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Abstract: Neural network based Artificial Intelligence (AI) has reported increasing scales in exper-
iments. However, this paper raises a rarely reported stage in such experiments called Post-Selection 
alter the reader to several possible protocol flaws that may result in misleading results. All AI methods 
fall into two broad schools, connectionist and symbolic. The Post-Selection fall into two kinds, Post-
Selection Using Validation Sets (PSUVS) and Post-Selection Using Test Sets (PSUTS). Each kind has 
two types of post-selectors, machines and humans. The connectionist school received criticisms for its 
“black box” and now the Post-Selection; but the seemingly “clean” symbolic school seems more brittle 
because of its human PSUTS. This paper first presents a controversial view: all static “big data” are 
non-scalable. We then analyze why error-backprop from randomly initialized weights suffers from severe 
local minima, why PSUVS lacks cross-validation, why PSUTS violates well-established protocols, and 
why every paper involved should transparently report the Post-Selection stage. To avoid future pitfalls in AI 
competitions, this paper proposes a new AI metrics, called developmental errors for all networks trained, 
under Three Learning Conditions: (1) an incremental learning architecture (due to a “big data” flaw), 
(2) a training experience and (3) a limited amount of computational resources. Developmental Networks 
avoid Post-Selections because they automatically discover context-rules on the fly by generating emergent 
Turing machines (not black boxes) that are optimal in the sense of maximum-likelihood across lifetime, 
conditioned on the Three Learning Conditions. 

Keywords: Experimental Protocols, Error-Backprop, Deep Learning, Performance Evaluation, Maximum 
Likelihood, Turing Machines 
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I. INTRODUCTION 

AI research dates back at least to early 1910 when Leonardo Torres y Quevedo built a chess end 
game player called EI Ajedrecista [1]. In 1950, Alan Turing published his now celebrated paper [2] 
titled Computing Machinery and Intelligence. Turing [2] was impressive to have discussed a wide variety 
of considerations for machine intelligence, as many as nine categories. Unfortunately, he suggested to 
consider what is now called the Turing Test that has inspired and misled many AI researchers. 

Much progress has been made in AI since then and many methods have been developed to deal with 
AI problems. As the scope of this paper, we will focus on generalization. All AI methods fall into two 
schools [3], symbolic and connectionist, although many published methods are a mixture of both. 

A. Symbolic school 
Symbols are used in many AI methods (e.g., states in HMMs, nodes in Graphical Models and attributes 

in SLAM). Although symbols are intuitive to a human programmer since he defines the associated 
meanings, symbols are static and have some fundamental limitations that have not received sufficient 
attention. 

The symbolic school [4] assumes a micro-world in 4D space-time in which a set of objects or concepts, 
e.g., L = {l1, l2, ..., ln}, is assumed to be uniquely defined among many human programmers and 
their computers, represented by a series of symbols in time {l1(t), l2(t), ...ln(t) | t0 ≤ t < t1}. The 
correspondences among all these symbols {li} of the same object across different times are known as 
“the frame problem” [4] in AI which means that the programmer must manually link every symbol along 
time with its corresponding physical object. In computer vision, the symbolic school assumes a single 
symbol oi, for all its 3D positions in its 3D trajectory {x(t) | t0 ≤ t ≤ t1} and uses certain techniques, 
such as feature tracking through video (e.g., for driverless cars). Therefore, the symbolic school is based 
on human-handcrafted set of symbols and their assumed meanings. Marvin Minsky wrote that symbols 
are “neat” [5], but in fact, symbols are “neat” mainly in a single human programmer’s understanding but 
not between different programmers and not in relating computer programs to a real world. 

We will see the Developmental Network (DN) model of a brain is free from any symbols in its full 
version. Abstract symbols correspond to action/state vectors in the motor area of DN. Therefore, the 
frame problem is automatically solved through emergent action/state vectors in a physically grounded 
DN, without using any symbols in the DN’s internal representations. 

A major problem for symbolic AI is the generalization issue of symbols as defined here. 
Definition 1 (Brittleness of static symbols): Suppose a symbolic AI machine M(L) designed for a 

handcrafted set L of symbols is applied to a real world that requires a new set of symbols L0 , with 
L ∩ L0 6= ∅, M(L) fails without a human programmer who handcrafts an appropriate mapping function 
f : L0 7→ L that maps every element of L0 to an element in L so that M(f(L0)) works correctly as before. 

Many expert systems (e.g., CYC, WordNet and EDR [6]) and “big data” projects [7] require a human 
programmer to be in the loop of handcrafting such a mapping f during deployment. For example, an 
machine M developed in Florida is deployed in Michigan but Michigan has snow but Florida does not. 
Because it is extremely challenging for a human programmer to understand many implicit limitations 
of M(L), the mapping f that the human handcrafts typically makes M(F (L0)) fail, resulting in the 
well-known high brittleness of symbolic systems. 

Due to emergent representations as numeric vectors, a DN robot discussed below learns snow settings 
and the snow concept when it sees snow scenes for the first time, because there are no symbols that 
correspond to snow in DN’s representations. 

In general, the developmental methods to be discussed below automatically address such new concept 
problems without a need for a human programmer to be in the loop of handcrafting a symbolic mapping 
f during a deployment. In this paper, the author will further argue that the symbolic school suffers from 
human PSUTS. 
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B. Connectionist School 
The connectionist school claimed to be less brittle [8], [9]. However, a network is egocentric—meaning 

that the agent starts from its own (neural) network, instead of a symbolic world. It must learn from the 
external world without a handcrafted, world-centered object model. Although connectionist methods often 
assume some task-specific symbols, e.g., a static set L of object labels, they also assume a restricted world 
implicitly. Therefore, a connectionist model typically needs to sense and learn from a restricted world 
using a network. The use of L by any neural networks (e.g., ImageNet [10] and many other competitions) 
as a set of object labels is a fundamental limitation that also causes the resulting system to be brittle for 
the same reason as the symbolic school. 

Typically, a neural network is meant to establish only a mapping f from the space of input X to the 
space of class labels L, 

f : X 7→ L (1) 

[11], [12]. X many contains a few time frames. Many video analysis problems, speech recognition 
problems, and computer game-play problems are also converted into this static input space so that the 
input space also includes L, so as to learn 

f : X × L 7→ L. (2) 

Without a pressure of performance characterization during learning other than the performance of the 
final network, a self-organization map (e.g., SOM) has been used often as an unsupervised but slow 
learning method [13], [14], [15] . 

