
1
ar

X
iv

:s
ub

m
it/

39
29

36
1

[c
s.

L
G

]
14

 S
ep

 2
02

1

Post-Selections in AI and How to Avoid Them
Juyang Weng∗†‡§

∗Department of Computer Science and Engineering,
†Cognitive Science Program,
‡ Neuroscience Program,

Michigan State University, East Lansing, MI, 48824 USA
§ GENISAMA LLC, 4460 Alderwood Drive, Okemos, Michigan 48864 USA

Abstract: Neural network based Artificial Intelligence (AI) has reported increasing scales in exper-
iments. However, this paper raises a rarely reported stage in such experiments called Post-Selection
alter the reader to several possible protocol flaws that may result in misleading results. All AI methods
fall into two broad schools, connectionist and symbolic. The Post-Selection fall into two kinds, Post-
Selection Using Validation Sets (PSUVS) and Post-Selection Using Test Sets (PSUTS). Each kind has
two types of post-selectors, machines and humans. The connectionist school received criticisms for its
“black box” and now the Post-Selection; but the seemingly “clean” symbolic school seems more brittle
because of its human PSUTS. This paper first presents a controversial view: all static “big data” are
non-scalable. We then analyze why error-backprop from randomly initialized weights suffers from severe
local minima, why PSUVS lacks cross-validation, why PSUTS violates well-established protocols, and
why every paper involved should transparently report the Post-Selection stage. To avoid future pitfalls in AI
competitions, this paper proposes a new AI metrics, called developmental errors for all networks trained,
under Three Learning Conditions: (1) an incremental learning architecture (due to a “big data” flaw),
(2) a training experience and (3) a limited amount of computational resources. Developmental Networks
avoid Post-Selections because they automatically discover context-rules on the fly by generating emergent
Turing machines (not black boxes) that are optimal in the sense of maximum-likelihood across lifetime,
conditioned on the Three Learning Conditions.

Keywords: Experimental Protocols, Error-Backprop, Deep Learning, Performance Evaluation, Maximum
Likelihood, Turing Machines

2

I. INTRODUCTION

AI research dates back at least to early 1910 when Leonardo Torres y Quevedo built a chess end
game player called EI Ajedrecista [1]. In 1950, Alan Turing published his now celebrated paper [2]
titled Computing Machinery and Intelligence. Turing [2] was impressive to have discussed a wide variety
of considerations for machine intelligence, as many as nine categories. Unfortunately, he suggested to
consider what is now called the Turing Test that has inspired and misled many AI researchers.

Much progress has been made in AI since then and many methods have been developed to deal with
AI problems. As the scope of this paper, we will focus on generalization. All AI methods fall into two
schools [3], symbolic and connectionist, although many published methods are a mixture of both.

A. Symbolic school
Symbols are used in many AI methods (e.g., states in HMMs, nodes in Graphical Models and attributes

in SLAM). Although symbols are intuitive to a human programmer since he defines the associated
meanings, symbols are static and have some fundamental limitations that have not received sufficient
attention.

The symbolic school [4] assumes a micro-world in 4D space-time in which a set of objects or concepts,
e.g., L = {l1, l2, ..., ln}, is assumed to be uniquely defined among many human programmers and
their computers, represented by a series of symbols in time {l1(t), l2(t), ...ln(t) | t0 ≤ t < t1}. The
correspondences among all these symbols {li} of the same object across different times are known as
“the frame problem” [4] in AI which means that the programmer must manually link every symbol along
time with its corresponding physical object. In computer vision, the symbolic school assumes a single
symbol oi, for all its 3D positions in its 3D trajectory {x(t) | t0 ≤ t ≤ t1} and uses certain techniques,
such as feature tracking through video (e.g., for driverless cars). Therefore, the symbolic school is based
on human-handcrafted set of symbols and their assumed meanings. Marvin Minsky wrote that symbols
are “neat” [5], but in fact, symbols are “neat” mainly in a single human programmer’s understanding but
not between different programmers and not in relating computer programs to a real world.

We will see the Developmental Network (DN) model of a brain is free from any symbols in its full
version. Abstract symbols correspond to action/state vectors in the motor area of DN. Therefore, the
frame problem is automatically solved through emergent action/state vectors in a physically grounded
DN, without using any symbols in the DN’s internal representations.

A major problem for symbolic AI is the generalization issue of symbols as defined here.
Definition 1 (Brittleness of static symbols): Suppose a symbolic AI machine M(L) designed for a

handcrafted set L of symbols is applied to a real world that requires a new set of symbols L0 , with
L ∩ L0 6= ∅, M(L) fails without a human programmer who handcrafts an appropriate mapping function
f : L0 7→ L that maps every element of L0 to an element in L so that M(f(L0)) works correctly as before.

Many expert systems (e.g., CYC, WordNet and EDR [6]) and “big data” projects [7] require a human
programmer to be in the loop of handcrafting such a mapping f during deployment. For example, an
machine M developed in Florida is deployed in Michigan but Michigan has snow but Florida does not.
Because it is extremely challenging for a human programmer to understand many implicit limitations
of M(L), the mapping f that the human handcrafts typically makes M(F (L0)) fail, resulting in the
well-known high brittleness of symbolic systems.

Due to emergent representations as numeric vectors, a DN robot discussed below learns snow settings
and the snow concept when it sees snow scenes for the first time, because there are no symbols that
correspond to snow in DN’s representations.

In general, the developmental methods to be discussed below automatically address such new concept
problems without a need for a human programmer to be in the loop of handcrafting a symbolic mapping
f during a deployment. In this paper, the author will further argue that the symbolic school suffers from
human PSUTS.

3

B. Connectionist School
The connectionist school claimed to be less brittle [8], [9]. However, a network is egocentric—meaning

that the agent starts from its own (neural) network, instead of a symbolic world. It must learn from the
external world without a handcrafted, world-centered object model. Although connectionist methods often
assume some task-specific symbols, e.g., a static set L of object labels, they also assume a restricted world
implicitly. Therefore, a connectionist model typically needs to sense and learn from a restricted world
using a network. The use of L by any neural networks (e.g., ImageNet [10] and many other competitions)
as a set of object labels is a fundamental limitation that also causes the resulting system to be brittle for
the same reason as the symbolic school.

Typically, a neural network is meant to establish only a mapping f from the space of input X to the
space of class labels L,

f : X 7→ L (1)

[11], [12]. X many contains a few time frames. Many video analysis problems, speech recognition
problems, and computer game-play problems are also converted into this static input space so that the
input space also includes L, so as to learn

f : X × L 7→ L. (2)

Without a pressure of performance characterization during learning other than the performance of the
final network, a self-organization map (e.g., SOM) has been used often as an unsupervised but slow
learning method [13], [14], [15] .

In contrast, with a pressure of performance characterization during learning, Cresceptron [16] used a
“skull-closed” incremental-learning Hebbian-like scheme with receptive-field based competitions.

Other than the Hebbian mechanisms which are strictly “unsupervised” used by he Cresceptron and the
DN explained below, two other types of learning schemes have been published:

A Human handpicking features: after knowing the test set, humans handpick features, reported
explicitly [17], [18], [19] or implicitly as “weakly supervised” [19]. This author called them
“skull-open” [20].

B Error-backprop: Locally train multiple networks each from a different set of random weights.
After the training, post-select the luckiest network. Report the luckiest network only [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38] but many
publications do not report the post-selection stage at al, with few exceptions [27].

Below, this author will argue that (A) suffers from human Post-Selections and (B) suffers from machine
Post-Selections. While Cresceptron, the first deep learning for a 3D world, generates a single large network,
it showed an impressive generalization power due to the use of the nearest neighbor scheme at every layer
of an automatically generated deep network. This author will argue that Post-Selections in (A) and (B)
suffer from weak generalizations (due to three types of lucks to be discussed below) and did not count
the cost of training multiple networks many of which were not reported.

By the way, genetic algorithms offer another approach to such network learning. These algorithms study
changes in genomes across different life generations. However, many genetic algorithms do not deal with
lifetime development [39], [40]. We argue that handcrafting functions of a genome as a Developmental
Program (DP) seems to be a clean and tractable problem, which avoids the extremely high, cost of
evolution on DP. Many genetic algorithms further suffer from the PSUTS problems, since they often use
test sets as training sets (i.e., vanished tests) as explained below.

Marvin Minsky [5] among many scholars complained that neural networks are “scruffy” or “black
boxes”. This problem is not addressed holistically until the framework of Emergent Turing Machine was
introduced [41] into Developmental Networks (DNs) by the Developmental School discussed below. A
lack of Emergent Turing Machine mechanisms or being “scruffy” in sample fitting appears to be the main
cause of PSUTS in traditional neural networks trained by human feature-handpicking or error-backprop
methods.

4

C. Developmental School
The main thrust of the Developmental School, formally presented 2001 by Weng and six co-authors

[39] is the task-nonspecificity for lifetime development, known as Developmental Programs (DPs) that
simulate the functions of genome without simulating the genome encoding. Although a DP generates a
neural network, a DP is very different from a conventional neural network in the evaluation of performance
across each life—all errors from the inception time 0 of each life is recorded and reported up to each
frame time t > 0, as explained further below.

The first developmental program seems to be the Cresceptron by Weng et al. [42], [43], [16] which
appears to be, as far as the author is aware, the first deep-learning Convolutional Neural Network (CNN)
for a 3D world. As explained in [44], [45] other well-known CNNs for 3D recognition, although they
do not use a generative DP, followed many key ideas of Cresceptron. Cresceptron seems to be the first
incremental neural network whose evaluation of performance is across its entire “life” and only one
network was generated (developed) from the given training data set.

Cresceptron did not deal with time. A developmental approach that deals with both space and time
in a unfired fashion using a neural network started from Developmental Networks (DNs) [46] whose
experimental embodiments range from Where-What Networks 1 (WWN-1) [47] to WWN-9 [48]. The
DNs went beyond vision problems to attack general AI problems including vision, audition, and natural
language acquisition as emergent Turing machines [41].

DNs overcame the limitations of the framewise mapping in Eq. (2) by dealing with lifetime mapping:

f : X(t − 1) × Z(t − 1) 7→ Z(t), t = 1, 2, ... (3)

where X(t) and Z(t) are the sensory input space and motor space, respectively, and × denotes the
Cartesian product of sets. A fundamental difference between Eq. (2) and Eq. (3) is that in the latter
the Z space contains exclusively emergent vectors, instead of any symbols, so that the actions/states are
incrementally taught and learned across a lifetime.

As we will see in Section IV-A, all the errors occurred during any time of each life is recorded and
taken into account in the performance evaluation.

It is important to extend Eq. (3) to include the hidden area Y that generates international (hidden)
representations. To model how Y -to-Y connections enable something similar to higher and dynamic order
in Markov models (but not symbolic), the above lifetime mapping is extended to:

f : X(t − 1) × Y (t − 1) × Z(t − 1) 7→ Y (t) × Z(t), t = 1, 2, ... (4)

Note that Z(t − 1) here is extremely important since it corresponds to the state of a Turing machine.
Namely, all the errors occurred during any time of each life is recorded and taken into account in the
performance evaluation.

Different from the static symbols in the symbolic school and the space of class labels L of static symbols
in Eq. (2) of the connectionist school, the space Z(t) of numeric vectors of the developmental school
is free from symbols. Therefore, these states/actions are directly teachable or self-generative, inspired by
brains [49], [50], [51], [52], [53], [51], [54]. This new symbol-free formulation is necessary to model
not only brain’s spatial processing [55] and temporal processing [56], but also Autonomous Programming
for General Purposes (APFPG) [57]. Based on the APFGP capability, we open the door towards the next
step—conscious learning [58]—learning while being partially and increasingly conscious. By conscious
learning, we do not mean “open-skulledly” handcrafting general-purpose consciousness, which is probably
too complicated to handcraft. But instead we enable fully autonomous machine learning while machines
being partially conscious—autonomously learn more sophisticated consciousness skills using their partial,
earlier, and simpler conscious skills across the lifetime.

This is the journal archieval version of the earlier conference papers [59], [60] with significantly refined
additional material and analysis.

In the following, we will discuss Post-Selection in Section II. Section III addresses why error-backprop
algorithms suffer from severe local minima problems. Section IV explains how a Developmental Network

5

solves the local minima problems, since only one network is needed for each life and the evaluation
of performance across the entire life. Section V discusses experiments. Section VI provides concluding
remarks.

II. POST-SELECTIONS

AI has made impressive progress, gained much visibility, and attracted the attention of many government
officials. However, there are protocol flaws that have resulted in misleading results.

