	kilometre	km	12 -minute walking distance
Area	square centimetre	cm^{2}	Area of this space
	square metre	m^{2}	Area of card table top
	hectare	ha	Football field including sidelines and end zones
Volume and Capacity	millilitre	ml	Teaspoon is 5 ml
	litre	1	A little more than 1 quart
	cubic centimetre	cm^{3}	Volume of this container
	cubic metre	m^{3}	A little more than a cubic yard
Mass	milligram	mg	Apple seed about 10 mg , grain of salt, 1 mg
	gram	g	Nickel about 5 g
	kilogram	kg	Webster's Collegiate Dictionary
	metric ton (1 000 kilograms)	t	Voikswagen Beetle

METRIC PREFIXES

Multiples and Submultiples	Prefixes	Symbols
$1000000=10^{6}$	mega (měg'à)	M
$1000=10^{3}$	kilo ($\mathrm{kij}^{\text {(}}$)	k
$100=10^{2}$	hecto (hĕk'to)	h
$10=10^{1}$	deka (dèk'á)	da
Base Unit $1=10^{\circ}$		
$0.1=10^{-1}$	deci (des's $\overline{\mathrm{i}}$)	d
$0.01=10^{-2}$	centi (señ'tí)	c
$0.001=10^{-3}$	milli (mil $\overline{\mathrm{i}}$)	m
$0.000001=10^{-6}$	micro (mi'kro)	μ

Table 1-b

Table 1-a

LINEAR MEASUREMENT ACTIVITIES

Metre, Centimetre, Millimetre

I. THE METRE (m)

A. DEVELOP A FEELING FOR THE SIZE OF A METRE

1. Pick up one of the metre sticks and stand it up on the floor. Hold it in place with one hand. Walk around the stick. Now stand next to the stick. With your other hand, touch yourself where the top of the metre stick comes on you.

THAT IS HOW HIGH A METRE IS!
2. Hold one arm out straight at shoulder height. Put the metre stick along this arm until the end hits the end of your fingers. Where is the other end of the metre stick? Touch yourself at that end.

THAT IS HOW LONG A METRE IS!

THE CENTER FOR VOCATIONAL EDUCATION
3. Choose a partner to stand at your side. Move apart so that you can put one end of a metre stick on your partner's shoulder and the other end on your shoulder. Look at the space between you.

THAT IS THE WIDTH OF A METRE!

B. DEVELOP YOUR ABILITY TO ESTIMATE IN METRES

Now you will improve your ability to estimate in metres. Remember where the length and height of a metre was on your body.

For each of the following items:

Estimate the size of the items and write your estimate in the ESTIMATE column. Measure the size with your metre stick and write the answer in the MEASUREMENT column.

Decide how close your estimate was to the actual measure. If your estimate was within 25% of the actual measure you are a "Metric Marvel."

Estimate	How Close
(m)	Measurement
(m)	

1. Height of door knob from floor.
(m)
(m)
. Height of door.
2. Length of table.
3. Width of table.
4. Length of wall of this room.
5. Distance from you to wall

II. THE CENTIMETRE (cm)

There are 100 centimetres in one metre. If there are 4 metres and 3 centimetres, you write $403 \mathrm{~cm}[(4 \times 100 \mathrm{~cm})+3 \mathrm{~cm}=400 \mathrm{~cm}$ $+3 \mathrm{~cm}]$.

A. DEVELOP A FEELING FOR THE SIZE OF A CENTIMETRE

1. Hold the metric ruler against the width of your thumbnail. How wide is it? \qquad cm
2. Measure your thumb from the first joint to the end.
\qquad cm
3. Use the metric ruler to find the width of your palm.
\qquad cm
4. Measure your index or pointing finger. How long is it?
\qquad cm
5. Measure your wrist with a tape measure. What is the distance around it? \qquad cm
6. Use the tape measure to find your waist size. \qquad cm
B. DEVELOP YOUR ABILITY TO ESTIMATE IN CENTIMETRES

You are now ready to estimate in centimetres. For each of the following items, follow the procedures used for estimating in metres.

How Close

Estimate	Measurement
(cm)	(cm)

1. Length of a paper clip.
2. Diameter (width) of a coin.
3. Width of a postage stamp.
4. Length of a pencil.
5. Width of a sheet of paper.
\qquad .

a sheet

\square
\qquad

III. THE MILLIMETRE (mm)

There are 10 millimetres in one centimetre When a measurement is 2 centimetres and 5 millimetres, you write 25 mm [($2 \times 10 \mathrm{~mm}$)
$+5 \mathrm{~mm}=20 \mathrm{~mm}+5 \mathrm{~mm}$]. There are 1000 mm in 1 m .
A. DEVELOP A FEELING FOR THE SIZE OF A MILLIMETRE

Using a ruler marked in millimetres, measure:

1. Thickness of a paper clip wire. \qquad mm
2. Thickness of your fingernail. \quad mm
3. Width of your fingernail.
$\longrightarrow \mathrm{mm}$
4. Diameter (width) of a coin. \qquad mm
5. Diameter (thickness) of your pencil. \qquad mm
6. Width of a postage stamp. $\quad \mathrm{mm}$
B. DEVELOP YOUR ABILITY TO ESTIMATE IN MILLIMETRES

You are now ready to estimate in millimetres. For each of the following items, follow the procedures used for estimating in metres.

| Estimate
 (mm) | Measurement
 (mm) |
| :---: | :---: | | How Close |
| :---: |
| Were You? |

2. Diameter (thickness) of a bolt.
3. Length of a bolt.
\longrightarrow

4. Width of a sheet of paper.
5. Thickness of a board or desk top.
6. Thickness of a button.

AREA MEASUREMENT ACTIVITIES

Square Centimetre, Square Metre

WHEN YOU DESCRIBE THE AREA OF SOMETHING, YOU ARE SAYING HOW MANY SQUARES OF A GIVEN SIZE IT TAKES TO COVER THE SURFACE.
I. THE SQUARE CENTIMETRE $\left(\mathrm{cm}^{2}\right)$
A. DEVELOP A FEELING FOR A SQUARE CENTIMETRE

1. Take a clear plastic grid, or use the grid on page 6.
2. Measure the length and width of one of these small squares with a centimetre ruler.

THAT IS ONE SQUARE CENTIMETRE!

3. Place your fingernail over the grid. About how many squares does it take to cover your fingernail?
\qquad
4. Place a coin over the grid. About how many squares does it take to cover the coin? \qquad cm^{2}
5. Place a postage stamp over the grid. About how many squares does it take to cover the postage stamp?

$$
\ldots \quad \mathrm{cm}^{2}
$$

6. Place an envelope over the grid. About how many squares does it take to cover the envelope?

$$
\ldots
$$

7. Measure the length and width of the envelope in centimetres. Length \qquad cm; width \qquad cm. Multiply to find the area in square centimetres. cm x \qquad $\mathrm{cm}=$ \qquad cm^{2}. How
close are the answers you have in 6 . and in 7.?
B. DEVELOP YOUR ABILITY TO ESTIMATE IN SQUARE CENTIMETRES

You are now ready to develop your ability to estimate in square centimetres.

Remember the size of a square centimetre. For each of the following items, follow the procedures used for estimating in metres.

How Close
Estimate
$\left(\mathrm{cm}^{2}\right)$
$\left(\mathrm{cm}^{2}\right)$

1. Index card. \qquad
\qquad
2. Book cover.
3. Photograph.
4. Window pane or desk top.
II. THE SQUARE METRE (m^{2})
A. DEVELOP A FEELING FOR A SQUARE METRE
5. Tape four metre sticks together to make a square which is one metre long and one metre wide.
6. Hold the square up with one side on the floor to see how big it is.
7. Place the square on the floor in a corner. Step back and look. See how much floor space it covers.
8. Place the square over a table top or desk to see how much space it covers.
9. Place the square against the bottom of a door. See how much of the door it covers. How many squares would it take to cover the door? \qquad m^{2}
THIS IS HOW BIG A SQUARE METRE IS!
B. DEVELOP YOUR ABILITY TO ESTIMATE IN SQUARE METRES

You are now ready to estimate in square metres. Follow the procedures used for estimating in metres.