In contrast, with a pressure of performance characterization during learning, Cresceptron [16] used a 
“skull-closed” incremental-learning Hebbian-like scheme with receptive-field based competitions. 

Other than the Hebbian mechanisms which are strictly “unsupervised” used by he Cresceptron and the 
DN explained below, two other types of learning schemes have been published: 

A Human handpicking features: after knowing the test set, humans handpick features, reported 
explicitly [17], [18], [19] or implicitly as “weakly supervised” [19]. This author called them 
“skull-open” [20]. 

B Error-backprop: Locally train multiple networks each from a different set of random weights. 
After the training, post-select the luckiest network. Report the luckiest network only [21], [22], 
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38] but many 
publications do not report the post-selection stage at al, with few exceptions [27]. 

Below, this author will argue that (A) suffers from human Post-Selections and (B) suffers from machine 
Post-Selections. While Cresceptron, the first deep learning for a 3D world, generates a single large network, 
it showed an impressive generalization power due to the use of the nearest neighbor scheme at every layer 
of an automatically generated deep network. This author will argue that Post-Selections in (A) and (B) 
suffer from weak generalizations (due to three types of lucks to be discussed below) and did not count 
the cost of training multiple networks many of which were not reported. 

By the way, genetic algorithms offer another approach to such network learning. These algorithms study 
changes in genomes across different life generations. However, many genetic algorithms do not deal with 
lifetime development [39], [40]. We argue that handcrafting functions of a genome as a Developmental 
Program (DP) seems to be a clean and tractable problem, which avoids the extremely high, cost of 
evolution on DP. Many genetic algorithms further suffer from the PSUTS problems, since they often use 
test sets as training sets (i.e., vanished tests) as explained below. 

Marvin Minsky [5] among many scholars complained that neural networks are “scruffy” or “black 
boxes”. This problem is not addressed holistically until the framework of Emergent Turing Machine was 
introduced [41] into Developmental Networks (DNs) by the Developmental School discussed below. A 
lack of Emergent Turing Machine mechanisms or being “scruffy” in sample fitting appears to be the main 
cause of PSUTS in traditional neural networks trained by human feature-handpicking or error-backprop 
methods. 
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C. Developmental School 
The main thrust of the Developmental School, formally presented 2001 by Weng and six co-authors 

[39] is the task-nonspecificity for lifetime development, known as Developmental Programs (DPs) that 
simulate the functions of genome without simulating the genome encoding. Although a DP generates a 
neural network, a DP is very different from a conventional neural network in the evaluation of performance 
across each life—all errors from the inception time 0 of each life is recorded and reported up to each 
frame time t > 0, as explained further below. 

The first developmental program seems to be the Cresceptron by Weng et al. [42], [43], [16] which 
appears to be, as far as the author is aware, the first deep-learning Convolutional Neural Network (CNN) 
for a 3D world. As explained in [44], [45] other well-known CNNs for 3D recognition, although they 
do not use a generative DP, followed many key ideas of Cresceptron. Cresceptron seems to be the first 
incremental neural network whose evaluation of performance is across its entire “life” and only one 
network was generated (developed) from the given training data set. 

Cresceptron did not deal with time. A developmental approach that deals with both space and time 
in a unfired fashion using a neural network started from Developmental Networks (DNs) [46] whose 
experimental embodiments range from Where-What Networks 1 (WWN-1) [47] to WWN-9 [48]. The 
DNs went beyond vision problems to attack general AI problems including vision, audition, and natural 
language acquisition as emergent Turing machines [41]. 

DNs overcame the limitations of the framewise mapping in Eq. (2) by dealing with lifetime mapping: 

f : X(t − 1) × Z(t − 1) 7→ Z(t), t = 1, 2, ... (3) 

where X(t) and Z(t) are the sensory input space and motor space, respectively, and × denotes the 
Cartesian product of sets. A fundamental difference between Eq. (2) and Eq. (3) is that in the latter 
the Z space contains exclusively emergent vectors, instead of any symbols, so that the actions/states are 
incrementally taught and learned across a lifetime. 

As we will see in Section IV-A, all the errors occurred during any time of each life is recorded and 
taken into account in the performance evaluation. 

It is important to extend Eq. (3) to include the hidden area Y that generates international (hidden) 
representations. To model how Y -to-Y connections enable something similar to higher and dynamic order 
in Markov models (but not symbolic), the above lifetime mapping is extended to: 

f : X(t − 1) × Y (t − 1) × Z(t − 1) 7→ Y (t) × Z(t), t = 1, 2, ... (4) 

Note that Z(t − 1) here is extremely important since it corresponds to the state of a Turing machine. 
Namely, all the errors occurred during any time of each life is recorded and taken into account in the 
performance evaluation. 

Different from the static symbols in the symbolic school and the space of class labels L of static symbols 
in Eq. (2) of the connectionist school, the space Z(t) of numeric vectors of the developmental school 
is free from symbols. Therefore, these states/actions are directly teachable or self-generative, inspired by 
brains [49], [50], [51], [52], [53], [51], [54]. This new symbol-free formulation is necessary to model 
not only brain’s spatial processing [55] and temporal processing [56], but also Autonomous Programming 
for General Purposes (APFPG) [57]. Based on the APFGP capability, we open the door towards the next 
step—conscious learning [58]—learning while being partially and increasingly conscious. By conscious 
learning, we do not mean “open-skulledly” handcrafting general-purpose consciousness, which is probably 
too complicated to handcraft. But instead we enable fully autonomous machine learning while machines 
being partially conscious—autonomously learn more sophisticated consciousness skills using their partial, 
earlier, and simpler conscious skills across the lifetime. 

This is the journal archieval version of the earlier conference papers [59], [60] with significantly refined 
additional material and analysis. 

In the following, we will discuss Post-Selection in Section II. Section III addresses why error-backprop 
algorithms suffer from severe local minima problems. Section IV explains how a Developmental Network 
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solves the local minima problems, since only one network is needed for each life and the evaluation 
of performance across the entire life. Section V discusses experiments. Section VI provides concluding 
remarks. 

II. POST-SELECTIONS 

AI has made impressive progress, gained much visibility, and attracted the attention of many government 
officials. However, there are protocol flaws that have resulted in misleading results. 

First, let us consider three learning conditions that any fair comparisons of AI methods should take 
into account. 

A. The Three Learning Conditions 
Many AI methods were evaluated without considering how much computational recourses are necessary 

for the development of a reported system. Thus, comparisons about the performance of the system have 
been tilted toward competitions about how much resources a group has at its disposal, regardless how 
many networks have been trained and discarded, and how much time the training takes. 