First, let us consider three learning conditions that any fair comparisons of AI methods should take
into account.

A. The Three Learning Conditions
Many AI methods were evaluated without considering how much computational recourses are necessary

for the development of a reported system. Thus, comparisons about the performance of the system have
been tilted toward competitions about how much resources a group has at its disposal, regardless how
many networks have been trained and discarded, and how much time the training takes.

Here we explicitly define the Three Learning Conditions for development of an AI system:
Definition 2 (The Three Learning Conditions): The Three Learning Conditions for developing an AI

system are: (1) a set of restrictions of learning framework, including whether task-specific or task-
nonspecific, batch learning or incremental learning, and the body’s sensors and effectors; (2) a training
experience and (3) a limited amount of computational resources including the number of hidden neurons.

The competing standard of the ImageNet competitions [61] did not include any of these three conditions.
The AIML Contests [62] considered all the three in performance evaluation. In the following Subsection,
we discuss why task-nonspecificity and incremental mode should be considered in any comparisons.

B. Task-specific vs. Task-nonspecific
A task-specific learning approach learns less because much is handcrafted by a human according to the

given task. Furthermore, a task-specific method is brittle.
In Condition (1) of the Three Learning Conditions, the task-nonspecific learning paradigm is signifi-

cantly different from the task-specific traditional AI paradigm as explained in Weng et al. 2001 [39]. In
a task-specific paradigm, the system developer is given a task e.g., constructing a driverless car. Then, it
is a human programmer who chooses a world model, such as a model of lane edges. Next, he picks an
algorithm based on this world model, e.g., the well-known Hough transform algorithm [63], [64] for line
detection which makes every pixel that is detected as edge cast votes for lines of all possible orientations
o and distances d from the origin that go through the pixel. Then the top-two “peaks” of line parameters
(o, d) that have received the highest votes are adopted to declare a line detected from the image. Here
“edges” and “lane lines” are two symbolic concepts picked up by the programmer. Such systems will fail
when lanes are unclear or totally disappear due to weather or road conditions, leading to a brittle system.
Human brains appear to be more resilient.

In contrast, a task-nonspecific approach [39] not only avoids any symbolic model, but also does not
requires that a task is given. The desirable actions at any time are taught, tried, and recalled automatically
by the learner based on system’s learned context q [65] that includes automatically figured-out goal and
state, as well as the current input. The mapping function f(z, x) = z0 , representing the symbolic mapping
fs(q, σ) = q0 , corresponds to a finite automaton. Weng has proven that the control of any Turing machine
is a finite automaton [41]. Thus, this framework is of general-purposes in the sense of universal Turing
machines. Any universal Turing machine is of general purposes, because it can read any program written
for any purposes and run it for the purposes. Any neural network that learns a universal Turing machine
become of general purposes in the sense of any programs, not just in the sense of any mappings like that
in Eq. (1). Thanks to the absence of any world model, such as lanes, this task-nonspecific approach has a

6

potential to be more robust than a world-model based approach. The task-nonspecific approach typically
uses a neural network to learn because the need to learn vector mapping function f(z, x) = z0 . We will
discuss internal response vector y in Section IV but task-nonspecificity holds true without y.

C. Batch vs. Incremental Learning Modes
Neural network learning for the mapping f has two learning modes, batch learning and incremental

learning.
With batch learning, a human first collects a set D of data (e.g., images) and then labels each datum with

a desirable output (e.g., command of navigation or class label). A neural network is trained to approximate
a mapping f in Eq. (1) or Eq. (2). Many batch-learning projects use an error-backprop method [23],
[66], [24] which uses a gradient-based method to find a local minimum in error.

As we will discuss in Section III, the gradient in the error-backprop method does not contain key
information of many other data if the learning mode is incremental. Thus, error-backprop on a large data
set does poorly using a purely incremental learning mode. Many used a block-incremental learning mode
which suffers from the big data flaw in Theorem 1 below.

In contrast, all developmental methods cited here use incremental learning mode for long lifetimes, using
a closed-form solution to the global lifetime optimization. The competition among neurons guarantees that
the winner is the most appropriate neuron whose memory corresponds to the current working memory
[67].

However, the batch and incremental learning modes are not capability-equivalent [67]. The former
requires all sensory inputs are available at a batch, independent of the corresponding actions. Therefore,
the former is easier and also incorrect according to sensorimotor recurrence. By sensorimotor recurrence,
we mean that sensory inputs and motor outputs are mutually dependent on each other in such a recurrent
way that off-line collection of inputs are technically flawed. We have the following theorem:

Theorem 1 (Big Data Flaw): All static “big data” sets used by machine learning violate the sensorimotor
recurrence property of the real world.

Proof: A learning agent at time t − 1, as shown in Eqs. (3) and (4) does not have the next sensory
input from X(t) available before the corresponding actions in Z(t−1) are generated and output, since the
sensory input in X(t) varies according to the agent actions in Z(t − 1). As an example, turning head left
or right will result in a different image sensed. Therefore, all static “big data” sets violate the sensorimotor
recurrence.

One may say that classifications of static images are fine. We do not agree, because even when a
human (or machine) is looking at a static image, he uses attention (e.g., context-based saccades)which is
a sequence of actions. Each saccade results in a different fovea image.

Therefore, incremental learning is necessary for the sensorimotor recurrence. All batch-training methods
use a static set of training data and, therefore, are inappropriate for any of them to claim near-human
performance since the two learning problems are different. This leads to the following theorem.

Consider a hierarchy of levels of object types, such as nails, fingers, palms, hands, arms, limbs, torsos,
human bodies, etc. Because vision requires a high level l to understand natural scenes with abstraction of
parts with invariances (e.g., all fingers of different scales, looks, and at different locations), each child needs
an open-ended world to learn to learn rules (e.g., finger-parts and hand-whole) instead of simple-minded
pattern recognition of sensory images.

Theorem 2 (Nonscalability of Big Data without abstraction): All static “big data” sets used by machine
learning are nonscalable if they are treated as pattern recognition without rule abstractions.

Proof: Suppose that a static data set D has shown the presence of k feature types defined at level 1
(e.g., edge pixels are a type). Suppose a combination of k > 1 feature types to level l+1 type (e.g., straight
line type is from multiple edge pixels) is defined from k types of feature types at level l, l = 1, 2, The
number of samples for a l-level feature type requires at least kl observations to discover all necessary
within-type equivalence (e.g., logic OR is at l = 2 with k = 2 logic features at l = 1, thus without rule

7

abstraction (e.g., parts and whole), it requires kl = 22 = 4 observations, corresponding to 4 rows in the
truth table of logic OR). Since f(l) = kl is an exponential function in l, kl quickly exceeds any fixed
number of observations in the static data set D.

Rule abstractions deal with invariances. For example, a “what” concept is “where”-invariant and a
“where” concept is “what”-invariant, as explained in [55], [68].

Section IV discusses an optimal framework through which such abstractions can take place from
learning simple rules during early life that enable learning of more complex rules during later life—
called scaffolding [69].

Theorem 2 leads to two observations on data fitting on a static data set:
Observation 1: Any data fitting on a static data set without learning invariant concepts are nonscal-

able, including the n-fold cross-validation discussed below. Unfortunately, data fitting on a static data
set is a norm in all ImageNet Contests [66]. Namely, the remaining subsections in this section analyze
approaches that are nonscalable. For example, computer vision is not a “one-shot” pattern classification
problem as argued by Li Fei-Fei et al. [19] (which was questioned in PubMed without responses), but
rather a spatiotemporal problem to learn various invariant concepts present in cluttered natural scenes
through autonomous attention saccades, as explained further in Observation 2.

Observation 2: Learning invariant concepts seem nonscalable for any data fitting on a static data
set either, because there are too many images to be labeled by hand (e.g., all pixel locations) [55], [68].
Like a human baby, any scalable machine learning methods must be conscious through which the machine
learner must consciously guess concepts (i.e., not just active learning [70]) (e.g., an object type) and verify
their invariance rules (e.g., the where-invariance of a what concept). The state-based transfer in Theorem 8
of [56] explains how each concept state reduces the number of samples to be learned from an exponential
kl down to only kl (see Fig. 6 of [56] for intuition where k = 10 and l = 3). Thus, Section IV not only
addresses the non-scalability problems in this section, but is also necessary for conscious learning whose
theory was recently published in Weng 2020 [58] with some single-sensory-modality experimental results,
but animal-level conscious robots that are multi-sensory and multi-motor have not yet been demonstrated.
The availability of real-time learning brain-chip is a current bottleneck.

D. Fitting, validation and test errors
Given an available data set D, D is divided by a partition P = (T, V, T 0) into three mutually disjoint

sets, a training set T , a validation set V , and a test set T 0 so that

D = T ∪ V ∪ T 0 . (5)

Two sets are disjoint if they do not share any elements. The validation set is possessed by the trainer,
the test set should not be possessed by the trainer since the test should be conducted by an independent
agency. Otherwise, V and T 0 become equivalent.

As we will see in Section III, given any architecture parameter vector ai, it is unlikely that a single
network initialized by a set of random weight vectors can result in an acceptable error rate on the training
set, called fitting error, that the error-backprop training intends to minimize locally. That is how the
multiple sets of random weight vectors come in. For k architecture vectors ai, i = 1, 2, ...k and n sets of
random initial weight vectors wj , the error back-prop training results in kn networks

{N(ai, wj) | i = 1, 2, ..., k, j = 1, 2, ..., n}.

Error-backprop locally and numerically minimizes the fitting error fi,j on the training set T .
[27] seems to have mentioned n = 20. [71] did not give n but seems to have mentioned 60 million

parameters which probably means each wi and each aj combined to be of 60 million dimensional. Using
the above example of k = 310 = 59049, kn ≈ 1M networks must be trained, a huge number that requires
a lot of computational resources to do number crunching and a lot of manpower to manually tune the
range of hyper-parameters.

8

Definition 3 (Distribution of fitting, validation and test errors): The distributions of all kn trained
networks’ fitting errors {fij }, validation errors {eij }, and test errors {e0 }, i = 1, 2, ...k, j = 1, 2, ...n areij
random distributions depending on a specific data set D and its partition P = (T, V, T 0). The difference
between a validation error and a test error is that the former is computed from the same group using
a group-possessed validation set V but the latter is computed by an independent agency using a group-
unknown test set T 0 .

We define a simple system that is easy to understand for our discussion to follow.
Definition 4 (Nearest neighbor classifiers with a confidence threshold): Define a network stores the

entire training set T . Suppose the input x matches the nearest sample s in T . If the distance between
x and s is not larger than a confidence threshold d (a hyper-parameter), then the network outputs the
associated label of the nearest sample s. Otherwise, the system outputs “unknown”.

Namely, this system uses a lot of resources for over-fitting. It gives up if the distance is larger than d,
but has a perfect fitting error (zero) for any positive d.

A neural network architecture has a set of hyper parameters represented by a vector a, where each
component corresponds a scalar parameter, such as convolution kernel sizes and stride values at each
level of a deep hierarchy, the neuronal learning rate, and the neuronal learning momentum value, etc.
Let k be a finite number of grid points along which such architecture parameter vectors need to be tried,
A = {ai | i = 1, 2, ..., k}. Suppose there are 10 scalar parameters in each vector ai. For each scalar
parameter x of the 10 hyper parameters, we need to validate the sensitivity of the system error to x. With
uncertainty of x, we estimate its initial value as the mean x̄, positively perturbed estimate x̄ + σx (σ is
the estimated standard deviation of x), and negatively perturbed estimate x̄ − σx. If each scalar hyper
parameter has three values to tray in this way, there are a total of k = 310 = 59049 architecture parameter

¯vectors to try, a very large number. For example, the initial threshold d in the nearest neighbor classifier
can be estimated by the average of nearest distance between a sample in V and the nearest neighbor in
T and the σd be estimated by the standard deviation of these nearest distances.

Let us define the Post-Selection. Suppose that the trainer is first aware of the validation sets (or the
test sets).

Definition 5 (Post selection): A human programmer trains multiple systems using the training set T .
After these systems have been trained, he post-selects a system by searching, manually or assisted by
computers, among trained systems based on the validation set V (or the test set T 0). This is called Post-
Selection—selection of one network from multiple trained and verified (or tested) networks.

Obviously, a post-selection wastes all trained systems except the selected one. As we will see next, a
system from the post-selection tends to have a weak generalization power.