	Estimate $\left(\mathrm{m}^{2}\right)$	Measurement (m^{2})	How Close Were You?
1. Door.			
2. Full sheet of newspaper.			
3. Chalkboard or bulletin board.			
4. Floor.			
5. Wall.			
6. Wall chart or poster.			
7. Side of file cabinet.			

VOLUME MEASUREMENT ACTIVITIES

Cubic Centimetre, Litre, Millilitre, Cubic Metre

I. THE CUBIC CENTIMETRE (cm^{3})
A. DEVELOP A FEELING FOR THE CUBIC CENTINETRE

1. Pick up a colored plastic cube. Measure its length, height, and width in centimetres.

THAT IS ONE CUBIC CENTMETRE:

2. Find the volume of a plastic litre box.
a. Place a ROW of cubes against the bottom of one side of the box. How many cubes fit in the row? \qquad
b. Place another ROW of cubes against an adjoining side of the box. How many rows fit inside the box to make one layer of cubes? \qquad
How many cubes in each row? \qquad
How many cubes in the layer in the bottom of the box? \qquad
c. Stand a ROW of cubes up against the side of the box.

How many LAYERS would fit in the box? \qquad
How many cubes in each layer? \qquad
How many cubes fit in the box altogether? \qquad
THE VOLUME OF THE BOX IS \qquad CUBIC CENTIMETRES.
d. Measure the length, width, and height of the box in centimetres. Length \qquad cm ; width \qquad cm ; height \qquad cm . Multiply these numbers to find the volume in cubic centimetres.cm x \qquad cm x \qquad $\mathrm{cm}=$ \qquad cm^{3}.
Are the answers the same in c.and d.?
B. DEVELOP YOUR ABILTY TO ESTMATE IN CUBIC CENTIMETRES

You are now ready to develop your ability to estimate in cubic centimetres.

Remember the size of a cubic centimetre. For each of the following items, use the procedures for estimating in metres.

Estimate	Measurement	How Close $\left(\mathrm{cm}^{3}\right)$
$\left(\mathrm{cm}^{3}\right)$		

1. Index card file box.
2. Freezer container. \qquad
3. Paper clip box.
4. Box of staples.
II. THE LITRE (1)
A. DEVELOP A FEELING FOR A LITRE
5. Take a one litre beaker and fill it with water.
6. Pour the water into paper cups, filling each as full as you usually do. How many cups do you fill?
THAT IS HOW MUCH IS IN ONE LITRE?
7. Fill the litre container with rice.

THAT IS HOW MUCH IT TAKES TO FILL A ONE LITRE CONTAINER!

B. DEVELOP YOUR ABILITY TO ESTMATE IN LITRES

You are now ready to develop your ability to estimate in litres. To write two and one-half litres, you write 2.51 , or 2.5 litres. To write one-half litre, you write 0.51 , or 0.5 litre. To write two and three-fourths litres, you write 2.75 l, or 2.75 litres.

For each of the following items, use the procedures for estimating in metres.

$\underset{\text { (1) }}{\text { Estimate }} \quad \underset{\text { (1) }}{\text { Measurement }} \quad$| How Close |
| :--- |\quad| Were You? |
| :--- |

1. Medium-size freezer container.
2. Large freezer container.
3. Small freezer container.
\qquad
III. THE MILLITITRE (ml)

There are 1000 mililitres in one litre. $1000 \mathrm{ml}=1$ litre. Haif a litre is 500 millilitres, or 0.5 litre $=500 \mathrm{ml}$.
A. DEVELOP A FEELING FOR A MILLILITRE

1. Examine a centimetre cube. Anything which holds $1 \mathrm{~cm}^{3}$ holds 1 ml .
2. Fill a 1 mililitre measuring spoon with rice. Empty the spoon into your hand. Carefully pour the rice into a small pile on a sheet of paper.
THAT IS HOW MUCH ONE MLLLILITRE IS!
3. Fill the 5 ml spoon with rice. Pour the rice into another pile on the sheet of paper.
THAT IS 5 MLLLILITRES, OR ONE TEASPOON:
4. Fill the 15 ml spoon with rice. Pour the rice into a third plie on the paper.
THAT IS 15 MLLLILITRES, OR ONE TABLESPOON!
B. DEVELOP YOUR ABILITY TO ESTIMATE IN MLLLILITRES

You are now ready to estimate in milililitres. Follow the procedures used for estimating metres.

Estimate (ml)
Measurement (ml)

IV. THE CUBIC METRE (m^{3})
A. DEVELOP A FEELING FOR A CUBIC METRE

1. Place a one metre square on the floor next to the wali.
2. Measure a metre UP the wall.
3. Picture a box that would fit into that space.

THAT IS THE VOLUME OF ONE CUBIC METRE:
B. DEVELOP YOUR ABILITY TO ESTIMATE IN CUBIC METRES

For each of the following items, follow the estimating procedures used before.

How Close
$\underset{\left(\mathrm{m}^{3}\right)}{\text { Estimate }} \underset{\left(\mathrm{m}^{3}\right)}{\text { Measurement }}$ Were You?

1. Office desk.

MASS (WEIGHT) MEASUREMENT ACTIVITIES

Kilogram, Gram

The mass of an object is a measure of the amount of matter in the object. This amount is always the same unless you add or subtract some matter from the object. Weight is the term that most people use when they mean mass. The weight of an object is affected by gravity; the mass of an object is not. For example, the weight of a person on earth might be 120 pounds; that same person's weight on the moon would be 20 pounds. This difference is because the pull of gravity on the moon is less than the pull of gravity on earth. A person's mass on the earth and on the moon would be the same. The metric system does not measure weight--it measures mass. We will use the term mass here.

The symbol for gram is g.
The symbol for kilogram is kg.
There are 1000 grams in one kilogram, or $1000 \mathrm{~g}=1 \mathrm{~kg}$.
Half a kilogram can be written as 500 g , or 0.5 kg .
A quarter of a kilogram can be written as 250 g ,or 0.25 kg .
Two and three-fourths kilograms is written as 2.75 kg .

I. THE KILOGRAM (kg)

DEVELOP A FEELING FOR THE MASS OF A KILOGRAM

Using a balance or scale, find the mass of the items on the table. Before you find the mass, notice how heavy the object "feels" and compare it to the reading on the scale or balance.

Abstract

Mass 1. 1 kilogram box. 2. Textbook. 3. Bag of sugar. 4. Package of paper. 5. Your own mass. \qquad B. DEVELOP YOUR ABILITY TO ESTIMATE IN KILOGRAMS

For the following items ESTIMATE the mass of the object in kilograms, then use the scale or balance to find the exact mass of the object. Write the exact mass in the MEASUREMENT column. Determine how close your estimate is:

How Close
Estimate Measurement Were You?
(kg)
(kg)

1. Bag of rice.
2. Bag of nails.
3. Large purse or briefcase.
4. Another person.
5. A few books.
II. THE GRAM (g)
A. DEVELOP A FEELING FOR A GRAM
6. Take a colored plastic cube. Hold it in your hand. Shake the cube in your palm as if shaking dice. Feel the pressure on your hand when the cube is in motion, then when it is not in motion.

THAT IS HOW HEAVY A GRAM IS!
2. Take a second cube and attach it to the first. Shake the cubes in first one hand and then the other hand; rest the cubes near the tips of your fingers, moving your hand up and down.
THAT IS THE MASS OF TWO GRAMS!
3. Take five cubes in one hand and shake them around.

THAT IS THE MASS OF FIVE GRAMS!
B. DEVELOP YOUR ABILITY TO ESTIMATE IN GRAMS

You are now ready to improve your ability to estimate in grams. Remember how heavy the 1 gram cube is, how heavy the two gram cubes are, and how heavy the five gram cubes are. For each of the following items, follow the procedures used for estimating in kilograms.