Here we explicitly define the Three Learning Conditions for development of an AI system: 
Definition 2 (The Three Learning Conditions): The Three Learning Conditions for developing an AI 

system are: (1) a set of restrictions of learning framework, including whether task-specific or task-
nonspecific, batch learning or incremental learning, and the body’s sensors and effectors; (2) a training 
experience and (3) a limited amount of computational resources including the number of hidden neurons. 

The competing standard of the ImageNet competitions [61] did not include any of these three conditions. 
The AIML Contests [62] considered all the three in performance evaluation. In the following Subsection, 
we discuss why task-nonspecificity and incremental mode should be considered in any comparisons. 

B. Task-specific vs. Task-nonspecific 
A task-specific learning approach learns less because much is handcrafted by a human according to the 

given task. Furthermore, a task-specific method is brittle. 
In Condition (1) of the Three Learning Conditions, the task-nonspecific learning paradigm is signifi-

cantly different from the task-specific traditional AI paradigm as explained in Weng et al. 2001 [39]. In 
a task-specific paradigm, the system developer is given a task e.g., constructing a driverless car. Then, it 
is a human programmer who chooses a world model, such as a model of lane edges. Next, he picks an 
algorithm based on this world model, e.g., the well-known Hough transform algorithm [63], [64] for line 
detection which makes every pixel that is detected as edge cast votes for lines of all possible orientations 
o and distances d from the origin that go through the pixel. Then the top-two “peaks” of line parameters 
(o, d) that have received the highest votes are adopted to declare a line detected from the image. Here 
“edges” and “lane lines” are two symbolic concepts picked up by the programmer. Such systems will fail 
when lanes are unclear or totally disappear due to weather or road conditions, leading to a brittle system. 
Human brains appear to be more resilient. 

In contrast, a task-nonspecific approach [39] not only avoids any symbolic model, but also does not 
requires that a task is given. The desirable actions at any time are taught, tried, and recalled automatically 
by the learner based on system’s learned context q [65] that includes automatically figured-out goal and 
state, as well as the current input. The mapping function f(z, x) = z0 , representing the symbolic mapping 
fs(q, σ) = q0 , corresponds to a finite automaton. Weng has proven that the control of any Turing machine 
is a finite automaton [41]. Thus, this framework is of general-purposes in the sense of universal Turing 
machines. Any universal Turing machine is of general purposes, because it can read any program written 
for any purposes and run it for the purposes. Any neural network that learns a universal Turing machine 
become of general purposes in the sense of any programs, not just in the sense of any mappings like that 
in Eq. (1). Thanks to the absence of any world model, such as lanes, this task-nonspecific approach has a 
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potential to be more robust than a world-model based approach. The task-nonspecific approach typically 
uses a neural network to learn because the need to learn vector mapping function f(z, x) = z0 . We will 
discuss internal response vector y in Section IV but task-nonspecificity holds true without y. 

C. Batch vs. Incremental Learning Modes 
Neural network learning for the mapping f has two learning modes, batch learning and incremental 

learning. 
With batch learning, a human first collects a set D of data (e.g., images) and then labels each datum with 

a desirable output (e.g., command of navigation or class label). A neural network is trained to approximate 
a mapping f in Eq. (1) or Eq. (2). Many batch-learning projects use an error-backprop method [23], 
[66], [24] which uses a gradient-based method to find a local minimum in error. 

As we will discuss in Section III, the gradient in the error-backprop method does not contain key 
information of many other data if the learning mode is incremental. Thus, error-backprop on a large data 
set does poorly using a purely incremental learning mode. Many used a block-incremental learning mode 
which suffers from the big data flaw in Theorem 1 below. 

In contrast, all developmental methods cited here use incremental learning mode for long lifetimes, using 
a closed-form solution to the global lifetime optimization. The competition among neurons guarantees that 
the winner is the most appropriate neuron whose memory corresponds to the current working memory 
[67]. 

However, the batch and incremental learning modes are not capability-equivalent [67]. The former 
requires all sensory inputs are available at a batch, independent of the corresponding actions. Therefore, 
the former is easier and also incorrect according to sensorimotor recurrence. By sensorimotor recurrence, 
we mean that sensory inputs and motor outputs are mutually dependent on each other in such a recurrent 
way that off-line collection of inputs are technically flawed. We have the following theorem: 

Theorem 1 (Big Data Flaw): All static “big data” sets used by machine learning violate the sensorimotor 
recurrence property of the real world. 

Proof: A learning agent at time t − 1, as shown in Eqs. (3) and (4) does not have the next sensory 
input from X(t) available before the corresponding actions in Z(t−1) are generated and output, since the 
sensory input in X(t) varies according to the agent actions in Z(t − 1). As an example, turning head left 
or right will result in a different image sensed. Therefore, all static “big data” sets violate the sensorimotor 
recurrence. 

One may say that classifications of static images are fine. We do not agree, because even when a 
human (or machine) is looking at a static image, he uses attention (e.g., context-based saccades)which is 
a sequence of actions. Each saccade results in a different fovea image. 

Therefore, incremental learning is necessary for the sensorimotor recurrence. All batch-training methods 
use a static set of training data and, therefore, are inappropriate for any of them to claim near-human 
performance since the two learning problems are different. This leads to the following theorem. 

Consider a hierarchy of levels of object types, such as nails, fingers, palms, hands, arms, limbs, torsos, 
human bodies, etc. Because vision requires a high level l to understand natural scenes with abstraction of 
parts with invariances (e.g., all fingers of different scales, looks, and at different locations), each child needs 
an open-ended world to learn to learn rules (e.g., finger-parts and hand-whole) instead of simple-minded 
pattern recognition of sensory images. 

Theorem 2 (Nonscalability of Big Data without abstraction): All static “big data” sets used by machine 
learning are nonscalable if they are treated as pattern recognition without rule abstractions. 

Proof: Suppose that a static data set D has shown the presence of k feature types defined at level 1 
(e.g., edge pixels are a type). Suppose a combination of k > 1 feature types to level l+1 type (e.g., straight 
line type is from multiple edge pixels) is defined from k types of feature types at level l, l = 1, 2, .... The 
number of samples for a l-level feature type requires at least kl observations to discover all necessary 
within-type equivalence (e.g., logic OR is at l = 2 with k = 2 logic features at l = 1, thus without rule 
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abstraction (e.g., parts and whole), it requires kl = 22 = 4 observations, corresponding to 4 rows in the 
truth table of logic OR). Since f(l) = kl is an exponential function in l, kl quickly exceeds any fixed 
number of observations in the static data set D. 