First, consider Post-Selection Using Validation Sets (PSUVS):

E. PSUVS
A Machine PSUVS is defined as follows: If the test set T 0 is not available, suppose the validation error

of N(ai, wj) is ei,j on the validation set V , find the luckiest network N(ai∗ , wj∗) so that it reaches the
error of the luckiest-architecture and the luckiest initial weights from Post-Selection on Validation Sets:

ei∗,j∗ = min min ei,j (6)
1≤i≤k 1≤j≤n

and report only the performance ei∗,j∗ but not the performances of other remaining kn − 1 trained neural
networks.

Similarly, a human PSUVS is a procedure wherein a human selects a system from multiple trained
systems for {ei,j } using human visual inspection of internal representations of the system and their
validation errors.

9

F. Cross-Validation
The above PSUVS is an absence of cross-validation [72]. Originally, the cross-validation is meant to

mitigate an unfair luck in a partition of the dataset D into a training set T and a test set T 0 (empty
validation set). For example, an unfair luck is such that every point in the test set T 0 is well surrounded
by points in the training set T . But such a luck is hardly true in reality.

To reduce the bias of such a luck, an n-fold cross-validation protocol, n ≥ 2, divides the data set D
into n subsets of same size and conducts n experiments. The term “cross” refers to switching the roles of
training and testing data. In the i-th experiment, the i-th subset is left out as the test set and the remaining
n − 1 folds of data form the training set. Thus, the cross-validation protocol conducts n experiments, for
i = 1, ..., n, to obtain n errors, e1, e2, ..., en. The cross-validated error is defined as the average of errors
from the n tests, to filter out the partition lucks:

ē =
nX1

ei
n

(7)
i=1

as well as the distribution of errors {ej }.
The n different numbers here shows a distribution show a distribution {ej } to indicate how sensitive

the error is to lucks, such as the number of partition pairs between a training set and a validation/test set,
the number of tried random seeds for initializing network weights, the number of tried hyper-parameter
vectors, or a combination thereof. The larger the n, the better the estimated standard deviation of {ej }.

G. Types of lucks in a Neural Network
In a neural network, there are at least three kinds of lucks:
Type-1 order lucks: The luck in a partition Pi into a training set Ti and a test set Ti

0 from a data set
D resulting in test error ei, i = 1, 2, ...n. Different partitions correspond to different luck outcomes. This
kind of outcome variation results in a variation of performance from different outcomes. Conventionally,
this type of lucks is filtered out by cross-validation (e.g., n-fold cross-validation) as well as reporting the
deviation of {ei} during the cross-validation. However, such cross-validation and deviation have hardly
published for neural networks and reported. The smaller the average ē of {ei}, the more accurate the
trained network is; the smaller the standard deviation of {ei}, the more trustable the average error ē is.

Type-2 weights lucks: As we will discuss below, weights specify the role assignment for all the
neurons in the neural network. A random seed value determines the initialization of a pseudo-random
number generator, which gives initial weights wi for a neural network N(wi), resulting in a test error ei,
i = 1, 2, ...n, after training of these n networks and testing on T 0 . It is unknown that such a luck will be
carried over to a new test set T 00 that is outside the data set D but was drawn from the same distribution
of S. Because a neural network might not capture the internal rules of the training set T , this paper
argues that a statistical validation of the reported error should be performed by reporting the distribution
of {ei|i = 1, 2, ...n}, where ei is from a different initial weight vector wi. For example, Krizhevsky et
al. [71] reported 60 million parameters, mostly in wi but only the luckiest ei was reported. The smaller
the average ē of {ei}, the more accurate the trained network is; the smaller the standard deviation σ of
{ei}, the less sensitive the trained neural network is to the initial weights and thus the accuracy is more
trustable for real applications. For i.i.d. (identically independently distributed) errors, we can expect that√
doubling the number n will reduce the expected variance of ē by a factor 1/ 2., since the expected
variance of n random numbers is about σ2/n.

Type-3 architecture lucks: The initial hyper-parameter vector aj of the neural network gives an error
ej , j = 1, 2, ...k. Because such a luck of aj might not capture the internal rules of the training set Tj ,
this paper argues that a statistical validation of the reported error estimate should be performed and the
distribution of {ej } be reported. In our above example, the number of distinct hyper-parameter vectors to
be tried is k = 310 = 59049. The smaller the average ē of {ej }, the more accurate the trained network

10

is; the smaller the sample variance of {ej }, the more trustable ē is, namely, the average error ē is less
sensitive to the initial hyper-parameters of the network. For example, the threshold d of the nearest neighbor
classifier in Definition 4 might result in a large deviation. A good way is to reduce the manual selection
nature of such hyper-parameters. For example, all hyper-parameters are adaptively adjusted from the initial
hyper-parameters that are further automatically computed from system resources, e.g., the resolution of a
camera, the total number of available neurons, and the firing age of each neuron [67].

For notation clarity in the discussion that follows, index j is used in Type 3 to distinguish index i in
type 2, but the above three types of lucks are all different.

Let us discuss the case of a developmental network, such as Cresceptron [16] and DN [41]. Type-1
cross-validation is not needed because of reporting of a lifetime error. In other words, errors of all new
tests in each life are taken into account throughout the lifetime. Type-2 validation is not needed because
all different random weights wi leads to the function-equivalent neural network under certain conditions.
For example, in top-k competition, with k = 1 different wi give the exactly the same neural network and
with k > 1 different wi give almost the same neural network. The distribution of lifetime errors {ei} is
expected to have a negligible deviation across different initial weight vectors wi, given the same Three
Learning Conditions. Type-3 validation might be useful but is expected to be negligible since the most
obvious parameters such as learning rate and momentum of learning rate is automatically and optimally
determined by each neuron, not handcrafted, as in LCA [67]. The synaptic maintenance automatically
adjusts all receptive fields [73], [74] so that the neural network performance is not sensitive to the initial
hyper-parameters.

In contract, a batch-trained neural network typically uses a Post-Selection to pick the luckiest network
without cross-validation for either of the above three types of lucks, e.g., in ImageNet Contest [61].
Namely, errors occurred during batch training of the network before the network is finalized and how
long the training takes are not reported. Below, Fig. 5 will show a huge difference between the luckiest
CNN with error-backprop and the optimal DN. Many researchers have claimed error-backprop works
without providing much-needed three types of validations.

Next, let us discuss Types 2 and 3 validations which are new for neural networks but hardly done.

H. Post-Selection with Types 2 and 3 Average-Validations
Type-1 cross-validation should be nested inside the Types 2 and 3 validations, but this triple-nested

protocol could be too computationally expensive. Below, we delay Type-1 cross-validation till after Type
2 and Type 3 validations.

Assume that we use n random weight vectors wi and k grid-search hyper parameters aj . Each combi-
nation of wi and aj gives an error ei,j from the corresponding validation set. To reduce the effect of such
a luck for each vector wi, an average of ei,j over n values of i should be used instead of the minimum
in Eq. (6). This leads to the random-weights validated error for the luckiest architecture from PSUVS: X1 n

a ∗ = arg min ei,j . (8)
1≤j≤k n

i=1

We dropped the term “cross” because this validation examines other random seeds without switching the
roles between training and testing.

Similarly, we define the hyper-parameter validated luckiest initial weights from PSUVS:
kX1

w ∗ = arg min ei,j . (9)
1≤i≤n k

j=1

We dropped the term “cross” for the same reason.
From a statistical point of view, the initial hyper parameter vector a ∗ and the random initial weights w ∗

validated above through averages should be more robust in real applications than those without average-
validation in Eq. (6).

11

For both the luckiest a ∗ and w ∗ , the standard deviation under min should be reported to show how
sensitive the reported performance is to the validation process. If the variation is large, the corresponding
network is not very trustable in practice.

We also need to be aware of another protocol flaw: Random seeds and hyper parameters are all coupled.
Under such a coupling, Type 2 validation seems unnecessary with n = 1 but the search of the luckiest
weights is embedded into the search for the luckiest hyper-parameter vector where each hyper parameter
vector uses a different seed. Similarly, Type-3 validation seems unnecessary with k = 1 but the search
of the luckiest hyper-parameter vector is embedded into the search for the luckiest weights, where each
random seed uses a different hyper parameter vector.

Since a PSUVS procedure picks the best system based on the errors on the validation set, the resulting
system might not do well on the test sets because doing well on a validation set does not guarantee doing
well on a test set. Typically, due to a very large number of samples, availability of validation sets and
unavailability of test sets in a properly managed contest, principles of Post-Selection should cause the
validation error rate to be smaller than the test error rate. (However, in Table 2 of [71], the test error rate
is smaller than the validation error for 7CNNs, causing a reasonable suspicion that PSUTS could be used
instead of PSUVS.)

The following subsection discusses the luckiest network with the luckiest hyper-parameter vector a ∗

and the luckiest initial weights w ∗ .

I. The Luckiest Network from a Validation Set
Many people may ask: Are there any technical flaws in at least PSUVS, since it does not use the

test sets? We analyze the luckiest network in this section and reach a conclusion that any post-selection
is technically flawed and results in misleading results, including both PSUVS and PSUTS. However, in
general, Type-1 cross-validation is to filter out lucks in data partition that a typical user does not have
during a deployment of the method. Namely, it is a severe technical and protocol flaw in reporting only
the luckiest network, regardless the post-selection uses validation sets or test sets.

This conclusion has a great impact on evolutional methods that often report only the luckiest network,
instead of those of all networks in a population. Namely, the performances of all individual networks in
an evolutionary generation should be reported.

For simplicity, we assume that the space S, from which random samples in D are drawn, is static. Our
conclusions here can be readily extended to a time varying D but the technical flaws are even worse.

From the sample space S, randomly draw a data set D. D is partitioned into three mutually disjoint
sets, training set T , validation set V and test set T 0 , so that Eq. (5) holds true. For realistic applications,
we should assume that T , V and T 0 are mutually independently drawn from S so that T , V and T 0 are
mutually independent. Identically independently distributed (i.i.d.) is a sufficient condition, but we do
not need such a restrictive condition because temporal-dependency often occurs in lifetime development.
Namely, we only need that any three vectors from T , V and T 0 , respectively, are mutually independent.

Using the training set T , one trains kn networks, where k and n are the number of hyper-parameter
vectors a’s and random weight vectors w’s, using a training algorithm (e.g., error-backprop),

N(ai, wj) ← fai,wj (T). (10)

This is like a teacher trains kn students in a class. The teacher knows that the fitting error on T does not
predict the validation error well, due to the possibility of over fitting. One extreme example is the above
nearest-neighbor classifier with confidence d = 0.

The teacher then tests each N(ai, wj) on the validation set V to get ei,j . This is like the teacher observes
the performance of kn networks in a mock exam.

The teacher then post-selects and reports only the luckiest network N(ai∗ , wj∗) whose validation error
ei∗,j∗ is minimum in Eq. (6). This is like the teacher colludes with the Educational Test Service (ETS) so
that the ETS only reports the luckiest network but not all remaining kn − 1 networks to cover up.

12

J. Luckiest Network with Type-1 Cross-Validation
Suppose that a user has bought the luckiest network N(ai∗ , wj∗) and test on his new test data T 0

randomly drawn from S, independent of T and V . The luckiest network N(ai∗ , wj∗) that reached the
minimum error rate in V does not mean that it reaches the minimum error rate in T 0 . Because T 0 is
independent of T and V , and ai∗ , wj∗ are luckiest on a particular pair (T, V) only, we need to compute
the expected error rate of N(ai∗ , wj∗) on T 0 .

Theorem 3 (Type-1 cross-validation of the luckiest): The luckiest network on validation set gives an
error rate that is approximately the average error in Type-1 cross-validation, supposing that, in an n-fold
cross validation, n folds of data are drawn i.i.d. (independently and identically distributed) among folds
from data set D, but individual samples inside each fold do not need to be i.i.d.

Proof: Let F denote the event that both the training set and validation set are from a fixed data set
D from S. Consider in a real application, n tests were conducted on the luckiest network N(ai∗ , wj∗)
using Ti

0 , i = 1, 2, ..., n, where each partition Pi = (Ti, Vi, Ti
0) in each of the i-th training and test pair is

drawn from the real application space S. We compute the average error rate from the luckiest network
N(ai∗ , wj∗): X1 n

e(ai∗ , wj∗) = ei(ai∗ , wj∗ ; Ti, Vi, Ti
0)

n
i=1 X1 n

≈ ei(ai∗ , wj∗ ; Ti, Vi, T 0|F) (11)i n
i=1

where the term ei(ai∗ , wj∗ ; Ti, Vi, Ti
0) means the error of the luckiest network using training set Ti,

validation set Vi, and test set Ti
0 , and ei(ai∗ , wj∗ ; Ti, Vi, T 0|F) means the same but Ti, Vi, T 0 are all fromi i

the same D as one does in n-fold cross-validation.
Note, the n-fold i.i.d. is weaker than i.i.d. for all samples. In practice, i.i.d. is rarely true even for

pattern recognition problems, such as image classification due to sequential attention discuss above. Also
note that the left side of ≈ sign in Eq. (11) is expected larger because the data Ti, Vi, Ti

0 on the right side
are all from a fixed D but the left side does not have such a restriction.