Degree Celsius

I. DEGREE CELSIUS $\left({ }^{\circ} \mathrm{C}\right)$

Degree Celsius $\left({ }^{\circ} \mathrm{C}\right)$ is the metric measure for temperature.
A. DEVELOP A FEELING FOR DEGREE CELSIUS

Take a Celsius thermometer. Look at the marks on it.

1. Find 0 degrees.

WATER FREEZES AT ZERO DEGREES CELSIUS $\left(0^{\circ} \mathrm{C}\right)$ WATER BOILS AT 100 DEGREES CELSIUS $\left(100^{\circ} \mathrm{C}\right)$
2. Find the temperature of the room. \qquad ${ }^{\circ} \mathrm{C}$. Is the room cool, warm, or about right?
3. Put some hot water from the faucet into a container. Find the temperature. \qquad ${ }^{\circ} \mathrm{C}$. Dip your finger quickly in and out of the water. Is the water very hot, hot, or just warm?
4. Put some cold water in a container with a thermometer. Find the temperature. \qquad ${ }^{\circ} \mathrm{C}$. Dip your finger into the water. Is it cool, cold, or very cold?
5. Bend your arm with the inside of your elbow around the bottom of the thermometer. After about three minutes find the temperature. \qquad ${ }^{\circ} \mathrm{C}$. Your skin temperature is not as high as your body temperature.
NORMAL BODY TEMPERATURE IS 37 DEGREES CELSIUS ($37^{\circ} \mathrm{C}$).

A FEVER IS $39^{\circ} \mathrm{C}$.
A VERY HIGH FEVER IS $40^{\circ} \mathrm{C}$.
B. DEVELOP YOUR ABILITY TO ESTIMATE IN DEGREES CELSIUS

For each item, ESTIMATE and write down how many degrees Celsius you think it is. Then measure and write the MEASUREMENT. See how close your estimates and actual measurements are.

How Close
Estimate Measurement Were You?

1. Mix some hot and cold water in a container. Dip your finger into the water.
2. Pour out some of the water. Add some hot water. Dip your finger quickly into the water.
3. Outdoor temperature. \qquad
4. Mix of ice and water.
5. Temperature at floor.
6. Temperature at ceiling.

UNIT

OBJECTIVES

The student will recognize and use the metric terms, units, and symbols used in this occupation.

- Given a metric unit, state its use in this occupation.
- Given a measurement task in this occupation, select the appropriate metric unit and measurement tool.

SUGGESTED TEACHING SEQUENCE

1. Assemble metric measurement tools (rules, tapes, scales, thermometers, etc.) and objects related to this occupation.
2. Discuss with students how to read the tools.
3. Present and have students discuss Information Sheet 2 and Table 2.
4. Have students learn occupationallyrelated metric measurements by completing Exercises 6 and 7.
5. Test performance by using Section A of "Testing Metric Abilities."

METRICS IN THIS OCCUPATION

Changeover to the metric system is under way. Large corporations are already using metric measurement to compete in the world market. The metric system has been used in various parts of industrial and scientific communities for years. Legislation, passed in 1975, authorizes an orderly transition to use of the metric system. As businesses and industries make this metric changeover, employees will need to use metric measurement in job-related tasks.

Table 2 lists those metric terms which are most commonly used in this occupation. These terms are replacing the measurement units used currently. What kinds of jobrelated tasks use measurement? Think of the many different kinds of measurements you now make and use Table 2 to discuss the metric terms which replace them. See if you can add to the list of uses beside each metric term.

Quantity	Unit	Symbol	Use
Length	millimetre	mm	drill bit sizes, length and diameter of fasteners, pipe, tube, duct sizes
	centimetre	cm	pipe, tube, duct length, stack height
	metre	m	
Area	square centimetre	cm^{2}	floor space, window and door openings, coil surfaces, roof and ceiling area, grille sizes
	square metre	m^{2}	
Volume/Capacity	cubic centimetre	cm^{3}	combustion air, storage capacity of cylinders and tanks, air in duct
	cubic metre	m^{3}	volume of air in a space to be cooled, heated, or exhausted; capacity of cylinders and tanks
	millilitre	mI	volume of liquids, gases and chemicals, equipment capacities
	litre	1	volume of fluids, gases, or chemicals, equipment or system capacities
Mass	gram	g	amount of charge in a receiver
	kilogram	kg	
	metric ton	t	shipping "weight"
Pressure	kilopascals	kPa	tire pressure, pressure in a system
Temperature	degree Celsius	${ }^{\circ} \mathrm{C}$	air, water, refrigerant
Density	milligrams per cubic metre	$\mathrm{mg} / \mathrm{m}^{3}$	industrial hygiene standards for fumes, mists, and dusts
Quantity of heat	kilojoule	kJ	ability of equipment to produce warm air
Velocity	metres per second	m / s	speed of air or liquid through a system
Flow	cubic metres per second	$\mathrm{m}^{3} / \mathrm{s}$	measures of air exchange in a region, exhaust and air exchange system ratings

Further Metric Units ref. ASHRAE Fundamental Handbook, 1972.

Table 2

To give you practice with metric units, first estimate the measurements of the items below. Write down your best guess next to the item. Then actually measure the item and write down your answers using the correct metric symbols. The more you practice, the easier it will be.

	Estimate	Actual
Length 1. Palm width		
2. Hand span		
3. Your height		
4. Ceiling height		
5. Width of paper clip		
6. Diameter of round duct		
7. Width of this room		
8. Diameter of small tubing		
9. Length of a full joint of pipe		
Area 10. Desk top		
11. Classroom floor		
12. Opening of a duct		
13. Evaporator		
14. Windows of classroom		
Volume/Capacity		
15. Fire extinguisher		

	Estimate	Actual
16. Measuring cup (metric)		
17. Milk container		
18. Refrigerator		
19. Accumulator		
20. Iron pipe		
21. Tool box		
22. Paint can		
Mass 23. Textbook		
24. A litre of refrigerant 12		
25. Yourself		
26. Paper clip		
27. Spool of solder		
28. LP gas container		
Temperature 29. Room		
30. Outside		
31. Cold tap water		
32. Hot tap water		

COOLING WITH METRICS

It is important to know what metric measurement to use. Show what measurement to use in the following situations.

| 1. Capacity of nitrogen cylinder | |
| :--- | :--- | :--- |
| 2. Volume of small expansion tank | |
| 3.Center-to-center distance of
 assembled pipe
 4.End-to-center distance of
 assembled pipe
 5. Back-to-back distance of
 assembled duct | |
| 6.Amount of water in a cooling
 tower | |
| 7.Amount of compressor oil in
 a partly filled container | |
| 8.Measure the length of several
 cut rolls of soft copper tube | |
| 9.Volume of the classroom or
 work area | |
| 10.Calculate the displacement of
 a compressor | |
| 11.Setting the temperature of
 food freezer | |
| 12.Suction and discharge pressure
 of a refrigeration system | |
| 13.Temperature of air at the
 condenser inlet and outlet | |

| 14.Temperature of the inlet and outlet
 water of a condensor | |
| :--- | :--- | :--- |
| 15.Calculate and estimate the air con-
 ditioning requirements of a small
 house. | |

15. Calculate and estimate the air conditioning requirements of a small house.

THE CENTER FOR VOCATIONAL EDUCATION

HEATING WITH METRICS

It is important to know what metric measurement to use. Show what measurement to use in the following situations.	
1. Capacity of fuel oil tank	
2. Area for setting small furnace	
3. Rough-in height for furnace flue	
4. Center-to-center distance of assembled duct	
5. Back-to-back distance of assembled duct	
6. Air-flow rate of assembled duct	
7. Proper transition between different duct size	
8. Air-velocity of small blower	
9. Layout of a heating system: a. Forced air	
b. Hot water or steam	
c. Electric baseboard	
10. Determine heat loss in duct due to friction	
11. Determine piping sizes of: a. Hot water	
b. Steam	
12. Calculate relative humidity	

| 13.Measuring the pressure in a
 duct | |
| :--- | :--- | :--- |
| 14. Measuring size of boiler | |
| 15. Figuring insulation requirements | |
| 16.Calculate and estimate heating
 requirements of a small house | |

It is important to know what metric measurement to use. Show what measurement to use in the following situations.