Rule abstractions deal with invariances. For example, a “what” concept is “where”-invariant and a 
“where” concept is “what”-invariant, as explained in [55], [68]. 

Section IV discusses an optimal framework through which such abstractions can take place from 
learning simple rules during early life that enable learning of more complex rules during later life— 
called scaffolding [69]. 

Theorem 2 leads to two observations on data fitting on a static data set: 
Observation 1: Any data fitting on a static data set without learning invariant concepts are nonscal-

able, including the n-fold cross-validation discussed below. Unfortunately, data fitting on a static data 
set is a norm in all ImageNet Contests [66]. Namely, the remaining subsections in this section analyze 
approaches that are nonscalable. For example, computer vision is not a “one-shot” pattern classification 
problem as argued by Li Fei-Fei et al. [19] (which was questioned in PubMed without responses), but 
rather a spatiotemporal problem to learn various invariant concepts present in cluttered natural scenes 
through autonomous attention saccades, as explained further in Observation 2. 

Observation 2: Learning invariant concepts seem nonscalable for any data fitting on a static data 
set either, because there are too many images to be labeled by hand (e.g., all pixel locations) [55], [68]. 
Like a human baby, any scalable machine learning methods must be conscious through which the machine 
learner must consciously guess concepts (i.e., not just active learning [70]) (e.g., an object type) and verify 
their invariance rules (e.g., the where-invariance of a what concept). The state-based transfer in Theorem 8 
of [56] explains how each concept state reduces the number of samples to be learned from an exponential 
kl down to only kl (see Fig. 6 of [56] for intuition where k = 10 and l = 3). Thus, Section IV not only 
addresses the non-scalability problems in this section, but is also necessary for conscious learning whose 
theory was recently published in Weng 2020 [58] with some single-sensory-modality experimental results, 
but animal-level conscious robots that are multi-sensory and multi-motor have not yet been demonstrated. 
The availability of real-time learning brain-chip is a current bottleneck. 

D. Fitting, validation and test errors 
Given an available data set D, D is divided by a partition P = (T, V, T 0) into three mutually disjoint 

sets, a training set T , a validation set V , and a test set T 0 so that 

D = T ∪ V ∪ T 0 . (5) 

Two sets are disjoint if they do not share any elements. The validation set is possessed by the trainer, 
the test set should not be possessed by the trainer since the test should be conducted by an independent 
agency. Otherwise, V and T 0 become equivalent. 

As we will see in Section III, given any architecture parameter vector ai, it is unlikely that a single 
network initialized by a set of random weight vectors can result in an acceptable error rate on the training 
set, called fitting error, that the error-backprop training intends to minimize locally. That is how the 
multiple sets of random weight vectors come in. For k architecture vectors ai, i = 1, 2, ...k and n sets of 
random initial weight vectors wj , the error back-prop training results in kn networks 

{N(ai, wj ) | i = 1, 2, ..., k, j = 1, 2, ..., n}. 

Error-backprop locally and numerically minimizes the fitting error fi,j on the training set T . 
[27] seems to have mentioned n = 20. [71] did not give n but seems to have mentioned 60 million 

parameters which probably means each wi and each aj combined to be of 60 million dimensional. Using 
the above example of k = 310 = 59049, kn ≈ 1M networks must be trained, a huge number that requires 
a lot of computational resources to do number crunching and a lot of manpower to manually tune the 
range of hyper-parameters. 



8 

Definition 3 (Distribution of fitting, validation and test errors): The distributions of all kn trained 
networks’ fitting errors {fij }, validation errors {eij }, and test errors {e0 }, i = 1, 2, ...k, j = 1, 2, ...n areij 
random distributions depending on a specific data set D and its partition P = (T, V, T 0). The difference 
between a validation error and a test error is that the former is computed from the same group using 
a group-possessed validation set V but the latter is computed by an independent agency using a group-
unknown test set T 0 . 

We define a simple system that is easy to understand for our discussion to follow. 
Definition 4 (Nearest neighbor classifiers with a confidence threshold): Define a network stores the 

entire training set T . Suppose the input x matches the nearest sample s in T . If the distance between 
x and s is not larger than a confidence threshold d (a hyper-parameter), then the network outputs the 
associated label of the nearest sample s. Otherwise, the system outputs “unknown”. 

Namely, this system uses a lot of resources for over-fitting. It gives up if the distance is larger than d, 
but has a perfect fitting error (zero) for any positive d. 

A neural network architecture has a set of hyper parameters represented by a vector a, where each 
component corresponds a scalar parameter, such as convolution kernel sizes and stride values at each 
level of a deep hierarchy, the neuronal learning rate, and the neuronal learning momentum value, etc. 
Let k be a finite number of grid points along which such architecture parameter vectors need to be tried, 
A = {ai | i = 1, 2, ..., k}. Suppose there are 10 scalar parameters in each vector ai. For each scalar 
parameter x of the 10 hyper parameters, we need to validate the sensitivity of the system error to x. With 
uncertainty of x, we estimate its initial value as the mean x̄, positively perturbed estimate x̄ + σx (σ is 
the estimated standard deviation of x), and negatively perturbed estimate x̄ − σx. If each scalar hyper 
parameter has three values to tray in this way, there are a total of k = 310 = 59049 architecture parameter 

¯vectors to try, a very large number. For example, the initial threshold d in the nearest neighbor classifier 
can be estimated by the average of nearest distance between a sample in V and the nearest neighbor in 
T and the σd be estimated by the standard deviation of these nearest distances. 

Let us define the Post-Selection. Suppose that the trainer is first aware of the validation sets (or the 
test sets). 

Definition 5 (Post selection): A human programmer trains multiple systems using the training set T . 
After these systems have been trained, he post-selects a system by searching, manually or assisted by 
computers, among trained systems based on the validation set V (or the test set T 0). This is called Post-
Selection—selection of one network from multiple trained and verified (or tested) networks. 

Obviously, a post-selection wastes all trained systems except the selected one. As we will see next, a 
system from the post-selection tends to have a weak generalization power. 

First, consider Post-Selection Using Validation Sets (PSUVS): 

E. PSUVS 
A Machine PSUVS is defined as follows: If the test set T 0 is not available, suppose the validation error 

of N(ai, wj ) is ei,j on the validation set V , find the luckiest network N(ai∗ , wj∗ ) so that it reaches the 
error of the luckiest-architecture and the luckiest initial weights from Post-Selection on Validation Sets: 

ei∗,j∗ = min min ei,j (6)
1≤i≤k 1≤j≤n 

and report only the performance ei∗,j∗ but not the performances of other remaining kn − 1 trained neural 
networks. 