The above theorem tells us that the error rate of the luckiest network from a single validation set in
PSUVS is misleading without any partition validation. This is because the error rate is a random function,
depending on not only many random initial weights, many hyper parameters, and local lucks of error-
backprop, but also a particular partition (T, V, T 0). This seems especially true if the data D were made
public and overworked during 2010-2014 [61, p. 213].

In practice, when we report an error rate e(ai∗ , wj∗) which is always a random number x, depending on
how much hand tuning is done, how much computational resources are used for a large-scale search for
the random seeds and hyper-parameters, as well as the validation or a lack thereof. We should also report
the distribution of this random number x, such as the maximum, 75%, 50%, 25%, and the minimum
value of x, over multiple training-and-test pairs in cross-validation, random seeds and hyper-parameters.
Otherwise, the error rate, if only as a single number x, is misleading, since users of this learning method
or buyers of the luckiest network do not have the same partition luck.

Up to now, this author has not found any published papers that report not only the luckiest network
from error-backprop but also Type-1, Type-2 and Type-3 validations. Many papers do not report the post-
selection stage at all [24], [25], [26], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], except
[27], let alone whether the reported error is from the validation error V or the test set T 0 .

Next, we discuss Post-Selections Using Test Set (PSUTS). There are two kinds of PSUTS, machine
PSUTS and human PSUTS.

K. Machine PSUTS
If the test set T 0 is available which seems to be true for almost all neural network publications other

than competitions, we define Post-Selection Using Test Sets (PSUTS):

13

A Machine PSUTS is defined as follows: If the test set T 0 is available, suppose the test error of
N(ai, wj) is ei,j

0 on the test set T 0 , find the luckiest network N(ai∗ , wj∗) so that it reaches the minimum,
called the error of the luckiest architecture and the luckiest initial weights from Post-Selection on Test
Set:

e 0 = min min e 0 (12)i∗,j∗ i,j .
1≤i≤k 1≤j≤n

Report only the performance e0 but not the performances of other remaining kn − 1 trained neurali∗,j∗

networks.
Imagine that we want to remove lucks in the above expression, by using averages like we did in Eq. (7)

to give the error of the luckiest architecture with validated weights from PSUTS: X1 n

a∗,j∗ = arg min ei,j
0 . (13)

1≤j≤k n
i=1

But the above error is still flawed since each term under minimization has peeked into test sets. Instead,
it is better to use Eq. (8) which does not use the test sets. Of course, the test error rate of that in Eq. (8)
tends to be larger than that from Eq. (13).

A similar discussion can be made for the error of the luckiest initial weights with validated architecture
from PSUTS. Do not peek into test sets.

There are some variations of Machine PSUTS: The validation set V or T 0 are not disjoint with T . If
T = V , we call it validation-vanished PSUTS. If T = T 0 , we called it test-vanished PSUTS.

In general, the more free parameters a network has, the more likely the network can report an artificially
small error as in Eq. (12). That is why we need the computational resource in the Three Learning
Conditions.

Although PSUVS has flaws of post-selection and a lack of three types of validation, the key difference
between PSUVS and PSUTS does not guarantee that PSUVS reports a low error rate as PSUTS. In fact,
it is expected that the luckiest network from PSUVS does better on a validation set V than on a test set
T 0 because the Post-Selection did not “see” the test set T 0 but “saw” the validation set V . Likewise, it is
expected that the luckiest network from PSUTS does better on the test set T 0 than on a validation set V
because the Post-Selection did not “see” the validation set V but “saw” the test set T 0 . In the following
paragraph, we discuss that this expectation is reversed in Table 2 of [71, page 88].

In ImageNet Contest 2012, the test sets were released to competition teams over 2.3 months ahead
of the output-result submission date. Although the class labels were not attached to the test sets other
than being available indirectly through an online test server provided by the contest organizers, it was
not difficult to “crack” a test set by manually hand-labeling the test set. The first author of [71] seems
not sensitive to the fundamental difference between a validation set and a test set by writing: “in the
remainder of this paragraph, we use validation and test error rates interchangeably”. By “we cannot report
test error rates for all the models that we tried” [71, page 88], there is no evidence to rule out what he
meant was the possibly “cracked” test set is not necessarily exactly the same as the original test set. But
in Table 2 of [71, page 88], the 7NNs did worse on the validation set (possessed) than the test set (if not
“cracked” and searched for minimization like in Eq. (12)). This reversed our expectation in the previous
paragraph. Is it an evidence of using PSUTS instead of PSUVS?

Another interesting phenomenon that is consistent with the likely use of PSUTS instead of PSUVS is
that the SuperVision Team of ImageNet Contest 2021 did not submit any output results for “the fine-
grained classification task, where algorithms would classify dog photographs into one of 120 dog breeds”
[61, footnote, p214]. It appears that cracking “120 dog breeds” is harder than cracking “a list of object
categories present in the image” where the class labels are all available in the provided training sets. [71]
lacks due transparency about the post-selection stage except that Geoffrey Hinton admitted the “luckiest”
network in his brief PubPeer response to questions raised on PubPeer towards [24].

For more examples, see Fig. 1 from [75, Fig. 7], error-backprop consistently results in lower validation
accuracies than the test accuracies (about 0.5% lower compared to about 0.1% lower in [71]). Are they

14

Fig. 1. The average ē and the standard deviation of {ei} for different values of a regularization hyper parameter α. Adapted from [75]

other evidences of using PSUTS instead of PSUVS, similar to [71]? The availability of test sets to the
programmers in a project seems to be indeed addictive towards PSUTS, away from PSUVS. The standard
deviation around 1% is clashes with our Theorem 4. Our experience with our own experiments with
error-backprop training for CNN indicated that the maximum and the minimum values of the distribution
of fitting accuracies are drastically different for different random seeds, with fitting accuracies spreading
uniformly between 20% and 90%. Section III will discuss why. If Theorem 4 in Section III is correct,
the deviation bars seem too small and the 20 runs in Fig. 7 of [75] could be the best 20 among many
more random-seeds the programmer has tried. We hope that authors provide the source program.

L. Implications of PSUTS
Although the set {ei,j |i = 1, 2, ...n; j = 1, 2, ...k} is large, it is necessary to present some key statistical

characteristics of its distribution. For example, rank all errors in decreasing order, for each type of errors,
fitting, validation and test. Then give the maximum, 75% (in ranked population), 50% (median), 25%, the
minimum value, and the standard deviation of these kn values for the fitting errors, validation errors. and
test errors, respectively, not just the standard deviation in Fig. 1 . Such more complete information of the
distribution is critical for the research community to see whether error-backprop can indeed avoid local
minima in deep learning as some authors claimed. Furthermore, such information is also important for the
authors to show that the luckiest hyper-parameter vector is not just an over fitting to the validation/test set.
Unfortunately, none of [23], [66], [24], [25], [27], [76], [29], [31] reported such distribution characteristics
other than the minimum value e0 i∗,j∗ .

Furthermore, such a use of test sets to post-select networks resembles hiring a larger number kn of
random test takers and report only the luckiest N(ai∗ , wj∗) after the grading. This practice could hardly
be acceptable to any test agencies and any agencies that will use the test scores for admission purpose
since this submitted error e0 misleads due to its lack of validation. i∗,j∗

The error-backprop training tends to locally fit each network on the training set T ; while the Post-
Selection picks the luckiest network with parameter vector ai∗ and initial weights wj∗ that has the best

, T 0 ∩ T 00luck on T 0 . If an unobserved data set T 00 , disjoint with T 0 = ∅, is observed from the same
distribution S, the error rate ei

00
∗,j∗ of N(ai∗ , wj∗) is predicted to be significantly higher than ei

0
∗,j∗ ,

00 0 ei∗,j∗ � ei∗,j∗ (14)

because Eq. (12) depends on the test set T 0 in the post selection from many networks. Of course, handling
a new test is also challenging for a human student but a human learning involves learning invariant rules.
Any PSUTS is a technically flawed protocol.

15

PSUTS is tempting especially when test sets are available to the authors of paper. During all error-
backprop related paper reviews I have not yet found a case in which the authors did not admit that they
used USUTS when I asked. The second author of [27] claimed to have used PSUVS through a personal
email to me but the first author who probably performed the experiments did not claim the same. No
authors of [27] responded to PubPeer questions towards [27].

Weng 2020 [77], [78] argued that the claims by some public speakers that such misleading errors
have approached or even succeeded human performance [61] are controversial, since there are no explicit
competition rules that ban test sets to be used for Post-Selections.

M. Human PSUTS
Instead of writing a search program in machine PSUTS, human PSUTS defined below typically involves

less computational resources and programming demands.
Definition 6 (Human PSUTS): After planning experiments or knowing what will be in the training set

T and test set T 0 , a human post-selects features in networks instead of using a machine to learn such
features.

Unfortunately, almost all methods in the symbolic school use human PSUTS because it is always the
same human who plans for and design a micro-world and collect the test set T 0 . The key to an acceptable
test score lies in how much detail the human designer can plan for what is in the test sets and how much
freedom s programmer has in hand picking features.

Poggio et al. [79] and Fukushima et al. [17] explicitly admitted their use of human PSUTS. Li Fei-Fei
at al. [19] only vaguely admitted their use of human PSUTS by a vague term “weakly supervised” using
an extension of formulation by Pietro Perona that is originally unsupervised. Questions raised towards
[19] on PubPeer were not answered by the authors.

III. WHY ERROR-BACKPROP NEEDS PSUTS
This section discusses a global view, which is new as far as the author is aware, about why error-

backprop suffers from local minima even in the easier batch-learning mode.
Since error-backprop does not perform well for incremental learning mode as we can see why also

from the following discussion, we will concentrate on batch learning mode. Namely, we let the network
“see” the entire training set T for each network update.

Let us first consider a well-known neuronal model that is applicable to many CNNs. Suppose a post-
synaptic neuron with activation zj is connected to its pre-synaptic neurons yi, i = 1, 2, ..., n, through
synaptic weights wij , by the expression:

nX
φ(wij yi) = zj (15)

i=1

where φ(y) =
1+

1
e−y is the logistic function. The gradient of zj with respect to weight vector wj =

(w1,j , w2,j , ..., wn,j) is
η(y1, y2, ..., yn) , ηy

where η is the partial derivative of φ(y). Thus, according to gradient direction, the change of the weight
vector wj is along the direction of pre-synaptic input vector y. If the error is negative, zj should increase.
Then the weight vector should be incremented by

wj ← wj + w2y (16)

where w2 is the learning rate. We use the w2 to relate better the optimal Hebbian learning, called LCA,
used by DN in Section IV. At this point, the following theorem is in order.

Theorem 4 (Lacks of error-backprop): Error-backprop lacks (1) energy conservation, (2) an age-dependent
learning rate, and (3) competition based role-determination.

16

Neurons
without

competion

Past
inputs

Bird Cat Dog

Current
input

Fig. 2. Lack of role-determination in hidden neurons due to a lack of competition. The same ideas are true for a deeper hierarchy. Color
sample images courtesy of [61].

Proof: Proof of (1): If pre-synaptic input vectors {y} are similar, multiple applications of Eq. (16)
add many terms of {w2y} into the weight vector wj causing it to explode, which means a lack of energy
conversation. Proof of (2): w2 is typically tuned by an ad hoc way, such as a handpicked small value
turned by a term called momentum, instead of being automatically determined in Maximum Likelihood
optimality (ML-optimality) by neuronal firing age to be discussed in Section IV. Proof of (3): Suppose
neuron zj is in a hidden area of the network hierarchy. This neuron zj updates its pre-synaptic weight
using Eq. (16) regardless zj is role-responsible or not for the current network error. Likewise, looking
upstream, there is also a lack of role-determination in the gradient-based update for pre-synaptic neurons
y1, y2, ..., yn, all of which must update their own weights using their own gradients. Namely, there is no
competition-based role-determination in error-backprop .