1. Volume of round duct	
2. Rough opening for roof-top ventilator	
3. Center-to-center length of assembled duct	
4. Back-to-back length of assembled duct	
5. Air flow of assorted grilles	
6. Surface of assorted grilles	
7. Capacity of classroom or work region	
8. Velocity in a duct	
9. Loss in duct due to friction	
10. Layout of a ductwork system: a. Lengths	
b. Diameters	
c. Grille sizes	
d. Diffusers	
e. Supports, brackets and hangers	
11. Determining flow	
12. Hygiene standards for dust	

13. Amount of air in a duct	
14.Calculate and estimate ventilating requirements of a classroom	

UNIT

OBJECTIVE

The student will recognize and use met ric equivalents.

- Given a metric unit, state an equivalent in a larger or smaller metric unit.

SUGGESTED TEACHING SEQUENCE

1. Make available the Information Sheets (3-8) and the associated Exercises (8-14), one at a time.
2. As soon as you have presented the Information, have the students complete each Exercise.
3. Check their answers on the page titled ANSWERS TO EXERCISES AND TEST.
4. Test performance by using Section B of "Testing Metric Abilities."

METRIC-METRIC EQUIVALENTS

Centimetres and Millimetres

Look at the picture of the nail next to the ruler. The nail is 57 mm long. This is $5 \mathrm{~cm}+7 \mathrm{~mm}$. There are 10 mm in each cm , so $1 \mathrm{~mm}=0.1 \mathrm{~cm}$ (one-tenth of a centimetre). This means that
$7 \mathrm{~mm}=0.7 \mathrm{~cm}$, so $57 \mathrm{~mm}=5 \mathrm{~cm}+7 \mathrm{~mm}$
$=5 \mathrm{~cm}+0.7 \mathrm{~cm}$
$=5.7 \mathrm{~cm}$. Therefore 57 mm is the same as 5.7 cm .
Now measure the paper clip. It is 34 mm . This is the same as $3 \mathrm{~cm}+$ \qquad mm. Since each millimetre is 0.1 cm (one-tenth of a centimetre), $4 \mathrm{~mm}=$ \qquad cm . So, the paper clip is $34 \mathrm{~mm}=3 \mathrm{~cm}+4 \mathrm{~mm}$
$=3 \mathrm{~cm}+0.4 \mathrm{~cm}$
$=3.4 \mathrm{~cm}$. This means that 34 mm is the same as 3.4 cm .
Information Sheet 3

Now you try some.
a) $26 \mathrm{~mm}=$ \qquad cm
b) $583 \mathrm{~mm}=$ \qquad cm
c) $94 \mathrm{~mm}=$ \qquad cm
d) $680 \mathrm{~mm}=$ \qquad cm
e) $132 \mathrm{~mm}=\ldots \mathrm{cm}$
f) $802 \mathrm{~mm}=$ \qquad cm
g) 1400 mm \qquad cm

Metres, Centimetres, and Millimetres

There are 100 centimetres in one metre. Thus,

$$
\begin{aligned}
& 2 \mathrm{~m}=2 \mathrm{x} 100 \mathrm{~cm}=200 \mathrm{~cm}, \\
& 3 \mathrm{~m}=3 \mathrm{z} 100 \mathrm{~cm}=300 \mathrm{~cm} \text {, } \\
& 8 \mathrm{~m}=8 \times 100 \mathrm{~cm}=800 \mathrm{~cm} \text {, } \\
& 36 \mathrm{~m}=36 \times 100 \mathrm{~cm}=3600 \mathrm{~cm} \text {. }
\end{aligned}
$$

There are 1000 millimetres in one metre, so

$$
\begin{aligned}
& 2 \mathrm{~m}=2 \mathrm{x} 1000 \mathrm{~mm}=2000 \mathrm{~mm} \text {, } \\
& 3 \mathrm{~m}=3 \times 1000 \mathrm{~mm}=3000 \mathrm{~mm} \text {, } \\
& 6 \mathrm{~m}=6 \times 1000 \mathrm{~mm}=6000 \mathrm{~mm} \\
& 24 \mathrm{~m}=24 \times 1000 \mathrm{~mm}=24000 \mathrm{~mm} \text {. }
\end{aligned}
$$

From your work with decimals you should know that
one-half of a metre can be written 0.5 m (five-tenths of a metre), one-fourth of a centimetre can be written 0.25 cm
(twenty-five hundredths of a centimetre).
This means that if you want to change three-fourths of a metre to millimetres, you would multiply by 1000 . So

$$
0.75 \mathrm{~m}=0.75 \times 1000 \mathrm{~mm}
$$

$=\frac{75}{100} \times 1000 \mathrm{~mm}$
$=75 \times \frac{1000}{100} \mathrm{~mm}$
$=75 \times 10 \mathrm{~mm}$
$=750 \mathrm{~mm}$. This means that $0.75 \mathrm{~m}=750 \mathrm{~mm}$.
Information Sheet 4
Fill in the following chart.

metre m	centimetre cm	millimetre mm
1	100	1000
2	200	
3		
9		5000
74	80	
0.8	2.5	25
0.6		148
	639	

Millilitres to Litres

There are 1000 millilitres in one litre. This means that
2000 millilitres is the same as 2 litres,
3000 ml is the same as 3 litres,
4000 ml is the same as 4 litres,
12000 ml is the same as 12 litres.
Since there are 1000 millilitres in each litre, one way to change millilitres to litres is to divide by 1000 . For example,

Or $\quad 1000 \mathrm{ml}=\frac{1000}{1000}$ litre $=1$ litre. $2000 \mathrm{ml}=\frac{2000}{1000}$ litres $=2$ litres
And, as a final example,
$28000 \mathrm{ml}=\frac{28000}{1000}$ litres $=28$ litres.
What if something holds 500 ml ? How many litres is this? This is worked the same way.

$$
\begin{aligned}
& 500 \mathrm{ml}=\frac{500}{1000} \text { litre }=0.5 \text { litre (five-tenths of a litre). So } 500 \mathrm{ml} \\
& \text { is the same as one-half }(0.5) \text { of a litre. }
\end{aligned}
$$

Change 57 millilitres to litres.
$57 \mathrm{ml}=\frac{57}{1000}$ litre $=0.057$ litre $($ fifty-seven thousandths of a litre).

Information Sheet 5
Now you try some. Complete the following chart.

millilitres (ml)	litres (1)
3000	3
6000	
	8
14000	
	23
300	0.3
700	
	0.9
250	
275	

Litres to Millilitres

What do you do if you need to change litres to millilitres? Remember, there are 1000 millilitres in one litre, or 1 litre $=1000 \mathrm{ml}$.

So,

2	2	$\times 1000$
7	litres $=7$	$\mathrm{x} 1000 \mathrm{ml}=7000$
13	litres $=13$	$\times 1000 \mathrm{ml}=13000$
	re	$000 \mathrm{ml}=650$

Information Sheet 6
Now you try some. Complete the following chart.

litres 1	millilitres ml
8	8000
5	
46	32000
0.4	
0.53	480

Exercise 11

Grams to Kilograms

There are 1000 grams in one kilogram. This means that

$$
\begin{aligned}
& 2000 \text { grams is the same as } 2 \text { kilograms, } \\
& 5000 \mathrm{~g} \text { is the same as } 5 \mathrm{~kg} \text {, } \\
& 700 \mathrm{~g} \text { is the same as } 0.7 \mathrm{~kg} \text {, and so on. }
\end{aligned}
$$

To change from grams to kilograms, you use the same procedure for changing from millilitres to litres.