Similarly, a human PSUVS is a procedure wherein a human selects a system from multiple trained 
systems for {ei,j } using human visual inspection of internal representations of the system and their 
validation errors. 
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F. Cross-Validation 
The above PSUVS is an absence of cross-validation [72]. Originally, the cross-validation is meant to 

mitigate an unfair luck in a partition of the dataset D into a training set T and a test set T 0 (empty 
validation set). For example, an unfair luck is such that every point in the test set T 0 is well surrounded 
by points in the training set T . But such a luck is hardly true in reality. 

To reduce the bias of such a luck, an n-fold cross-validation protocol, n ≥ 2, divides the data set D 
into n subsets of same size and conducts n experiments. The term “cross” refers to switching the roles of 
training and testing data. In the i-th experiment, the i-th subset is left out as the test set and the remaining 
n − 1 folds of data form the training set. Thus, the cross-validation protocol conducts n experiments, for 
i = 1, ..., n, to obtain n errors, e1, e2, ..., en. The cross-validated error is defined as the average of errors 
from the n tests, to filter out the partition lucks: 

ē = 
nX1 

ei 
n 

(7) 
i=1 

as well as the distribution of errors {ej }. 
The n different numbers here shows a distribution show a distribution {ej } to indicate how sensitive 

the error is to lucks, such as the number of partition pairs between a training set and a validation/test set, 
the number of tried random seeds for initializing network weights, the number of tried hyper-parameter 
vectors, or a combination thereof. The larger the n, the better the estimated standard deviation of {ej }. 

G. Types of lucks in a Neural Network 
In a neural network, there are at least three kinds of lucks: 
Type-1 order lucks: The luck in a partition Pi into a training set Ti and a test set Ti 

0 from a data set 
D resulting in test error ei, i = 1, 2, ...n. Different partitions correspond to different luck outcomes. This 
kind of outcome variation results in a variation of performance from different outcomes. Conventionally, 
this type of lucks is filtered out by cross-validation (e.g., n-fold cross-validation) as well as reporting the 
deviation of {ei} during the cross-validation. However, such cross-validation and deviation have hardly 
published for neural networks and reported. The smaller the average ē of {ei}, the more accurate the 
trained network is; the smaller the standard deviation of {ei}, the more trustable the average error ē is. 

Type-2 weights lucks: As we will discuss below, weights specify the role assignment for all the 
neurons in the neural network. A random seed value determines the initialization of a pseudo-random 
number generator, which gives initial weights wi for a neural network N(wi), resulting in a test error ei, 
i = 1, 2, ...n, after training of these n networks and testing on T 0 . It is unknown that such a luck will be 
carried over to a new test set T 00 that is outside the data set D but was drawn from the same distribution 
of S. Because a neural network might not capture the internal rules of the training set T , this paper 
argues that a statistical validation of the reported error should be performed by reporting the distribution 
of {ei|i = 1, 2, ...n}, where ei is from a different initial weight vector wi. For example, Krizhevsky et 
al. [71] reported 60 million parameters, mostly in wi but only the luckiest ei was reported. The smaller 
the average ē of {ei}, the more accurate the trained network is; the smaller the standard deviation σ of 
{ei}, the less sensitive the trained neural network is to the initial weights and thus the accuracy is more 
trustable for real applications. For i.i.d. (identically independently distributed) errors, we can expect that√ 
doubling the number n will reduce the expected variance of ē by a factor 1/ 2., since the expected 
variance of n random numbers is about σ2/n. 

Type-3 architecture lucks: The initial hyper-parameter vector aj of the neural network gives an error 
ej , j = 1, 2, ...k. Because such a luck of aj might not capture the internal rules of the training set Tj , 
this paper argues that a statistical validation of the reported error estimate should be performed and the 
distribution of {ej } be reported. In our above example, the number of distinct hyper-parameter vectors to 
be tried is k = 310 = 59049. The smaller the average ē of {ej }, the more accurate the trained network 
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is; the smaller the sample variance of {ej }, the more trustable ē is, namely, the average error ē is less 
sensitive to the initial hyper-parameters of the network. For example, the threshold d of the nearest neighbor 
classifier in Definition 4 might result in a large deviation. A good way is to reduce the manual selection 
nature of such hyper-parameters. For example, all hyper-parameters are adaptively adjusted from the initial 
hyper-parameters that are further automatically computed from system resources, e.g., the resolution of a 
camera, the total number of available neurons, and the firing age of each neuron [67]. 

For notation clarity in the discussion that follows, index j is used in Type 3 to distinguish index i in 
type 2, but the above three types of lucks are all different. 

Let us discuss the case of a developmental network, such as Cresceptron [16] and DN [41]. Type-1 
cross-validation is not needed because of reporting of a lifetime error. In other words, errors of all new 
tests in each life are taken into account throughout the lifetime. Type-2 validation is not needed because 
all different random weights wi leads to the function-equivalent neural network under certain conditions. 
For example, in top-k competition, with k = 1 different wi give the exactly the same neural network and 
with k > 1 different wi give almost the same neural network. The distribution of lifetime errors {ei} is 
expected to have a negligible deviation across different initial weight vectors wi, given the same Three 
Learning Conditions. Type-3 validation might be useful but is expected to be negligible since the most 
obvious parameters such as learning rate and momentum of learning rate is automatically and optimally 
determined by each neuron, not handcrafted, as in LCA [67]. The synaptic maintenance automatically 
adjusts all receptive fields [73], [74] so that the neural network performance is not sensitive to the initial 
hyper-parameters. 

In contract, a batch-trained neural network typically uses a Post-Selection to pick the luckiest network 
without cross-validation for either of the above three types of lucks, e.g., in ImageNet Contest [61]. 
Namely, errors occurred during batch training of the network before the network is finalized and how 
long the training takes are not reported. Below, Fig. 5 will show a huge difference between the luckiest 
CNN with error-backprop and the optimal DN. Many researchers have claimed error-backprop works 
without providing much-needed three types of validations. 

Next, let us discuss Types 2 and 3 validations which are new for neural networks but hardly done. 

H. Post-Selection with Types 2 and 3 Average-Validations 
Type-1 cross-validation should be nested inside the Types 2 and 3 validations, but this triple-nested 

protocol could be too computationally expensive. Below, we delay Type-1 cross-validation till after Type 
2 and Type 3 validations. 