The meaning (3) of Theorem 4 are illustrated by Fig. 2. CNNs do not have a competition mechanism in
any layers. Complete connections initialized with random weights are provided for all consecutive areas
(also called layers), from input area all the way to the output area. If the zj neuron is in the output
motor area and each output neuron is assigned a single class label, the role of zj (“dog” in the figure) is
determined by human supervised label “dog”. However, let us assume instead that zj is in a hidden area,
not responsible for the “dog” class. zj still updates its input weights using the gradient. Likewise, the
pre-synaptic area Y , is characterized by its label “neurons without competition”. The hidden neurons in
this area do not have a competition mechanism which would, like in LCA [67], allow a small proportion
of neurons to win the competition and fire so that they automatically take the roles that they happened to
compete well. This analysis leads us to the following theorem.

Theorem 5 (Random roles in error-backprop): A set of random initial weights in a network assigns
random roles to all hidden neurons, from which a local minimal point based on error-backprop learning
inherits this particular random-role assignment. Which neurons in each hidden area take a role does not
matter, but how hidden neurons share a set of roles in each hidden area does matter in the final fitting
error, validation error, and test error after error-backprop.

Proof: Without loss of generality, suppose a maximum in the output neuron means a positive

17

classification and weights take positive and negative values. Then, a positive weight to an output neuron
zj from a hidden neuron yi means an excitatory role of yi to zi and a negative weight means an inhibitory
role. A zero weight means an irrelevant role. The gradient vector computed in Eq. (16) means such
excitatory-inhibitory input patterns from pre-synaptic neurons are added through iterative error-backprop
procedures. Because of the complete connections and an identical neuronal type, where a hidden neuron
is located in the Fig. 2 does not matter, but each input image must have a sufficient number of hidden
neurons in every hidden area to excite for its signals to reach the corresponding output neuron. The initial
role assignment patterns in initial weights do matter for the final the fitting error rate, the validation error
rate, and the test error rate, because gradient updates are local and inherited such initial roles.

Theorem 6 (Percentage luck of error-backprop): Suppose a CNN has l > 1 areas, A0, A1, ..., Al,
connected by a cascade or a variation thereof. A0 takes input frames {x ∈ X} and Al is the output area
for classification. Suppose an area has a total of m hidden neurons that share a common receptive field R
in A0. Consider a given input frame x. Let the percentage of the m hidden neurons that do not fire among
all neurons in the same area with the same receptive field be denoted as p(x). Then, the error-backprop
depends on the average p̄ = Ex∈X {p(x)} to be a reasonably small value, called the percentage luck.

Proof: To guide the proof, we should mention that DNs use top-k competition so that each receptive
field in each area has only k neurons that fires, where k is small, e.g., top-1, for each receptive field R.
Suppose a receptive field R represents a neuronal column that has n neurons. A neuronal area at level l is
denoted as Al. Every receptive field image x ∈ X = A0 is concrete by which we means that its neurons
are only pixels {x} of a concrete example of a class C with p̄(x) = P (x fires) ≈ 50% (e.g., 50% back and
50% white). Each neuron z in area Al is abstract by which we means that it fires means an abstract class
C that x belongs to, with p̄(z) being small corresponds to top-1 among n neurons. Then, it is necessary
for the CNN to convert the most concrete representation of pixels in A0 to more abstract representations
in Al, l > 0 with a low p̄(z). For example, in Fig. 2, we have l = 2 and there is no completion in the
hidden area A1. Then error-backprop depends on that each neuron in A2 has only a relatively smaller
percentage among n = 6 neurons in A1 that are positive, i.e., as the features of its particular class. The
requirement of being a small percentage is due to the need for other non-firing neurons to deal with many
other patterns in the same receptive field.

As we can expect, such a low percentage condition is rarely satisfied by a random weight vector. The
more random weight vectors one uses, the better chance to hit the luck.

From Theorems 4 through 6 and their proofs, we can see that the luck of role assignment is a critical
flaw of error-backprop , and so are the system parameters and the simple-minded regularization of the
learning rate. Because of these key reasons, PSUTS plays a critical role to select the luckiest network
from many unlucky ones after error-backprop . The more networks have trained by error-backprop , the
more likely the luckiest one has a good role-assignment to start with.

There has been no lack of papers that claim to justify error-backprop does not over fit, e.g., variance
based stochastic gradient decent [80], saddle-free deep network [81], drop out [82], implicit regularization
during gradient flow [83]. They all address only local issues of neural networks trained by error-backprop
and did not mention Post-Selections. The theory here addresses, the global role-assignment problem of
random weights that no local mechanisms can deal with. This seems to be why PSUTS is necessary by
error-backprop , but PSUTS is controversially fraudulent in terms of protocol—test sets are meant to test
a reported system, not supposed to be used to decide which network to report from many.

IV. HOW A DN AVOIDS POST-SELECTIONS

Apparently, a brain does not use Post-Selection at al, whether UPSVS or PUUTS, because every human
child must develop in a human environment to make his living. He should not be covered up and not
reported, regardless how well or bad he performs. Cresceptron in the 1990s [42], [43], [16], [44], [45]
and later DN [46], [84], [57], [58] were inspired by the interactive mode that brains learn though lifetime.
In other words, Cresceptron and DN do not need Post-Selections. Furthermore, every DN must be ML-
optimal given the same Three Learning Conditions.

18

A. New AI Metrics: Developmental Errors
In contrast to Post-Selections likely used by [21], [14], [19], [79], [23], [66], [24], [25], [27], [76], [29],

[31] including probably AlphaGo [26], AlphaGo Zero [28], AlphaZero [85], AlphaFold [30] and MuZero
[86] and many others, we define and reported developmental errors that includes all errors occurred
through lifetime of each learning network:

Definition 7 (Developmental error): A Developmental Network is denoted as N = (X, Y, Wy, Z, Wz, A)
with sensory area X , skull closed hidden area Y and its weight space Wy, and motor area Z and its weight
space Wz, and the space of architecture parameters A, where X , Y , and Z also denote the spaces of
responses of X , Y and Z areas, respectively. The space of architecture parameters A includes all remaining
parameters and memory of the network, other than neuronal weighs, such as ages of neurons (for learning
rates), neuronal patterning parameters (location and receptive fields adapted by synaptic maintenance),
neuronal types (for initial connection absences among areas), and neuronal growth rates (for speed of
mitosis). It runs through lifetime by sampling at discrete time indices as N(t), t = 0, 1, 2, Start at
inception t = 0 with supervised sensory input x0 ∈ X(0), initial state z0 ∈ Z(0), randomly initialized
weigh vector y0 ∈ Y (0), initial architecture a0 ∈ A(0). At each time t, t = 1, 2, ..., the network N(t)
recursively and incrementally updates:

(xt, yt, zt, at) = f(xt−1, yt−1, zt−1, at−1) (17)

where f is the Developmental Program (DP) of N . If zt ∈ Z(t) is supervised by the teacher, the network
complies and the error et is recorded, but if the supervised motor vector has error, the error should be
treated as teacher’s. Otherwise, the learner is not motor-supervised and N(t) generates a motor vector zt
and is observed by the teacher and its vector difference from the desired zt

∗ is recorded as error et. The
lifetime average error for each motor concept or component, from time 0 up to time t is defined as

tX1
ē(t) , ei, (18)

t
i=0

which is computed incrementally in terms of average developmental error ē(t):

t − 1 1
ē(t) = ē(t − 1) + et. (19)

t t
Namely, all errors across a lifetime, at every time instance, are caught by the developmental error.

In order to reach a small error, a low final error rate that a batch learning method tries to reach is not
sufficient. Instead, the network must learn as fast as possible and avoid errors as much as possible at
every time instance t. This is indeed important since earlier performance will shape later learning.

An optimal network that gives the lowest possible developmental error, among all possible networks
under the same Three Learning Conditions, must be optimal at every time instance t throughout its life.
DN is one such network. Post-Selections are useless among neural networks that give the smallest devel-
opmental error under the same Three Learning Conditions, because the maximum-likelihood optimality
should give equivalent networks of the same developmental error.

However, in practice, the learning experience in the Three Learning Conditions is unlikely the same
among different networks, because each physical robot that runs a network at least occupies distinct
physical locations in the real world. For example, if two physical robot in the same family fight for a
toy, the winner gains a winner experience and the loser may acquire a loser mentality. In other words,
even if the parents of two boys are not biased toward any boys, the competition among the boys results
in different learning experiences.

The developmental error is important. If a competition is based on developmental errors (such as during
AIML Contests [62]), the winner is unlikely be one that uses a brute force method but has an excessive
amount of computational resources and manpower. ImageNet competitions [61] are flowed also in this
sense.

19

Although not formally defined as developmental errors, Cresceptron [16] and Developmental Networks
[41], [87], [88] reported developmental errors.

Namely, the developmental error, unless stated otherwise for a particular time period, is the average
lifetime error from inception. To report more detailed information about the process of developmental
errors {et | t ≥ 0}, statistics other than the mean (average) can be utilized, such as the minimum, 25%,
50% (median), 75%, the maximum, and the standard deviation.

For more a specific time period, such as the period from age t1 to age t2, the average error is denoted
as ē[t1 : t2]. Therefore, ē(t) is a short notation for ē[0 : t].

Because Cresceptron and DN have a dynamic number of neurons up to a system memory limit, each
new context

ct , (xt, yt, zt) (20)

may be significantly different from the nearest matched learned weight vectors of all hidden neurons. If
that happens and there are still new hidden neuron that have not fired, a free-state neuron that happens to
be the best match is spawned that perfectly memorizes this new context regardless its randomly initialized
weights. When all the free neurons have fired at least once, the DN will update the top-k matched neurons
optimally in the sense of maximum likelihood (ML), as proven for DN-1 by [41] and for DN-2 by [87],
as we will discuss below.

Note that a developmental system has two input areas from the environment, sensory X and motor Z.
That is, motor Z is supervisable by the world (including teachers) but not often. Since there is hardly
any sensory input x ∈ X that exactly duplicates at two different time indices, almost all sensory inputs
from X are sensory-disjoint. During motor-supervised learning, if the teacher supervises its motor area
Z and the learner complies. Since a teacher can make an error, the motor-error that the teacher made is
also recorded as the developmental error of the motor of the learner but due to the teacher.

B. Neuronal Competitions
As discussed above, error-backprop learning is without neuronal competitions. The main purpose

of competition is to automatically assign roles to hidden neurons. Below, we consider two kinds of
Convolution Neural Networks (CNNs), sensory networks and sensorimotor networks. A sensory network
is feedforward, from sensor to motor, in computation flow and therefore is simpler and easier to understand.
A sensorimotor network takes both sensor and motor as inputs and is highly recurrent and therefore more
powerful.

1) Sensory networks: Let us first consider the case of feed-forward networks as illustrated in Fig. 3.
Fig. 3(a) shows a situation where the number of samples in X is larger than the number of hidden
neurons, which is typical. Otherwise, if there are sufficient hidden neurons, each hidden neuron can
simply memorize a single sample x ∈ X .

This means that the total number of hidden neurons must be shared through incremental learning, where
each sample image-label pair (x, l) ∈ X × L arrives incrementally through time, t = 0, 1, 2, This is the
case with Cresceptron (and some other networks) which conducts incremental learning by dealing with
image-label pairs one at a time and update the network incrementally.

Every layer in Cresceptron consists of a image-feature kernel, which is very different from those in DN
where each hidden neuron represents a sensorimotor feature to be discussed later. By image-feature, we
mean that each hidden neuron is centered at an image pixel. Competitions take place within the column
for a receptive field centered at each pixel at the resolution of the layer. The resolution reduces from
lower layer to higher layer through was called resolution reduction (also called drop-out).

The competition in incremental learning is represented by incrementally assigning a new neuronal plane
(convolution plane) where the new kernel memorizes the new input pattern if the best matched neuron
in a column does not match sufficiently well. Suppose images x ∈ X arrives sequentially, the top-1
competition in the hidden layer in Fig. 3(a) enables each hidden neuron to respond to multiple features,
indicated by the typically multiple upward arrows, one from each image, pointing to a hidden neuron.

20

Neurons
with top-1
competion

Neurons
with top-1
competion

Past
inputs

Current
input

Bird Cat Dog

I win!

0.30.4
0.3

0.3
0.2 0.4

0.60.2
0.3

Neurons
without

competion

Past
inputs

More!

More!More!

More!

More!

Bird Cat Dog

Current
input

Completely
not their job!

(a) (b)

Fig. 3. How competition automatically assigns roles among hidden neurons without a central controller: The case for automatically construct
a mapping f : X 7→ L. (a) The number of samples in X is larger than the number of hidden neurons such that each hidden neuron must
win-and-fire for multiple inputs. (b) Error-backprop from the “dog” motor neuron asks some hidden neurons to help but the current input
feature is not their job. Thus, error-backprop messes up with the role assignment guessed by the random initial weights. The same ideas are
true for a deeper hierarchy. Color sample images courtesy of [61].