Try the following ones.

grams g	kilograms kg
4000	4
9000	
23000	
300	8
275	

Information Sheet 7

Kilograms to Grams

To change kilograms to grams, you multiply by 1000 .

$$
\begin{array}{r}
4 \quad \mathrm{~kg}=4 \quad \times 1000 \mathrm{~g}=4000 \mathrm{~g}, \\
23 \quad \mathrm{~kg}=23 \times 1000 \mathrm{~g}=23000 \mathrm{~g}, \\
0.75 \mathrm{~kg}=0.75 \times 1000 \mathrm{~g}=750 \mathrm{~g} .
\end{array}
$$

Information Sheet 8
Complete the following chart.

kilograms kg	grams g
7	7000
11	25000
0.4	
0.63	175

Changing Units at Work

Some of the things you use in this occupation may be measured in different metric units. Practice changing each of the following to metric equivalents by completing these statements.
a) 500 cm of wire is \qquad m
b) 250 ml of solution is \qquad 1
c) 5 cm diameter pipe is mm
d) 2500 g of insulating wool is
e) 120 mm duct is cm
f) 0.25 litre of compressor oil is ml
g) 2000 kg of sand is \qquad ml
h) 0.5 litre of concentrate is $\quad \mathrm{ml}$
i) 2 m board is
j) 500 g of solder i mm kg
k) 500 ml flux is \qquad kg
l) 0.5 t of cement is kg
m) 10 m of wire is \qquad
n) 2.5 cm diameter pipe is cm
o) 2400 mm wall panel length is mm cm
p) 8 mm screw is cm

SELECTING AND USING
 METRIC INSTRUMENTS , TOOLS AND DEVICES

Selecting an improper tool or misreading a scale can result in an improper sales form, damaged materials, or injury to self or feliow workers. For example, putting 207 pounds per square inch of pressure (psi) in a truck tire designed for 207 kilopascals (about 30 psi) could cause a fatal accident. Here are some suggestions:

1. Find out in advance whether Customary or metric units, tools, instruments, or products are needed for a given task.
2. Examine the tool or instrument before using it.
3. The metric system is a decimal system. Look for units marked off in whole numbers, tens or tenths, hundreds or hundredths.
4. Look for metric symbols on the tools or gages such as $\mathrm{m}, \mathrm{mm}, \mathrm{kg}, \mathrm{g}, \mathrm{kPa}$, etc.
5. Look for decimal fractions (0.25) or decimal mixed fractions (2.50) rather than common fractions ($3 / 8$) on drill bits, feeler gages, etc.
6. Some products may have a special metric symbol such as a block M to show they are metric.
7. Don't force bolts, wrenches, or other devices which are not fitting properly.
8. Practice selecting and using tools, instruments, and devices.

WHICH TOOLS FOR THE JOB?

Practice and prepare to demonstrate your ability to identify, select, and use metric-scaled tools and instruments for the tasks given below. You should be able to use the measurement tools to the appropriate precision of the tool, instrument, or task.

Select and demonstrate or describe use of tools, instruments, or devices to:

1. Order pre-mixed concrete for a compressor slab 1 metre square and 10 cm thick.
2. Measure the w.b. temperature of your classroom.
3. Measure the d.b. temperature of your classroom.
4. Measure the water temperature of your building.
5. Describe the difference between a customary and a metric tube cutter.
6. Construct a suction line trap.
7. Determine the relative humidity of your classroom.
8. Determine area of classroom ceiling (roof).
9. Measure area of a window in your classroom.
10. Measure area of a door in your classroom.
11. Measure supply and return openings.
12. Measure the velocity in a duct system.

MEASURING UP IN AIR CONDITIONING/REFRIGERATION

For the tasks below, estimate the metric measurement to within 20% of actual measurement, and verify the estimation by measuring to within 2% of actual measurement.

	Estimate	Verify
1. Work space or bench large enough for pipe or duct assembly		
2. Volume of a tool box		
3. Capacity of a refrigerant cylinder		
4. Find the largest available entry into the classroom		
5. Construct two parallel lines of rigid copper tubing and connect together with 45° offset		
6. Amount of square duct necessary to extend the width of the classroom		
7. Determine the ambient temperature of the classroom		
8. Size of grilles: a. Length		
b. Width		
9. Measure the air velocity at a grille		
10. Find the air exchange rate for a room		

WHICH TOOLS FOR THE JOB?

Practice and prepare to demonstrate your ability to identify, select, and use metric-scaled tools and instruments for the tasks given below. You should be able to use the measurement tools to the appropriate precision of the tool, instrument, or task.

Select and demonstrate or describe use of tools, instruments, or devices to:

1. Describe the difference between a Customary and a metric hack saw.
2. Demonstrate notching, marking, and installing top collars.
3. Demonstrate how to measure, cut, and assemble 142 cm of 150 mm round
4. Measure and cut insulation for 142 cm of 150 mm round.
5. List the dimensional information in metric necessary to calculate heat loss for your classroom.
6. Measure the outside air temperature and inside air temperature and describe the difference.
7. Measure the air flow from a duct in your classroom.
8. Ordering diffusers, registers and other supplies.
9. Figuring damper sizes.
10. Adjusting a thermostat.
11. Measuring hot water pressure pressure.

MEASURING UP IN HEATING
For the tasks below, estimate the metric measurement to within 20% of actual measurement, and verify the estimation by measuring to within 2% of actual measurement.

	Estimate	Verify
1. Work space or bench large enough for duct assembly		
2. Volume of a tool box		
3. Volume of a distribution		
4. Amount of duct necessary to ex- tend wall to wall of classroom		
5. Find the largest available entry into classroom		
6.Construct two different sized runs and connet together with proper transition 7. Heat loss for classroom or work space		
8. Capacity of fuel tank		
9. Sizes of different grills		
a. Length		
b. Width		
10. Sizes of diffusers		
a. Length		
b. Width	Exercise	
c. Diameter		

WHICH TOOLS FOR THE JOB?

Practice and prepare to demonstrate your ability to identify, select, and use metric-scaled tools and instruments for the tasks given below. You should be able to use the measurement tools to the appropriate precision of the tool, instrument, or task.

1. Draw, layout, and fabricate the following:
a. Straight rectangular duct.
b. Straight round duct.
c. Simple square ell.
d. Simple round heel ell.
e. Reducing ell.
f. EIl's other than 90°.
2. Demonstrate cutting, seaming, joining square duct.
3. Measure and cut insulation for square duct.
4. Ordering diffusers, registers and other supplies.
5. Figuring damper sizes.
6. Measuring supply and return openings.
7. Measuring the velocity in ducts.

MEASURING UP IN VENTILATING

For the tasks below, estimate the metric measurement to within 20% of actual measurement, and verify the estimation by measuring to within 2% of actual measurement.

	Estimate	Verify
1. Workspace or bench large enough for duct assembly		
2. Area of roof over classroom		
3. Area of windows of classroom		
4. Volume of classroom		
5. Volume of a tool box		
6. Find the largest available entry into classroom		
7. Construct two duct runs of different sizes and connect together with proper transition		
8. Size of grilles: a. Length		
b. Width		
9. Size of filters: a. Length		
b. Width		
c. Thickness		
[-_		

OBJECTIVE

The student will recognize and use metric and Customary units interchangeably in ordering, selling, and using products and supplies in this occupation.

- Given a Customary (or metric) measurement, find the metric (or Customary) equivalent on a conversion table.
- Given a Customary unit, state the replacement unit.

SUGGESTED TEACHING SEQUENCE

1. Assemble packages and containers of materials.
2. Present or make available Information Sheet 10 and Table 3.
3. Have students find approximate metric-

Customary equivalents by using
Exercise 17.
4. Test performance by using Section D of "Testing Metric Abilities."