Assume that we use n random weight vectors wi and k grid-search hyper parameters aj . Each combi-
nation of wi and aj gives an error ei,j from the corresponding validation set. To reduce the effect of such 
a luck for each vector wi, an average of ei,j over n values of i should be used instead of the minimum 
in Eq. (6). This leads to the random-weights validated error for the luckiest architecture from PSUVS: X1 n 

a ∗ = arg min ei,j . (8)
1≤j≤k n 

i=1 

We dropped the term “cross” because this validation examines other random seeds without switching the 
roles between training and testing. 

Similarly, we define the hyper-parameter validated luckiest initial weights from PSUVS: 
kX1 

w ∗ = arg min ei,j . (9)
1≤i≤n k 

j=1 

We dropped the term “cross” for the same reason. 
From a statistical point of view, the initial hyper parameter vector a ∗ and the random initial weights w ∗ 

validated above through averages should be more robust in real applications than those without average-
validation in Eq. (6). 
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For both the luckiest a ∗ and w ∗ , the standard deviation under min should be reported to show how 
sensitive the reported performance is to the validation process. If the variation is large, the corresponding 
network is not very trustable in practice. 

We also need to be aware of another protocol flaw: Random seeds and hyper parameters are all coupled. 
Under such a coupling, Type 2 validation seems unnecessary with n = 1 but the search of the luckiest 
weights is embedded into the search for the luckiest hyper-parameter vector where each hyper parameter 
vector uses a different seed. Similarly, Type-3 validation seems unnecessary with k = 1 but the search 
of the luckiest hyper-parameter vector is embedded into the search for the luckiest weights, where each 
random seed uses a different hyper parameter vector. 

Since a PSUVS procedure picks the best system based on the errors on the validation set, the resulting 
system might not do well on the test sets because doing well on a validation set does not guarantee doing 
well on a test set. Typically, due to a very large number of samples, availability of validation sets and 
unavailability of test sets in a properly managed contest, principles of Post-Selection should cause the 
validation error rate to be smaller than the test error rate. (However, in Table 2 of [71], the test error rate 
is smaller than the validation error for 7CNNs, causing a reasonable suspicion that PSUTS could be used 
instead of PSUVS.) 

The following subsection discusses the luckiest network with the luckiest hyper-parameter vector a ∗ 

and the luckiest initial weights w ∗ . 

I. The Luckiest Network from a Validation Set 
Many people may ask: Are there any technical flaws in at least PSUVS, since it does not use the 

test sets? We analyze the luckiest network in this section and reach a conclusion that any post-selection 
is technically flawed and results in misleading results, including both PSUVS and PSUTS. However, in 
general, Type-1 cross-validation is to filter out lucks in data partition that a typical user does not have 
during a deployment of the method. Namely, it is a severe technical and protocol flaw in reporting only 
the luckiest network, regardless the post-selection uses validation sets or test sets. 

This conclusion has a great impact on evolutional methods that often report only the luckiest network, 
instead of those of all networks in a population. Namely, the performances of all individual networks in 
an evolutionary generation should be reported. 

For simplicity, we assume that the space S, from which random samples in D are drawn, is static. Our 
conclusions here can be readily extended to a time varying D but the technical flaws are even worse. 

From the sample space S, randomly draw a data set D. D is partitioned into three mutually disjoint 
sets, training set T , validation set V and test set T 0 , so that Eq. (5) holds true. For realistic applications, 
we should assume that T , V and T 0 are mutually independently drawn from S so that T , V and T 0 are 
mutually independent. Identically independently distributed (i.i.d.) is a sufficient condition, but we do 
not need such a restrictive condition because temporal-dependency often occurs in lifetime development. 
Namely, we only need that any three vectors from T , V and T 0 , respectively, are mutually independent. 

Using the training set T , one trains kn networks, where k and n are the number of hyper-parameter 
vectors a’s and random weight vectors w’s, using a training algorithm (e.g., error-backprop ), 

N(ai, wj ) ← fai,wj (T ). (10) 

This is like a teacher trains kn students in a class. The teacher knows that the fitting error on T does not 
predict the validation error well, due to the possibility of over fitting. One extreme example is the above 
nearest-neighbor classifier with confidence d = 0. 

The teacher then tests each N(ai, wj ) on the validation set V to get ei,j . This is like the teacher observes 
the performance of kn networks in a mock exam. 

The teacher then post-selects and reports only the luckiest network N(ai∗ , wj∗ ) whose validation error 
ei∗,j∗ is minimum in Eq. (6). This is like the teacher colludes with the Educational Test Service (ETS) so 
that the ETS only reports the luckiest network but not all remaining kn − 1 networks to cover up. 
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J. Luckiest Network with Type-1 Cross-Validation 
Suppose that a user has bought the luckiest network N(ai∗ , wj∗ ) and test on his new test data T 0 

randomly drawn from S, independent of T and V . The luckiest network N(ai∗ , wj∗ ) that reached the 
minimum error rate in V does not mean that it reaches the minimum error rate in T 0 . Because T 0 is 
independent of T and V , and ai∗ , wj∗ are luckiest on a particular pair (T, V ) only, we need to compute 
the expected error rate of N(ai∗ , wj∗ ) on T 0 . 

Theorem 3 (Type-1 cross-validation of the luckiest): The luckiest network on validation set gives an 
error rate that is approximately the average error in Type-1 cross-validation, supposing that, in an n-fold 
cross validation, n folds of data are drawn i.i.d. (independently and identically distributed) among folds 
from data set D, but individual samples inside each fold do not need to be i.i.d. 

Proof: Let F denote the event that both the training set and validation set are from a fixed data set 
D from S. Consider in a real application, n tests were conducted on the luckiest network N(ai∗ , wj∗ ) 
using Ti 

0 , i = 1, 2, ..., n, where each partition Pi = (Ti, Vi, Ti 
0) in each of the i-th training and test pair is 

drawn from the real application space S. We compute the average error rate from the luckiest network 
N(ai∗ , wj∗ ): X1 n 

e(ai∗ , wj∗ ) = ei(ai∗ , wj∗ ; Ti, Vi, Ti 
0) 

n 
i=1 X1 n 

≈ ei(ai∗ , wj∗ ; Ti, Vi, T 0|F ) (11)i n 
i=1 

where the term ei(ai∗ , wj∗ ; Ti, Vi, Ti 
0) means the error of the luckiest network using training set Ti, 

validation set Vi, and test set Ti 
0 , and ei(ai∗ , wj∗ ; Ti, Vi, T 0|F ) means the same but Ti, Vi, T 0 are all fromi i 

the same D as one does in n-fold cross-validation. 
Note, the n-fold i.i.d. is weaker than i.i.d. for all samples. In practice, i.i.d. is rarely true even for 

pattern recognition problems, such as image classification due to sequential attention discuss above. Also 
note that the left side of ≈ sign in Eq. (11) is expected larger because the data Ti, Vi, Ti 

0 on the right side 
are all from a fixed D but the left side does not have such a restriction. 