This amounts to incremental clustering based on top-k competition. The weight vector of each hidden Y
neuron corresponds to a cluster in the X space. In Fig. 3(a), k = 1 for top-k competition in Y .

Likewise, suppose top-1 competition in the next higher layer, Y , namely each time only one Y neuron
fires at 1 and all other Y neurons do not fire, resulting the connection patterns from the second layer Y
to the next higher layer Z. In the output layer Z, top-1 competition takes place but a human teacher can
supervise the pattern.

The Candid Covariance-free Incremental (CCI) Lobe Component Analysis (LCA) in Weng 2009 [67]
proved that such automatic assignment of roles through competition results in a dually optimal neuronal
layer, optimal spatially and optimal temporally. Optimal spatially means the CCI LCA incrementally
computes the first principal component features of the receptive field. Optimal temporally means that the
principal component vector has the least expected distance to its target—the optimal estimator in the sense
of minimum variance to the true LCA vector.

Intuitively, regardless what random weights each hidden neuron starts with, as soon as it wins to fire
for the first time, its firing age a = 1. Its random weight vector is multiplied by the zero retention rate
w1 = 1 − 1/a = 0 and this learning rate w2 = 1/a = 1 so that the new weight vector becomes the first
input rx with r = 1 for the firing winner.

1 1
v ← (1 −)v + rx. (21)

a a
It has been proven that the above expression incrementally computes the first principal component as
v. The learning rate w2 = 1 is the optimal and age-dependent learning rate. CCI LCA is a framework
for dually optimal Hebbian

a
learning. The property “candid” corresponds to the property that sum of the

learning rate w2 =
a
1 and the retention rate w1 = 1 −

a
1 is always 1 to keep the “energy” of response

r weighted input x unchanged (e.g., not to explode or vanish). This dually optimality resolves the three
problems in Theorem 4.

21

Fig. 3(b) shows how the three neurons in the Z area updates their weights so that the weight from
the second area to the third area become the probability of firing, conditioned on the firing of the post-
synaptic neuron in area Z (Dog, Cat, Bird, etc.). The CCI LAC guarantees that the sum of weights for
each Z neuron sum to 1. This automatic role assignment optimally solves the random role problem of
error-backprop in Theorem 5.

However, optimal network for incrementally constructing a mapping f : X 7→ L is too restricted,
since f : X 7→ L is only what brains can do, but not all brains can do. For the latter, we must address
sensorimotor networks.

2) Sensorimotor networks: The main reason that Marvin Minsky [5] complained that neural network
is scruffy was because conventional neural networks lacked not only the optimality described above for
sensory networks, but also lacked the Emergent Universal Turing Machines (EUTM) that is ML-optimal
we now discuss below.

First, each neuron in the brain not only corresponds to a sensory feature as illustrated in Fig. 3, but
also a sensorimotor feature. By sensorimotor feature, we mean that the firing of each hidden neuron in
Fig. 3 is determined not just by the current image σ represented by a sensory vector x ∈ X , but also the
state q represented by a motor vector z ∈ Z. It is well known that a biological brain contains not only
bottom-up inputs from x ∈ X but also top-down inputs from z ∈ Z. In summary, each hidden neuron
represents a sensorimotor feature in a complex brain-like network.

C. FA as sensorimotor mapping
This sensorimotor feature is easier to understand if we use the conventional symbols for (symbolic)

automata. Let us borrow the idea of Finite Automaton (FA). In an FA, transitions are represented by
function δ : Q × Σ 7→ Q, where Σ is the set of input symbols and Q the set of states. Each transition is
represented by

f
(q, σ) −→ q 0

a) AFA as a control of any Turing machine: Weng 2015 [41] extended the definition the FA so that
it outputs its state so the resulting FA becomes an Agent FA (AFA). Further, Weng 2015 [41] extended
the action q to the machinery of Turing machine (see Fig. 4) so that action q includes output symbol to
the Turing tape and the head motion of the read-write head of a Turing machine. With this extension,
Weng 2015 [41] proved that the control of any Turing machine is an AFA, a surprising result.

Here q ∈ Q is the top-down motor input to a sensorimotor feature neuron; σ is the bottom-up sensory
input to the same neuron. If δ has n transitions, n hidden neurons in the Y area are sufficient to memorize
all the transitions that is observed sequentially, one transition at a time.

We should not use symbols like σ and q, but instead sensory vectors x ∈ X and motor vectors z ∈ Z
that are emergent as discussed above. At discrete time t = 0, 1, 2, ..., we use the hidden neurons in the Y
area to incrementally learn the transitions:⎡ ⎤ ⎡ ⎤ ⎡ ⎤

Z(0) Z(1) Z(2)⎣Y (0)⎦ → ⎣Y (1)⎦ → ⎣Y (2)⎦ → ... (22)
X(0) X(1) X(2)

where → means neurons on the right use the input neurons on the right and compete to fire as explained
below without iterations. Namely, by unfolding time, the spatially recurrent DN becomes non-recurrent in
a time-unfolded and time-sampled DN. With LCA update, [41] proved that such a DN is ML-optimal and
has a constant complexity for each update O(1) with a large constant, suited for real-time computation
with a large memory and many neurons.

22

q

x xΔ Δ Δ Δ Δ1 1 1 1 1

3

Fig. 4. A Turing machine has a tape, a read-write head, and a transition function with a current state.

D. DN as a ML-Optimal of Emergent Universal Super-Turing Machine
The traditional Turing Machine (TM) is a human handcrafted machine, as illustrated in Fig. 4.
A Universal TM (UTM) s still a TM, but its tape contains two parts, a user supplied program and

the data that the program is applied to. The transition function of the UTM is designed to simulate any
program encoded in the form of transition of a TM and to apply the program on the data on the tape and
finally to place the output of the program on the data onto the tape.

A UTM is a model of the current general-purpose computers because the user can write any program
on any set of appropriate data for the UTM to carry out. Because a DN is an ML-optimal emergent FA,
Weng 2015 [41] extended a symbolic Turing machine to a super Turing machine by (1) extending the
tape to the real world, (2) the input symbols to vectors from sensors, (3) the output symbols to vector
output from effectors, and (3) the head motion to any action from the agent. Thus, DN ML-optimally
learns any TM, including UTM, directly from the physical world. The programs on the tape are learned
by the Super UTM incrementally from the real world across its lifetime!

E. DN as a ML-Optimal Learning Engine for APFGP and Conscious Learning
Because DN is an ML-optimal learning engine for any TM, including UTM, DN ML-optimally learns

any UTM from the physical world, conditioned on those in Definition 2. This means that a DN ML-
optimally learns to Autonomous Programming for General Purposes (APFGP) [57], [89]. Based on the
capability of APFGP, Weng 2020 argued that APFGP is a characterization of conscious machines [58] that
boots its skill of consciousness through conscious learning—being (partially) conscious while learning
across lifetime. Hopefully, APFGP is a clearer and more precise characterization for conscious machines
and animals, assuming that we allow a conscious machine to develop its degree of consciousness from
infancy.

In the following, we list the DN algorithm so that we can understand APFGP is not a vague idea and
how APFGP by DN avoids Post-Selections.

F. DN-2 Algorithm
Let us go through the DN-2 algorithm here so that we can see that DN is fully detail in computer

implementation.
DN-2 is the latest general-purpose learning engine in the DN family. In DN-1, the allocation of neurons

in each subarea of the hidden Y area is handcrafted by the designer. In DN-2, several biology-inspired
mechanisms are added to automatically allocate neuronal resources and generate a dynamic and fluid
hierarchy of internal representations during learning, relieving the human designer from handcrafting a
concept hierarchy, beyond the rigid hierarchy in deep learning [42], [43], [16], [44], [45], [19], [79], [23],
[66], [24], [25], [27], [76], [29], [31]. Namely, a DN-2 starts with simple internal representations which
gradually grow to be rich and deep supported by early representations as a “brain stem”, but it is still
ML-optimal conditioned on those in Definition 2.

Areas from low to high: X: sensory; Y hidden (internal); Z: motor. From low to high: bottom-up.
From high to low: top-down. From one area to the same area: lateral. X does not link with Z directly.

23

Input areas: X and Z; Output areas: Z; Hidden area: Y , fully closed from t = 0.
1) At time t = 0, inception. Initialize the X , Y and Z areas. x ∈ X takes the first image. Set every

Y neuron with random weights, zero firing age, and zero response y(0). Set the total number of
Y neurons to be nY . A boundary cY indicates the number of active neurons (cY ≤ nY). Set the Z
area and its memory part MZ similarly, but all concept zones take none vectors if the learner has
no prenatally learned inborn “reflexes”.

2) For time t = 1, 2, ..., repeat the following steps forever (executing steps 2a, 2b in parallel, before
step 2c):

a) All Y neurons compute in parallel:

(y 0,MY
0) = fY (cY ,MY) (23)

where context cY = (x, y, z), MA denotes the memory of area A including weights and
neuronal firing ages, and fY is the Y area function using LCA [65], [67]. If the best active
Y neurons do not match the input vector well, area Y transfers new neurons to active and
increment the boundary cY .

b) Supervise z0 if the teacher likes. Otherwise, Z neurons compute the response vector z and
update memory MZ

0 in parallel:

(z 0,MZ
0) = fZ (cY ,MZ) (24)

where fZ is the Z area function using LCA [65], [67] and cZ = (y, z).
c) Replace asynchronously: (y,MY , z,MZ) ← (y0,MY

0 , z0,MZ
0). Supervise input x.

The area function fY in Eq.(23) and area function fZ in Eq.(24) include two parts: (1) The computation
of response vectors y0 and z0 , respectively; (2) The maintenance of memory MY

0 and MZ
0 for Y area and

Z area, respectively.
The ML-optimality of DN-1 and DN-2 is rooted in the optimality of LCA and extends to the entire

network and entire lifetime.

G. Methods for Recursive Optimization
Given the Three Learning Conditions, at each time t, t = 1, 2, ..., a DN incrementally computes the

ML-estimator of its parameters at each time t that minimizes the developmental error without doing any
iterations.

Let us first review the maximum likelihood estimator for a batch data. Let x be the observed data
and fθ(x, z) is the probability density function that depends on a vector θ of parameters, there θ(t) =
(wy, wz, a) where some parameters of the architecture parameter vector a are hand-initialized such as the
receptive fields. The maximum estimator for θ corresponds to the θ that maximizes the probability density.
Regardless z is imposed, z is part of the parameters to be computed in a closed-form as a self-generated
version:

(θ ∗ , y ∗ , z ∗) = argmax fθ(x, z). (25)
(θ,y,z)

Since the above lifetime estimator is incremental, at each time t, the previous state z ∗
t−1 is self-generated

or supervised, and the observation is xt−1. The incremental ML-estimator for θt
∗ is computed in a closed-

form by the incremental version of Eq. (25) where f uses context ct−1 = (xt−1, yt−1, zt−1):
∗ ∗ ∗ ∗ (θt

∗ , yt , zt) = argmax fθt (xt−1, yt−1, zt−1). (26)
(θt,yt,zt)

The DN computes the above expression for each time t in a closed form without conducting any iterations
[41], [87].

How about initial weights? Inside θ, the weights of the DN are initialized randomly at t = 0. There
are k + 1 initial neurons in the Y area, and V = {v̇ i | i = 1, 2, ..., k + 1} is the current synaptic vectors

24

in Y . Whenever the network takes an input p, compute the pre-responses in Y . If the top-1 winner in Y
has a pre-response lower than almost perfect match m(t) discussed below, activate a free neuron to fire.
Eq. (21) showed that the initial weights of this free neuron is multiplied by a zero and therefore do not
affect its updated weights.

Weng [41] proved that DN-1 computes the ML-estimator of all observations from the sensory space
X and motor space Z using a large constant time complexity for each time t. Although DN learns
incrementally, such a DN is error-free for learning any complex Turing machines, including any universal
Turing machines. Weng [87] did the same for DN-2.