METRIC-CUSTOMARY EQUIVALENTS

During the transition period there will be a need for finding equivalents between systems. Conversion tables list calculated equivalents between the two systems. When a close equivalent is needed, a conversion table can be used to find it. Follow these steps:

1. Determine which conversion table is needed.
2. Look up the known number in the appropriate column; if not listed, find numbers you can add together to make the total of the known number.
3. Read the equivalent(s) from the next column.

Table 3 on the next page gives an example of a metric-Customary conversion table which you can use for practice in finding approximate equivalents. Table 3 can be used with Exercise 17, Part 2 and Part 3.

Below is a table of metric-Customary equivalents which tells you what the metric replacements for Customary units are.* This table can be used with Exercise 17, Part 1 and Part 3. The symbol \approx means "nearly equal to."

$1 \mathrm{~cm} \approx 0.39$ inch	$1 \mathrm{inch} \approx 2.54 \mathrm{~cm}$	$1 \mathrm{ml} \approx 0.2 \mathrm{tsp}$	$1 \mathrm{tsp} \approx 5 \mathrm{ml}$
$1 \mathrm{~m} \approx 3.28$ feet	1 foot $\approx 0.305 \mathrm{~m}$	$1 \mathrm{ml} \approx 0.07 \mathrm{tbsp}$	$1 \mathrm{tbsp} \approx 15 \mathrm{ml}$
$1 \mathrm{~m} \approx 1.09$ yards	$1 \mathrm{yard} \approx 0.91 \mathrm{~m}$	$1 \mathrm{l} \approx 33.8 \mathrm{fl} \mathrm{oz}$	$1 \mathrm{fl} \mathrm{oz} \approx 29.6 \mathrm{ml}$
$1 \mathrm{~km} \approx 0.62$ mile	$1 \mathrm{mile} \approx 1.61 \mathrm{~km}$	$1 \mathrm{l} \approx 4.2 \mathrm{cups}$	1 cup $\approx 237 \mathrm{ml}$
$1 \mathrm{~cm}^{2} \approx 0.16 \mathrm{sq}$ in	$1 \mathrm{sq} \mathrm{in} \approx 6.5 \mathrm{~cm}^{2}$	$11 \approx 2.1 \mathrm{pts}$	$1 \mathrm{pt} \approx 0.47 \mathrm{l}$
$1 \mathrm{~m}^{2} \approx 10.8 \mathrm{sq} \mathrm{ft}$	$1 \mathrm{sq} \mathrm{ft} \approx 0.09 \mathrm{~m}^{2}$	$1 \mathrm{l} \approx 1.06 \mathrm{qt}$	$1 \mathrm{qt} \approx 0.95 \mathrm{l}$
$1 \mathrm{~m}^{2} \approx 1.2 \mathrm{sq} \mathrm{yd}$	$1 \mathrm{sq} \mathrm{yd} \approx 0.8 \mathrm{~m}^{2}$	$1 \mathrm{l} \approx 0.26 \mathrm{gal}$	$1 \mathrm{gal} \approx 3.79 \mathrm{l}$
hectare ≈ 2.5 acres	1 acre ≈ 0.4 hectare	1 gram $\approx 0.035 \mathrm{oz}$	$1 \mathrm{oz} \approx 28.3 \mathrm{~g}$
$1 \mathrm{~cm}^{3} \approx 0.06 \mathrm{cu} \mathrm{in}$	1 cu in $\approx 16.4 \mathrm{~cm}^{3}$	$1 \mathrm{~kg} \approx 2.2 \mathrm{lb}$	$1 \mathrm{lb} \approx 0.45 \mathrm{~kg}$
$1 \mathrm{~m}^{3} \approx 35.3 \mathrm{cu} \mathrm{ft}$	$1 \mathrm{cu} \mathrm{ft} \approx 0.03 \mathrm{~m}^{3}$	1 metric ton $\approx 2205 \mathrm{lb}$	1 ton $\approx 907.2 \mathrm{~kg}$
$1 \mathrm{~m}^{3} \approx 1.3 \mathrm{cu} \mathrm{yd}$	$1 \mathrm{cu} \mathrm{yd} \approx 0.8 \mathrm{~m}^{3}$	$1 \mathrm{kPa} \approx 0.145 \mathrm{psi}$	$1 \mathrm{psi} \approx 6.895 \mathrm{kPa}$

*Adapted from Let's Measure Metric. A Teacher's Introduction to Metric Measurement. Division of Educational Redesign and Renewal, Ohio Department of Education, 65 S . Front Street, Columbus, OH $43215,1975$.

CONVERSION TABLES

SQUARE FEET TO SQUARE METRES

ft^{2}	$\mathrm{~m}^{2}$	ft^{2}	$\mathrm{~m}^{2}$	ft^{2}	$\mathrm{~m}^{2}$
1000	92.90	100	9.29	10	0.93
2000	185.81	200	18.58	20	1.82
3000	278.87	300	27.87	30	0.09
4000	371.61	400	37.16	40	0.79
5000	464.52	500	46.45	50	3.72
6000	557.42	600	55.74	60	4.65
7000	650.32	700	65.03	70	5.57
8000	743.22	800	74.32	80	6.50
9000	836.13	900	83.61	90	7.43

SQUARE METRES TO SQUARE FEET

m^{2}	ft^{2}	$\mathrm{~m}^{2}$	ft^{2}	$\mathrm{~m}^{2}$	ft^{2}	$\mathrm{~m}^{2}$	ft^{2}
100	1076.39	10	107.64	1	10.76	0.1	
200	2152.78	20	215.28	2	21.53	0.2	1.08
300	3229.17	30	322.92	3	32.29	0.3	3.15
400	4305.56	40	430.56	4	43.06	0.4	4.31
500	5381.96	50	538.20	5	53.82	0.5	5.38
600	6458.35	60	645.83	6	64.58	0.6	6.46
700	7534.74	70	753.47	7	75.35	0.7	7.53
800	8611.13	80	861.11	8	86.11	0.8	8.61
900	9687.52	90	968.75	9	96.87	0.9	9.69

Table 3

1. You are working in a shop or on a job site. With the change to metric measurement some of the things you order, sell or use are marked only in metric units. You will need to be familiar with appropriate Customary equivalents in order to communicate with customers and suppliers who use Customary units. To develop your skill use the Table on Information Sheet 10 and give the approximate metric quantity (both number and unit) for each of the following Customary quantities.

Customary Quantity	Metric Quantity
a) 2 lbs. of insulating wool	
b) 4 qts. of compressor oil	
c) $3 / 4$ in. pipe	
d) 10 sq. ft. of floor area	
e) 100 lbs. of asbestos cement	
f) 18 in. round duct	
g) two-gallon can	
h) $4 \mathrm{ft}$. section of duct	
i) 50 ft . of tape	
j) 10 oz. of screws	
k) 2 fl. oz. of spray	
l) 1 pt. contact cleaner	
m) 2 miles	
n $1 / 4$ in. drill bit	
o) 4 in. wide grille	

2. Use the conversion tables from Table 3 to convert the following:

a) $90 \mathrm{ft}^{2}=$	m^{2}	f)	$800 \mathrm{~m}^{2}=$	ft. ${ }^{2}$
b) $30 \mathrm{ft}^{2}=$	m^{2}	g)	$16.2 \mathrm{~m}^{2}=$	ft. ${ }^{2}$
c) $2500 \mathrm{ft.}^{2}=$	m^{2}	h)	$498 \mathrm{~m}^{2}=$	ft. ${ }^{2}$
d) $105 \mathrm{ft} .^{2}=$	m^{2}	i)	$42 \mathrm{~m}^{2}=$	$\mathrm{ft} .{ }^{2}$
e) $63 \mathrm{ft} .^{2}=$	m^{2}	j)	$284 \mathrm{~m}^{2}=$	$\mathrm{ft}.{ }^{2}$

3. Complete the Requisition Form using the items listed. Convert the Customary quantities to metric before filling out the form. Complete all the information (Date, For, Job No., etc.).