The above theorem tells us that the error rate of the luckiest network from a single validation set in 
PSUVS is misleading without any partition validation. This is because the error rate is a random function, 
depending on not only many random initial weights, many hyper parameters, and local lucks of error-
backprop, but also a particular partition (T, V, T 0). This seems especially true if the data D were made 
public and overworked during 2010-2014 [61, p. 213]. 

In practice, when we report an error rate e(ai∗ , wj∗ ) which is always a random number x, depending on 
how much hand tuning is done, how much computational resources are used for a large-scale search for 
the random seeds and hyper-parameters, as well as the validation or a lack thereof. We should also report 
the distribution of this random number x, such as the maximum, 75%, 50%, 25%, and the minimum 
value of x, over multiple training-and-test pairs in cross-validation, random seeds and hyper-parameters. 
Otherwise, the error rate, if only as a single number x, is misleading, since users of this learning method 
or buyers of the luckiest network do not have the same partition luck. 

Up to now, this author has not found any published papers that report not only the luckiest network 
from error-backprop but also Type-1, Type-2 and Type-3 validations. Many papers do not report the post-
selection stage at all [24], [25], [26], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], except 
[27], let alone whether the reported error is from the validation error V or the test set T 0 . 

Next, we discuss Post-Selections Using Test Set (PSUTS). There are two kinds of PSUTS, machine 
PSUTS and human PSUTS. 

K. Machine PSUTS 
If the test set T 0 is available which seems to be true for almost all neural network publications other 

than competitions, we define Post-Selection Using Test Sets (PSUTS): 
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A Machine PSUTS is defined as follows: If the test set T 0 is available, suppose the test error of 
N(ai, wj ) is ei,j 

0 on the test set T 0 , find the luckiest network N(ai∗ , wj∗ ) so that it reaches the minimum, 
called the error of the luckiest architecture and the luckiest initial weights from Post-Selection on Test 
Set: 

e 0 = min min e 0 (12)i∗,j∗ i,j . 
1≤i≤k 1≤j≤n 

Report only the performance e0 but not the performances of other remaining kn − 1 trained neurali∗,j∗ 

networks. 
Imagine that we want to remove lucks in the above expression, by using averages like we did in Eq. (7) 

to give the error of the luckiest architecture with validated weights from PSUTS: X1 n 

a∗,j∗ = arg min ei,j 
0 . (13)

1≤j≤k n 
i=1 

But the above error is still flawed since each term under minimization has peeked into test sets. Instead, 
it is better to use Eq. (8) which does not use the test sets. Of course, the test error rate of that in Eq. (8) 
tends to be larger than that from Eq. (13). 

A similar discussion can be made for the error of the luckiest initial weights with validated architecture 
from PSUTS. Do not peek into test sets. 

There are some variations of Machine PSUTS: The validation set V or T 0 are not disjoint with T . If 
T = V , we call it validation-vanished PSUTS. If T = T 0 , we called it test-vanished PSUTS. 

In general, the more free parameters a network has, the more likely the network can report an artificially 
small error as in Eq. (12). That is why we need the computational resource in the Three Learning 
Conditions. 

Although PSUVS has flaws of post-selection and a lack of three types of validation, the key difference 
between PSUVS and PSUTS does not guarantee that PSUVS reports a low error rate as PSUTS. In fact, 
it is expected that the luckiest network from PSUVS does better on a validation set V than on a test set 
T 0 because the Post-Selection did not “see” the test set T 0 but “saw” the validation set V . Likewise, it is 
expected that the luckiest network from PSUTS does better on the test set T 0 than on a validation set V 
because the Post-Selection did not “see” the validation set V but “saw” the test set T 0 . In the following 
paragraph, we discuss that this expectation is reversed in Table 2 of [71, page 88]. 

In ImageNet Contest 2012, the test sets were released to competition teams over 2.3 months ahead 
of the output-result submission date. Although the class labels were not attached to the test sets other 
than being available indirectly through an online test server provided by the contest organizers, it was 
not difficult to “crack” a test set by manually hand-labeling the test set. The first author of [71] seems 
not sensitive to the fundamental difference between a validation set and a test set by writing: “in the 
remainder of this paragraph, we use validation and test error rates interchangeably”. By “we cannot report 
test error rates for all the models that we tried” [71, page 88], there is no evidence to rule out what he 
meant was the possibly “cracked” test set is not necessarily exactly the same as the original test set. But 
in Table 2 of [71, page 88], the 7NNs did worse on the validation set (possessed) than the test set (if not 
“cracked” and searched for minimization like in Eq. (12)). This reversed our expectation in the previous 
paragraph. Is it an evidence of using PSUTS instead of PSUVS? 

Another interesting phenomenon that is consistent with the likely use of PSUTS instead of PSUVS is 
that the SuperVision Team of ImageNet Contest 2021 did not submit any output results for “the fine-
grained classification task, where algorithms would classify dog photographs into one of 120 dog breeds” 
[61, footnote, p214]. It appears that cracking “120 dog breeds” is harder than cracking “a list of object 
categories present in the image” where the class labels are all available in the provided training sets. [71] 
lacks due transparency about the post-selection stage except that Geoffrey Hinton admitted the “luckiest” 
network in his brief PubPeer response to questions raised on PubPeer towards [24]. 

For more examples, see Fig. 1 from [75, Fig. 7], error-backprop consistently results in lower validation 
accuracies than the test accuracies (about 0.5% lower compared to about 0.1% lower in [71]). Are they 
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Fig. 1. The average ē  and the standard deviation of {ei} for different values of a regularization hyper parameter α. Adapted from [75] 

other evidences of using PSUTS instead of PSUVS, similar to [71]? The availability of test sets to the 
programmers in a project seems to be indeed addictive towards PSUTS, away from PSUVS. The standard 
deviation around 1% is clashes with our Theorem 4. Our experience with our own experiments with 
error-backprop training for CNN indicated that the maximum and the minimum values of the distribution 
of fitting accuracies are drastically different for different random seeds, with fitting accuracies spreading 
uniformly between 20% and 90%. Section III will discuss why. If Theorem 4 in Section III is correct, 
the deviation bars seem too small and the 20 runs in Fig. 7 of [75] could be the best 20 among many 
more random-seeds the programmer has tried. We hope that authors provide the source program. 