H. How DN Avoids Post-Selections but is Further ML-Optimal
Since weights are initialized randomly, how does a DN result in an equivalent network regardless the

random seed? There are k + 1 initial neurons in the Y area, and V = {v̇ i | i = 1, 2, ..., k + 1} is the
current synaptic vectors in Y . Whenever the network takes an input p, every Y neuron computes the
pre-response. If the top-1 winner in Y has a pre-response lower than almost perfect match m(t), activate
a free neuron to fire. The almost perfect match m(t) is defined as follows:

−t/t1)m(t) = (1 − δ)(1 − e (27)

where δ is the bound of machine round-off errors, and t1 the childhood length.
Using a mathematical induction procedure, Weng [41] proved that DN-1 computes the ML-estimator of

all observations from (x, y, z) using a large constant time complexity for each time t. Weng et al. 2018
[87] proved the ML-optimality for DN-2. Since the number of transition of any Turing machine is finite,
when the DN learns a Turing machine, a finite number of hidden Y neurons is sufficient for the DN to
incrementally memorize exactly all the transitions observed from the Turing machine. In other words,
although DN learns incrementally, such a DN is error-free for learning any complex Turing machines,
including any universal Turing machines.

If the DN runs in the real world, any finite size DN is not error-free soon after inception since the
number of observations from the real world is virtually unbounded, although each life is time bounded.
Namely, the amount of data from the real world is so large that any practically large DN will eventually
run out of free neurons that have not fired yet. From that point on, the DN is no longer guaranteed to be
error-free, although could be sometimes error-free, but is still ML-optimal inside the skull conditioned on
those in Definition 2. In other words, in the sense of ML, the DN is free of local minima inside the skull.
That is why only one DN is sufficient for each life and the DN avoids Post-Selections. However, because
the three conditions in Definition 2, a DN is not be optimal unconditionally either. For example, a better
designed teaching schedule or a more appropriate physical environment may enable a DN to learn and
discover rules faster and better.

I. Comparison with HMM
It is important to compare the traditional Hidden Markov Model (HMM) [90] with the ML-optimal

DN. (1) The former does not have any internal representations other than the symbol based probabili-
ties; the latter self-generates internal representations to generalize based on internal-representation based
probabilities (e.g., weights). (2) The former uses batch learning but the latter uses incremental learning.
(3) States in the former are symbolic, static, only partially observable for HMM, and not teachable but
those in the latter are emergent, observable and directly teachable if the teacher like. (4) The former
requires a batch clustering method (e.g., k-mean clustering) to initialize a static set of symbolic states, but
the states/actions in the latter are incrementally taught or autonomously generated and tried. (5) Clusters
of states in the former are not supported by a statistical optimality and the probability is only for state
estimates but those in the latter are ML-optimal throughout the lifetime of learning, not in states/actions
that the learner must produce and do not have a freedom for, but for the internal representations that the
learner does have a high degree of freedom for. (6) Due to the need to compute internal representations,

25

the amount of computations in the latter is often higher than the former but the computational complexity
is linear in time with a large constant (the number of weights of all available neurons).

V. EXPERIMENTS

A. Vision, Audition and Natural Languages
The recent experimental results of DN work here include (1) vision that includes simultaneous recog-

nition and detection and vision-guided navigation on MSU campus walkways [91], (2) audition to learn
phonemes with a simulated cochlea and the corresponding behaviors [92], (3) acquisition of English and
French in an interactive bilingual environment [93], and (4) exploration in a simulated maze environment
with autonomous learning for vision, path cost, planning, and selection of the least-cost plan, where all
such emergent actions are either covert (thoughts) or overt (acts) [94]. The same network was used to
learn these four very different tasks and task environments while each task embeds the ML-optimality of
the network, under the Three Learning Conditions.

B. Error-Backprop vs. ML-Optimal DN
To show the effects of the absence of ML-optimality in CNN vs. the ML-optimality of DN, Fig. 5 shows

the errors of the luckiest Convolutional Neural Network (CNN) trained by a batch error-backprop method
and the errors of a DN trained incrementally. As we understand, batch learning should not be compared
with an incremental learning method, because it is not a comparison on an equal footing. However, Fig. 5
shows that DN does a harder (incremental) work drastically better than CNN does an easier (batch) work.
The task is real-world vision-guided navigation on the campus of Michigan State University. Because the
DN is optimal in maximum-likelihood, it reaches the minimum error as soon as it has gone through the
data set T once (one epoch). Later epochs correspond to reviews of the same data set T . According to
the maximum-likelihood principle, the optimal estimate of the neuronal weights should not change but
the ages of the neurons continue to advance. In contract, the luckiest error-backprop trained CNN chosen
from several random seeds need many epochs to reduce its errors and only very slowly. At the end of
500th epoch, the error of the luckiest CNN trained by error-backprop is still considerably higher than the
full DN. Furthermore, as show in Fig. 5, teaching invariant concepts, i.e., abstraction in Theorem 2, are
use for reducing the optimal errors. For more detail, the reader is referred to [95].

C. AIML Contests
In the AIML Contest 2016, all teams are required to use a single learning engine to learn three

sensory modalities, vision, audition, and bilingual natural languages acquisition, while the engine learns
in “lifetime”. Although all the teams are free to choose any existing learning engines such as DN, tensor-
flow or other engines, all the teams chose DN engine (open source). The supplied simulated sequential
data (yes, subject to the “big data” flaw) are as follows. When we let the x be the image at each time
instance and z be the pattern of landmark location-and-type and action of navigation, the DN became a
vision-guided navigation machine. When we let x be the frame of firing pattern of hair cells in cochlea
at each time instance and z be the dense states/contexts and the sparse type of sounds, the DN became a
auditory-recognizer machine. When we let x be a time frame of vector of word (either English or French)
and z be the language kind (neutral, English, and French) and meaning of each sentence context, the
DN became a bilingual language learner and recognizer. Thus, the AIML Contest appeared to be the first
contest that independently demonstrated task-nonspecificity and modality-nonspecificity by independent
laboratories with the contest teams. All the teams are evaluated under the same Three Learning Conditions,
e.g., the number of neurons in the engine must not exceed the same given bound. The Contest used the
developmental error like the one defined here averaged over all the three contest tasks and across the three
lifetimes. The developmental error ranked all the submitted contest entries and required all networks not to
exceed the specified maximum number of neurons for each task so that the competition does not unfairly

26

Fig. 5. Comparison of error between the luckiest CNN trained by batch error-backprop and a DN across different epochs through the training
data. “Recog” and “Full” means teach where-what rules. Otherwise, data-fitting only. Adapted from [95].

favor those teams that have more computational resources at their disposal but not necessarily that their
methods are more superior. All the teams have a high degree of freedom to modify the learning engine
and to modify the supplied motor actions on the given data set, such as generating attentive actions on the
given training set to train invariant concepts (e.g., where and what concepts) which modifies the default
training experience supplied by the AIML Contest organizers but was still based on the same supplied
data set. The prudent design of the AIML contests was meant to avoid the corresponding problems in
ImageNet Contests [61] and many other contests.

D. GENISAMA Applications
GENISAMA LLC, a startup that the author created, has produced a series of real-time machine learning

products, as human-wearable robots. They are the first products ever existed as APFGP robots. Hopefully,
as a APFGP platform, this new kind of human-wearable robots will be useful for practitioners to produce
various kinds of intelligent auto-programed software. The author predicts that such a new kind of AI
systems will considerably alleviate the high brittleness of traditional AI software and traditional robot
software in open and natural world.

Hopefully, future DN-driven robots will learn consciously and autonomously discover in the real world
for Turing machine based general purposes, with relative infrequent interactions from humans similar to
what parents do to their children and human teachers teach their students in classrooms. The experiments
and competitions described here are for this grand goals but have not reached this experimental goal yet.

VI. CONCLUSIONS

We used intuitive terms but formal ways to discuss Post-Selections. Public and media have gained an
impression that deep learning has approached or even “sometimes exceeded” human level performance on
certain tasks. For example, the image classification errors from a static image set were compared with those
of humans [61, A2, p242]) and the work is laudable. However, this paper raises Post-Selections, which
seem to question such claims since a real human does not have the luxury of Post-Selections. The author
hopes that the exposure of Post-Selections is beneficial to AI credibility and the future healthy development

27

of AI, especially with the concepts of developmental errors and the framework of ML-optimal lifetime
learning for invariant concepts under the Three Learning Conditions. Some researchers have raised that it
seems that those who wan a competition were those who have more computational resources and manpower
at their disposal. The new developmental error metrics under the Three Learning Conditions hopefully
encourages future AI competitions to compare methods under the same Three Learning Conditions.
Considering DN as a much-simplified model for a biological machine, it seems not baseless to guess
that each biological brain is probably ML-optimal (of course in a much richer sense) across lifetime, e.g.,
due to the pressure to compete at every age. The Three Learning Conditions explicitly include other factors
that greatly affect machine learning performances such as learning framework (e.g., task-nonspecificity,
incremental learning, the robot bodies), learning experiences and computational resources. The analysis
that any “big data” sets are nonscalable does not mean that we should not create, use and share data sets.
Instead, we need to pay attention to the fundamental limitations of any static data sets, regardless how
large their apparent sizes are.

REFERENCES

[1] Montfort, N. Twisty Little Passages: An Approach to Interactive Fiction (MIT Press, Cambridge, MA, 2005).
[2] Turing, A. M. Computing machinery and intelligence. Mind 59, 433–460 (1950).
[3] Weng, J. Symbolic models and emergent models: A review. IEEE Trans. Autonomous Mental Development 4, 29–53 (2012).
[4] Russell, S. & Norvig, P. Artificial Intelligence: A Modern Approach (Prentice-Hall, Upper Saddle River, New Jersey, 2010), 3rd edn.
[5] Minsky, M. Logical versus analogical or symbolic versus connectionist or neat versus scruffy. AI Magazine 12, 34–51 (1991).
[6] Lenat, D. B., Miller, G. & Yokoi, T. T. CYC, WordNet, and EDR: Critiques and responses. Communications of the ACM 38, 45–48

(1995).
[7] Gomes, L. Machine-learning maestro Michael Jordan on the delusions of big data and other huge engineering efforts. IEEE Spectrum

(Online article posted Oct. 20, 2014).
[8] Rumelhart, D. E., McClelland, J. L. & the PDP Research Group. Parallel Distributed Processing, vol. 1 (MIT Press, Cambridge,

Massachusetts, 1986).
[9] McClelland, J. L., Rumelhart, D. E. & The PDP Research Group (eds.) Parallel Distributed Processing, vol. 2 (MIT Press, Cambridge,

Massachusetts, 1986).
[10] Krishna, R. et al. Visual genome. International Journal of Computer Vision 123, 32–73 (2017).
[11] Funahashi, K. I. On the approximate realization of continuous mappings by neural networks. Neural Network 2, 183–192 (1989).
[12] Poggio, T. & Girosi, F. Networks for approximation and learning. Proceedings of The IEEE 78, 1481–1497 (1990).
[13] Kohonen, T. Self-Organizing Maps (Springer-Verlag, Berlin, 2001), 3rd edn.
[14] Fukushima, K. Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in

position. Biological Cybernetics 36, 193–202 (1980).
[15] Oja, M., Kaski, S. & Kohunen, T. Bibliography self-organizing maps (som) papers: 1998 - 2001 addendum. Neural Computing Surveys

3, 1–156 (2003).
[16] Weng, J., Ahuja, N. & Huang, T. S. Learning recognition and segmentation using the Cresceptron. International Journal of Computer

Vision 25, 109–143 (1997).
[17] Fukushima, K., Miyake, S. & Ito, T. Neocognitron: A neural network model for a mechanism of visual pattern recognition. IEEE

Trans. Systems, Man and Cybernetics 13, 826–834 (1983).
[18] Serre, T., Poggio, T., Riesenhuber, M., Wolf, L. & Bileschi, S. High-performance vision system exploiting key features of visual cortex.

US Patent US7606777B2 (2006).
[19] Fei-Fei, L., Fergus, R. & Perona, P. One-shot learning of object categories. IEEE Trans. Pattern Analysis and Machine Intelligence

28, 594–611 (2006).
[20] Weng, J. Dialog initiation: Modeling amd: Closed skull or not? IEEE CIS Autonomous Mental Development Newsletter 9, 10–11

(2012).
[21] Werbos, P. J. The Roots of Backpropagation: From Ordered Derivatives to Neural Networks and Political Forecasting (Wiley, Chichester,

1994).
[22] LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proceedings of IEEE 86,

2278–2324 (1998).
[23] Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Advances in Neural

Information Processing Systems 25, 1106–1114 (2012).
[24] LeCun, Y., Bengio, L. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
[25] Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).
[26] Silver, D. et al. Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489 (2016).
[27] Graves, A. et al. Hybrid computing using a neural network with dynamic external memory. Nature 538, 471–476 (2016).
[28] Silver, D. et al. Mastering the game of go without human knowledge. Nature 354–359 (2017).
[29] McKinney, S. M. et al. International evaluation of an AI system for breast cancer screening. Nature 577, 89–94 (2020).
[30] Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).
[31] Bellemare, M. G. et al. Autonomous navigation of stratospheric balloons using reinforcement learning. Nature 588, 77–82 (2020).