Requisition one of each of the following:
a) 1 qt. motor oil
b) $21 / 2$ in. $\times 141 / 4 \mathrm{in}$. vent cover
c) 6 fl. oz. can of silicone spray
d) 5 lbs. of insulating wool
e) 50 ft . roll of $1 / 2 \mathrm{in}$. refrigeration copper tubing
f) roll of 2 in. duct tape
g) 10 lb . drum of R-22

SECTION A

1. One kilogram is about the mass of a :
[A] nickel
[B] apple seed
[C] basketball
[D] Volkswagen "Beetle"
2. A square metre is about the area of:
[A] this sheet of paper
[B] a card table top
[C] a bedspread
[D] a postage stamp
3. Ratings for exhaust fans are normally given in:
[A] millilitres per cubic metre
[B] cubic metres per second
[C] litres per square metre
[D] kilograms per square centimetre
4. The surface opening of ceiling grilles is normally measured in:
[A] kilograms
[B] square centimetres
[C] millimetres
[D] cubic metres
5. The length of bolts is measured in:
[A] litres
[B] millimetres
[C] centimetres
[D] cubic centimetres
6. The amount of charge in a receiver is measured in:
[A] grams
[B] millimetres
[C] metres per second
[D] kilopascals
7. The "sizes" (heating capability) of furnaces are normally stated in:
[A] kilojoules
[B] millimetres
[C] kilopascals
[D] centimetres
8. The correct way to write twenty grams is:
[A] 20 gms
[B] 20 Gm .
[C] 20 g .
[D] 20 g
9. The correct way to write twelve thousand millimetres is:
[A] $12,000 \mathrm{~mm}$.
[B] 12.000 mm
[C] 12000 mm
[D] 12000 mm

SECTION B

10. A $\mathbf{5 0 0}$ millilitre container of flux is the same as:
[A] 0.5 litre
[B] 50 litres
[C] 5 litres
[D] 0.05 litre
11. A grille 20 centimetres wide also has a width of:
[A] 0.2 millimetre
[B] $\mathbf{2 0 0 0} \mathbf{~ m i l l i m e t r e s ~}$
[C] 2 millimetres
[D] 200 millimetres
12. A section of duct 2.4 metres in length also has a length of:
[A] 0.24 centimetre
[B] 240 centimetres
[C] 24 centimetres
[D] 2.4 centimetres

SECTION C

13. For measuring millimetres you would use a:
[A] ruler
[B] scale
[C] container
[D] pressure gage
14. For measuring kilopascals you would use a:
[A] ruler
[B] scale
[C] container
[D] pressure gage
15. Estimate the length of the line segment below:
[A] 23 grams
[B] 6 centimetres
[C] 40 millimetres
[D] 14 pascals
16. Estimate the length of the line segment below:
\longmapsto
[A] 10 millimetres
[B] 4 centimetres
[C] 4 pascals
[D] 23 milligrams

SECTION D

17. The metric unit for liquid measure which replaces the fluid ounce is:
[A] cubic metre
[B] millilitre
[C] gram
[D] litre
18. The metric unit for liquid measure which replaces the gallon is:
[A] litre
[B] kilogram
[C] millilitre
[D] cubic metre
19. The metric unit for heat which replaces the BTU is:
[A] gram
[B] joule
[C] hectare
[D] litre
20. The metric unit for flow which replaces cubic feet per minute is:
[A] kilograms per square centimetre
[B] millilitres per cubic centimetre
[C] millimetres per minute
[D] cubic metres per second

Use this conversion table to
answer questions 21 and 22 .

m^{2}	$\mathrm{ft.}^{2}$	ft^{2}	$\mathrm{~m}^{2}$
1	10.76	1	0.09
2	21.53	2	0.18
3	32.29	3	0.28
4	43.06	4	0.37
5	53.81	5	0.46
6	64.58	6	0.56
7	75.35	7	0.65
8	86.11	8	0.74
9	96.87	9	0.84
10	107.64	10	0.93

21. The equivalent of $14 \mathrm{ft}^{2}$ is:
[A] $0.93 \mathrm{~m}^{2}$
[B] $2.6 \mathrm{~m}^{2}$
[C] $1.3 \mathrm{~m}^{2}$
[D] $37.16 \mathrm{~m}^{2}$
22. The equivalent of $15 \mathrm{~m}^{2}$ is:
[A] $161.45 \mathrm{ft}^{2}{ }^{2}$
[B] $8.73 \mathrm{ft}^{2}$
[C] $973.06 \mathrm{ft}^{2}{ }^{2}$
[D] $97.33 \mathrm{ft}^{2}{ }^{2}$

TESTING METRIC ABILITIES

EXERCISES 1 THRU 6

The answers depend on the items used for the activities.

EXERCISE 7

Currently accepted metric units of measurement for each question are shown in Table 2. Standards in each occupation are being established now, so answers may vary.

EXERCISE 8

a)	2.6 cm	e)	13.2 cm
b)	58.3 cm	f)	80.2 cm
c)	9.4 cm	g)	140.0 cm
d)	68.0 cm	h)	230.7 cm

EXERCISES 9 THRU 13

Tables are reproduced in total. Answers are in parentheses.

Exercise 9

metre m	centimetre cm	millimetre mm
i	100	1000
2	200	(2000)
3	(300)	(3000)
9	(900)	(9000)
(5)	(500)	5000
74	(7400)	(74000)
0.8	80	(800)
0.6	(60)	600
(0.025)	2.5	25
(0.148)	$14.8)$	148
(6.39)	639	$16390)$

Exercise 10

millilitres ml	litres
3000	3
6000	(6)
(8000)	8
14000$)$	(14)
(23000)	23
300	0.3
700	(0.7)
(900)	0.9
250	(0.25)
(470)	0.47
275	(0.275)

Exercise 11

litres 1	millilitres ml
8	8000
5	(5000)
46	(46000)
(32)	32000
0.4	(400)
0.53	(530)
(0.48)	480

Exercise 12

grams g	kilograms kg
4000	4
9000	(9)
23000	(23)
(8000)	8
300	(0.3)
275	(0.275)

Exercise 13

kilograms kg	grams g
7	7000
11	(11000)
(25)	25000
0.4	(400)
0.63	(630)
(0.175)	175

Exercise 14

a)	5 m	i)	0
b)	0.25 litre	j)	0.5 kg
c)	50 mm	k)	0.5 litre
d)	2.5 kg	l)	500 kg
e)	12 cm	m)	1000 cm
f)	250 ml	n)	25 mm
g)	2 t	o)	240 cm
h)	500 ml	p)	0.8 cm

EXERCISES 15 AND 16

The answers depend on the items used for the activities

EXERCISE 17

Part 1

a)	0.90 kg	i)	15.25 m
b)	3.8 litres	j)	283 g
c)	1.905 cm	k)	59.2 ml
d)	$0.9 \mathrm{~m}^{2}$	l)	0.47 litre
e)	45 kg	m)	3.22 km
f)	45.72 cm	n)	0.635 cm
g)	7.58 litres	o)	10.16 cm
h)	1.22 m		

Part 2.

a) $8.36 \mathrm{~m}^{2}$
b) $2.79 \mathrm{~m}^{2}$
c) $232.26 \mathrm{~m}^{2}$
d) $9.75 \mathrm{~m}^{2}$
e) $5.85 \mathrm{~m}^{2}$
f) $8,611.13 \mathrm{ft}^{2}{ }^{2}$
g) 174.37 ft . ${ }^{2}$
h) $5,360.42 \mathrm{ft.}^{2}$
i) $452.09 \mathrm{ft}^{2}{ }^{2}$
j) $3,056.95 \mathrm{ft}^{2}{ }^{2}$

Part 3.

a) 0.95 litre
b) $6.35 \mathrm{~cm} \times 36.195 \mathrm{~cm}$
c) 177.6 ml
d) 2.25 kg
e) $15.25 \mathrm{~m} \times 1.27 \mathrm{~cm}$
f) 5.08 cm
g) 4.5 kg