28

[32] Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O. & Clune, J. First return, then explore. Nature 590, 580–586 (2021).
[33] Saggio, V. et al. Experimental quantum speed-up in reinforcement learning agents. Nature 591, 229–233 (2021).
[34] Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M. & Shenoy, K. V. High-performance brain-to-text communication

via handwriting. Nature 593, 249–254 (2021).
[35] Slonim, N. et al. An autonomous debating system. Nature 591, 379–384 (2021).
[36] Mirhoseini, A. et al. A graph placement methodology for fast chip design. Nature 594, 207–212 (2021).
[37] Lu, M. Y. et al. AI-based pathology predicts origins for cancers of unknown primary. Nature 594, 106–110 (2021).
[38] Warnat-Herresthal, S. et al. Swarm learning for decentralized and confidential clinical machine learning. Nature 594, 265–270 (2021).
[39] Weng, J. et al. Autonomous mental development by robots and animals. Science 291, 599–600 (2001).
[40] Mcclelland, J. L., Plunkett, K. & Weng, J. Guest editorial: Convergent approaches to the understanding of autonomous mental

development. IEEE Trans. on Evolutionary Computation 11, 133–136 (2007).
[41] Weng, J. Brain as an emergent finite automaton: A theory and three theorems. International Journal of Intelligent Science 5, 112–131

(2015).
[42] Weng, J., Ahuja, N. & Huang, T. S. Cresceptron: a self-organizing neural network which grows adaptively. In Proc. Int’l Joint

Conference on Neural Networks, vol. 1, 576–581 (Baltimore, Maryland, 1992).
[43] Weng, J., Ahuja, N. & Huang, T. S. Learning recognition and segmentation of 3-D objects from 2-D images. In Proc. IEEE 4th Int’l

Conf. Computer Vision, 121–128 (1993).
[44] Weng, J. Life is science (35): Did Turing Awards go to plagiarism? Facebook blog (2020). www.facebook.com/juyang.weng/posts/

10158305658699783.
[45] Weng, J. Did Turing Awards go to plagiarism? YouTube Video (2020). 1:05 hours, https://youtu.be/EAhkH79TKFU.
[46] Weng, J. Why have we passed “neural networks do not abstract well”? Natural Intelligence: the INNS Magazine 1, 13–22 (2011).
[47] Ji, Z., Weng, J. & Prokhorov, D. Where-what network 1: “Where” and “What” assist each other through top-down connections. In

Proc. IEEE Int’l Conference on Development and Learning, 61–66 (Monterey, CA, 2008).
[48] Guo, Q., Wu, X. & Weng, J. Cross-domain and within-domain synaptic maintenance for autonomous development of visual areas. In

Proc. the Fifth Joint IEEE International Conference on Development and Learning and on Epigenetic Robotics, +1–6 (Providence, RI,
2015).

[49] Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1, 1–47 (1991).
[50] Super, C. M. Environmental effects on motor development: A case of Africa infant precocity. Developmental Medicine and Child

Neurology 18, 561–567 (1976).
[51] Thoroughman, K. A. & Taylor, J. A. Rapid reshaping of human motor generalization. Jounal of Neuroscience 25, 8948–8953 (2005).
[52] Rizzotti, G., Riggio, L., Dascola, I. & Umilta, C. Reorienting attention across the horizontal and vertical meridians: evidence in favor

of a premotor theory of attention. Neuropsychologia 25, 31–40 (1987).
[53] Moore, T., Armstrong, K. M. & Fallah, M. Visuomotor origins of covert spatial attention. Neuron 40, 671–683 (2003).
[54] Iverson, J. M. Developing language in a developing body: the relationship between motor development and language development.

Journal of child language 37, 229–261 (2010).
[55] Weng, J. & Luciw, M. Brain-like emergent spatial processing. IEEE Trans. Autonomous Mental Development 4, 161–185 (2012).
[56] Weng, J., Luciw, M. & Zhang, Q. Brain-like temporal processing: Emergent open states. IEEE Trans. Autonomous Mental Development

5, 89 – 116 (2013).
[57] Weng, J. Autonomous programming for general purposes: Theory. International Journal of Huamnoid Robotics 17, 1–36 (2020).
[58] Weng, J. Conscious intelligence requires developmental autonomous programming for general purposes. In Proc. IEEE International

Conference on Development and Learning and Epigenetic Robotics, 1–7 (Valparaiso, Chile, 2020).
[59] Weng, J. On post selections using test sets (PSUTS) in AI. In Proc. International Joint Conference on Neural Networks, 1–8 (Shengzhen,

China, 2021).
[60] Weng, J. A developmental method that computes optimal networks without post-selections. In Proc. IEEE International Conference

on Development and Learning, 1–6 (Beijing, China, 2021).
[61] Russakovsky, O. et al. ImageNet large scale visual recognition challenge. International Journal of Computer Vision 115, 211–252

(2015).
[62] Weng, J. et al. Emergent Turing machines and operating systems for brain-like auto-programming for general purposes. In Proc. AAAI

2018 Fall Symposium: Gathering for Artificial Intelligence and Natural Systems, 1–7 (Arlington, Virginia, 2018).
[63] Ballard, D. H. & Brown, C. M. Computer Vision (Prentice-Hall, New Jersey, 1982).
[64] Shapiro, L. & Stockman, G. Computer Vision (Addison-Wesley, New York, 2001).
[65] Weng, J. Natural and Artificial Intelligence: Introduction to Computational Brain-Mind (BMI Press, Okemos, Michigan, 2019), second

edn.
[66] Karpathy, A. et al. Large-scale video classification with convolutional neural networks. In Proc. Computer Vision and Pattern

Recognition, +1–8 (Columbus, Ohio, 2014).
[67] Weng, J. & Luciw, M. Dually optimal neuronal layers: Lobe component analysis. IEEE Trans. Autonomous Mental Development 1,

68–85 (2009).
[68] Weng, J. & Luciw, M. D. Brain-inspired concept networks: Learning concepts from cluttered scenes. IEEE Intelligent Systems Magazine

29, 14–22 (2014).
[69] Wood, D. J., Bruner, J. S. & Ross, G. The role of tutoring in problem-solving. Journal of Child Psychology and Psychiatry 89–100

(1976).
[70] Burr, S. Active learning literature survey. Data Mining and Knowledge Discovery 2, 121–167 (1998).
[71] Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. Communications of

the ACM 60, 84–90 (2017).
[72] Jain, A. K. & Dubes, R. C. Algorithms for Clustering Data (Prentice-Hall, New Jersey, 1988).

www.facebook.com/juyang.weng/posts/10158305658699783
www.facebook.com/juyang.weng/posts/10158305658699783
https://youtu.be/EAhkH79TKFU

29

[73] Wang, Y., Wu, X. & Weng, J. Synapse maintenance in the where-what network. In Proc. Int’l Joint Conference on Neural Networks,
2823–2829 (San Jose, CA, 2011).

[74] Guo, Q., Wu, X. & Weng, J. WWN-9: Cross-domain synaptic maintenance and its application to object groups recognition. In Proc.
Int’l Joint Conference on Neural Networks, +1–8 (Beijing, China, 2014).

[75] Gao, Q., Ascoli, G. A. & Zhao, L. BEAN: Interpretable and efficient learning with biologically-enhanced artificial neuronal assembly
regularization. Front. Neurorobot 1–13 (2021).

[76] Moravcik, M. et al. Deepstack: Expert-level artificial intelligence in heads-up no-limit poker. Science 356, 508–513 (2017).
[77] Weng, J. Life is science (36): Did Turing Awards go to fraud? Facebook blog (2020). www.facebook.com/juyang.weng/posts/

10158319020739783.
[78] Weng, J. Did Turing Awards go to fraud? YouTube Video (2020). 1:04 hours, https://youtu.be/Rz6CFlKrx2k.
[79] Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M. & Poggio, T. Robust object recognition with cortex-like mechanisms. IEEE Trans.

Pattern Analysis and Machine Intelligence 29, 411–426 (2007).
[80] Sermanet, P., Kavukcuoglu, K., Chintala, S. & LeCun, Y. No more pesky learning rates. In Proc. International Conference on Machine

learning, 343–351 (Atlanta, GA, 2013).
[81] Dauphin, Y. N. et al. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In Advances

in Neural Information Processing Systems, 2933–2941 (Curran Associates, Inc., Montreal, Canada, 2014).
[82] Srivastava, N., Hinton, G. E., Krizhevsky, K., Sutskever, I. & Salakhutdinov, R. Dropout: A simple way to prevent neural networks

from overtting. Journal of Machine Learning Research 15, 1929–1958 (2014).
[83] Poggio, T. Theoretical issues in deep networks. Proceedings of thr National Academy of Sciences 117, 30039–30045 (2020).
[84] Weng, J., Zheng, Z., Wu, X. & Castro-Garcia, J. Auto-programming for general purposes: Theory and experiments. In Proc. International

Joint Conference on Neural Networks, 1–8 (Glasgow, UK, 2020).
[85] Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 1140–1144

(2018).
[86] Schrittwieser, J. et al. Mastering atari, go, chess and shogi by planning with a learned model. Science 588, 604–609 (2020).
[87] Weng, J., Zheng, Z. & Wu, X. Developmental Network Two, its optimality, and emergent Turing machines. U.S. Provisional Patent

Application Serial Number: 62/624,898 (2018). Published.
[88] Knoll, J. A. et al. Optimal developmental learning for multisensory and multi-teaching modalities. In Proc. IEEE International

Conference on Development and Learning, 1–6 (Beijing, China, 2021).
[89] Weng, J. A unified hierarchy for AI and natural intelligence through auto-programming for general purposes. Journal of Cognitive

Science 21, 53–102 (2020).
[90] Rabiner, L. R. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of IEEE 77, 257–286

(1989).
[91] Zheng, Z., Wu, X. & Weng, J. Emergent neural turing macine and its visual navigation. Neural Networks 110, 116–130 (2019).
[92] Wu, X. & Weng, J. Muscle vectors as temporally “Dense Labels”. In Proc. International Joint Conference on Neural Networks, 1–8

(Glasgow, UK, 2020).
[93] Castro-Garcia, J. & Weng, J. Emergent multilingual language acquisition using developmental networks. In Proc. International Joint

Conf. Neural Networks, +1–8 (IEEE Press, Budapest, Hungary, 2019).
[94] Wu, X. & Weng, J. On machine thinking. In Proc. International Joint Conf. Neural Networks, 1–8 (IEEE Press, Shenzhen, China,

2021).
[95] Zheng, Z. & Weng, J. Mobile device based outdoor navigation with on-line learning neural network: a comparison with convolutional

neural network. In Proc. 7th Workshop on Computer Vision in Vehicle Technology (CVVT 2016) at CVPR 2016, 11–18 (Las Vega,
2016).

www.facebook.com/juyang.weng/posts/10158319020739783
www.facebook.com/juyang.weng/posts/10158319020739783
https://youtu.be/Rz6CFlKrx2k

	I Introduction
	I-A Symbolic school
	I-B Connectionist School
	I-C Developmental School

	II Post-Selections
	II-A The Three Learning Conditions
	II-B Task-specific vs. Task-nonspecific
	II-C Batch vs. Incremental Learning Modes
	II-D Fitting, validation and test errors
	II-E PSUVS
	II-F Cross-Validation
	II-G Types of lucks in a Neural Network
	II-H Post-Selection with Types 2 and 3 Average-Validations
	II-I The Luckiest Network from a Validation Set
	II-J Luckiest Network with Type-1 Cross-Validation
	II-K Machine PSUTS
	II-L Implications of PSUTS
	II-M Human PSUTS

	III Why Error-Backprop Needs PSUTS
	IV How a DN Avoids Post-Selections
	IV-A New AI Metrics: Developmental Errors
	IV-B Neuronal Competitions
	IV-B1 Sensory networks
	IV-B2 Sensorimotor networks

	IV-C FA as sensorimotor mapping
	IV-D DN as a ML-Optimal of Emergent Universal Super-Turing Machine
	IV-E DN as a ML-Optimal Learning Engine for APFGP and Conscious Learning
	IV-F DN-2 Algorithm
	IV-G Methods for Recursive Optimization
	IV-H How DN Avoids Post-Selections but is Further ML-Optimal
	IV-I Comparison with HMM

	V Experiments
	V-A Vision, Audition and Natural Languages
	V-B Error-Backprop vs. ML-Optimal DN
	V-C AIML Contests
	V-D GENISAMA Applications

	VI Conclusions
	References