TESTING METRIC ABILITIES

1.	C	9.	D	17.	B
2.	B	10.	A	18.	A
3.	B	11.	D	19.	B
4.	B	12.	B	20.	D
5.	B	13.	A	21.	C
6.	A	14.	D	22.	A
7.	A	15.	B		
8.	D	16.	A		

1. C
2.

B
11. D 19. B
20. D
4. B
5. B

A
15. B
8. D
16. A

SUGGESTED METRIC TOOLS AND DEVICES
 NEEDED TO COMPLETE MEASUREMENT TASKS
 IN EXERCISES 1 THROUGH 5
 (* Optional)

LINEAR

Metre Sticks
Rules, 30 cm
Measuring Tapes, 150 cm
*Height Measure
*Metre Tape, 10 m
*Trundle Wheel
*Area Measuring Grid

VOLUME/CAPACITY

*Nesting Measures, set of 5, $50 \mathrm{ml}-1000 \mathrm{ml}$
Economy Beaker, set of 6 , $50 \mathrm{ml}-1000 \mathrm{ml}$
Metric Spoon, set of 5 , $1 \mathrm{ml}-25 \mathrm{ml}$
Dry Measure, set of 3 , $50,125,250 \mathrm{ml}$
Plastic Litre Box
Centimetre Cubes

SUGGESTED METRIC TOOLS AND DEVICES NEEDED TO COMPLETE OCCUPATIONAL MEASUREMENT TASKS

In this occupation the tools needed to complete Exercises 6, 15 , and 16 are indicated by " "."
\star A. Assorted Metric Hardware-Hex nuts, washers, screws, cotter pins, etc.
B. Drill Bits-Individual bits or sets, 1 mm to 13 mm range
C. Vernier Caliper-Pocket slide type, 120 mm range
D. Micrometer-Outside micrometer caliper, 0 mm to 25 mm range
E. Feeler Gage- $\mathbf{1 3}$ blades, 0.05 mm to 1 mm range
F. Metre Tape -50 or 100 m tape
\star G. Thermometers-Special purpose types such as a clinical thermometer
$\star \quad$ H. ${ }^{1}$ Temperature Devices--Indicators used for ovens, freezing/ cooling systems, etc.
I. Tools-Metric open end or box wrench sets, socket sets, hex key sets

* J. Weather Devices-Rain gage, barometer, humidity, wind velocity indicators
* K. ${ }^{1}$ Pressure Gages-Tire pressure, air, oxygen, hydraulic, fuel, etc.
* L. ${ }^{1}$ Velocity-Direct reading or vane type meter
M. Road Map-State and city road maps
* N. Containers--Buckets, plastic containers, etc., for mixing and storing liquids
O. Containers-Boxes, buckets, cans, etc., for mixing and storing dry ingredients

Most of the above items may be obtained from local industrial, hardware, and school suppliers. Also, check with your school district's math and science departments and/or local industries for loan of their metric measurement devices.

[^1]
REFERENCES

Ashrae Handbook of Fundamentals. American Society of Heating, Refrigeration, and Air Conditioning Engineers, 345 E. 47th Street, New York, NY 10017, 1972.

Handbook of standards for the industry.
Calculations in SI Units. Metrication in the Construction Industry No. 2. Ministry of Public Building and Works, London (England), 1970, 148 pages, $\$ 5.00$ plus postage, paper. (Order from: Pendragon House, 220 University Avenue, Palo Alto, CA 94301.)

British bulletin illustrating typical calculations and applications of metric units to civil, mechanical, and electrical design problems in construction.

Let's Measure Metric. A Teacher's Introduction to Metric Measurement. Division of Educational Redesign and Renewal, Ohio Department of Education, 65 S. Front Street, Columbus, OH 43215, 1975, 80 pages; $\$ 1.50$, must include check to state treasurer.

Activity-oriented introduction to the metric system designed for independent or group inservice education study. Introductory information about metric measurement; reproducible exercises apply metric concepts to common measurement situations; laboratory activities for individuals or groups. Templates for making metre tape, litre box, square centimetre grid.

Measuring with Meters, or, How to Weigh a Gold Brick with a Meter-Stick. Metrication Institute of America, P.O. Box 236, Northfield, IL 60093, 1974.23 min ., 16 mm , sound, color; $\$ 310.00$ purchase, $\$ 31.00$ rental.

Film presents units for length, area, volume and mass, relating each unit to many common objects. Screen overprints show correct use of metric symbols and ease of metric calculations. Relationships among metric measures of length, area, volume, and mass are illustrated in interesting and unforgettable ways.
Metric Education, An Annotated Bibliography for Vocational, Technical and Adult Education. Product Utilization, The Center for Vocational Education, The Ohio State University, Columbus, OH 43210, 1974, 149 pages; $\$ 10.00$.
Comprehensive bibliography of instructional materials, reference materials and resource list for secondary, post-secondary, teacher education, and adult basic education. Instructional materials indexed by 15 occupational clusters, types of materials, and educational level.

Metric Education, A Position Paper for Vocational, Technical and Adult Education. Product Utilization, The Center for Vocational Education, The Ohio State University, Columbus, $\mathrm{OH} 43210,1975,46$ pages; $\$ 3.00$.
Paper for teachers, curriculum developers, and administrators in vocational, technical and adult education. Covers issues in metric education, the metric system, the impact of metrication on vocational and technical education, implications of metric instruction for adult basic education, and curriculum and instructional strategies.

Metrics in Career Education. Lindbeck, John R., Charles A. Bennett Company, Inc., 809 W. Detweiller Drive, Peoria, IL 61614, 1975, 103 pages, $\$ 3.60$, paper; $\$ 2.70$ quantity school purchase.

Presents metric units and notation in a well-illustrated manner. Individual chapters on metrics in drafting, metalworking, woodworking, power and energy, graphic arts, and home economics. Chapters followed by several learning activities for student use. Appendix includes conversion tables and charts.

METRIC SUPPLIERS

Brown \& Sharpe Manufacturing Co., Precision Park, North Kingstown, RI 02852 Industrial quality micrometers, steel rules, screw pitch and thickness gages, squares, depth gages, calipers, dial indicators, conversion charts and guides.

Dick Blick Company, P.O. Box 1267, Galesburg, IL 61401
Instructional quality rules, tapes, metre sticks, cubes, height measures, trundle wheels, measuring cups and spoons, personal scales, gram/kilogram scales, feeler and depth gages, beakers, thermometers, kits and other aids.

The Torit Corporation, 1133 Rankin St., St. Paul, MN 55116
Metric slide rule calculator for computing duct work sizes for dust control equipment. Scales include velocity, velocity pressure, round and rectangular duct size computation, air volumes for various dust and particle sources, resistance of elbows and branches, and requirements for common types of metal and woodworking equipment.

INFORMATION SOURCES

American National Metric Council, 1625 Massachusetts Avenue, N.W., Washington, D C 20036
Charts, posters, reports and pamphlets, Metric Reporter newsletter. National metric coordinating council representing industry, government, education, professional and trade organizations.

American Society of Heating, Refrigeration, and Air Conditioning Engineers, 345 E. 47th Street, New York, NY 10017
Professional society developing product standards, the use of measurement units, metric practices, and coordinating metric changeover in the heating, refrigeration, and air conditioning industry.

National Bureau of Standards, Office of Information Activities, U.S. Department of Commerce, Washington, D C 20234.
Free and inexpensive metric charts and publications, also lends films and displays.

[^0]: This publication was developed pursuant to contract No. OEC-0.74-9335 with the Sureau of Occupational and Adult Education, U.S. Department of Health, Education and Welfare. However, the opinions expressed herein do not necessarily reflect the position or policy of the U.S. Office of Education and no official endorsement by the US Office of Education should be inferred

[^1]: ${ }^{1}$ Measuring devices currently are not available. Substitute devices (i.e., thermometer) may be used to complete the measurement task.