L. Implications of PSUTS 
Although the set {ei,j |i = 1, 2, ...n; j = 1, 2, ...k} is large, it is necessary to present some key statistical 

characteristics of its distribution. For example, rank all errors in decreasing order, for each type of errors, 
fitting, validation and test. Then give the maximum, 75% (in ranked population), 50% (median), 25%, the 
minimum value, and the standard deviation of these kn values for the fitting errors, validation errors. and 
test errors, respectively, not just the standard deviation in Fig. 1 . Such more complete information of the 
distribution is critical for the research community to see whether error-backprop can indeed avoid local 
minima in deep learning as some authors claimed. Furthermore, such information is also important for the 
authors to show that the luckiest hyper-parameter vector is not just an over fitting to the validation/test set. 
Unfortunately, none of [23], [66], [24], [25], [27], [76], [29], [31] reported such distribution characteristics 
other than the minimum value e0 i∗,j∗ . 

Furthermore, such a use of test sets to post-select networks resembles hiring a larger number kn of 
random test takers and report only the luckiest N(ai∗ , wj∗ ) after the grading. This practice could hardly 
be acceptable to any test agencies and any agencies that will use the test scores for admission purpose 
since this submitted error e0 misleads due to its lack of validation. i∗,j∗ 

The error-backprop training tends to locally fit each network on the training set T ; while the Post-
Selection picks the luckiest network with parameter vector ai∗ and initial weights wj∗ that has the best 

, T 0 ∩ T 00luck on T 0 . If an unobserved data set T 00 , disjoint with T 0 = ∅, is observed from the same 
distribution S, the error rate ei 

00 
∗,j∗ of N(ai∗ , wj∗ ) is predicted to be significantly higher than ei 

0 
∗,j∗ , 

00 0 ei∗,j∗ � ei∗,j∗ (14) 

because Eq. (12) depends on the test set T 0 in the post selection from many networks. Of course, handling 
a new test is also challenging for a human student but a human learning involves learning invariant rules. 
Any PSUTS is a technically flawed protocol. 
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PSUTS is tempting especially when test sets are available to the authors of paper. During all error-
backprop related paper reviews I have not yet found a case in which the authors did not admit that they 
used USUTS when I asked. The second author of [27] claimed to have used PSUVS through a personal 
email to me but the first author who probably performed the experiments did not claim the same. No 
authors of [27] responded to PubPeer questions towards [27]. 

Weng 2020 [77], [78] argued that the claims by some public speakers that such misleading errors 
have approached or even succeeded human performance [61] are controversial, since there are no explicit 
competition rules that ban test sets to be used for Post-Selections. 

M. Human PSUTS 
Instead of writing a search program in machine PSUTS, human PSUTS defined below typically involves 

less computational resources and programming demands. 
Definition 6 (Human PSUTS): After planning experiments or knowing what will be in the training set 

T and test set T 0 , a human post-selects features in networks instead of using a machine to learn such 
features. 

Unfortunately, almost all methods in the symbolic school use human PSUTS because it is always the 
same human who plans for and design a micro-world and collect the test set T 0 . The key to an acceptable 
test score lies in how much detail the human designer can plan for what is in the test sets and how much 
freedom s programmer has in hand picking features. 

Poggio et al. [79] and Fukushima et al. [17] explicitly admitted their use of human PSUTS. Li Fei-Fei 
at al. [19] only vaguely admitted their use of human PSUTS by a vague term “weakly supervised” using 
an extension of formulation by Pietro Perona that is originally unsupervised. Questions raised towards 
[19] on PubPeer were not answered by the authors. 

III. WHY ERROR-BACKPROP NEEDS PSUTS 
This section discusses a global view, which is new as far as the author is aware, about why error-

backprop suffers from local minima even in the easier batch-learning mode. 
Since error-backprop does not perform well for incremental learning mode as we can see why also 

from the following discussion, we will concentrate on batch learning mode. Namely, we let the network 
“see” the entire training set T for each network update. 

Let us first consider a well-known neuronal model that is applicable to many CNNs. Suppose a post-
synaptic neuron with activation zj is connected to its pre-synaptic neurons yi, i = 1, 2, ..., n, through 
synaptic weights wij , by the expression: 

nX 
φ( wij yi) = zj (15) 

i=1 

where φ(y) = 
1+

1 
e−y is the logistic function. The gradient of zj with respect to weight vector wj = 

(w1,j , w2,j , ..., wn,j ) is 
η(y1, y2, ..., yn) , ηy 

where η is the partial derivative of φ(y). Thus, according to gradient direction, the change of the weight 
vector wj is along the direction of pre-synaptic input vector y. If the error is negative, zj should increase. 
Then the weight vector should be incremented by 

wj ← wj + w2y (16) 

where w2 is the learning rate. We use the w2 to relate better the optimal Hebbian learning, called LCA, 
used by DN in Section IV. At this point, the following theorem is in order. 

Theorem 4 (Lacks of error-backprop): Error-backprop lacks (1) energy conservation, (2) an age-dependent 
learning rate, and (3) competition based role-determination. 
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Fig. 2. Lack of role-determination in hidden neurons due to a lack of competition. The same ideas are true for a deeper hierarchy. Color 
sample images courtesy of [61]. 

Proof: Proof of (1): If pre-synaptic input vectors {y} are similar, multiple applications of Eq. (16) 
add many terms of {w2y} into the weight vector wj causing it to explode, which means a lack of energy 
conversation. Proof of (2): w2 is typically tuned by an ad hoc way, such as a handpicked small value 
turned by a term called momentum, instead of being automatically determined in Maximum Likelihood 
optimality (ML-optimality) by neuronal firing age to be discussed in Section IV. Proof of (3): Suppose 
neuron zj is in a hidden area of the network hierarchy. This neuron zj updates its pre-synaptic weight 
using Eq. (16) regardless zj is role-responsible or not for the current network error. Likewise, looking 
upstream, there is also a lack of role-determination in the gradient-based update for pre-synaptic neurons 
y1, y2, ..., yn, all of which must update their own weights using their own gradients. Namely, there is no 
competition-based role-determination in error-backprop . 

The meaning (3) of Theorem 4 are illustrated by Fig. 2. CNNs do not have a competition mechanism in 
any layers. Complete connections initialized with random weights are provided for all consecutive areas 
(also called layers), from input area all the way to the output area. If the zj neuron is in the output 
motor area and each output neuron is assigned a single class label, the role of zj (“dog” in the figure) is 
determined by human supervised label “dog”. However, let us assume instead that zj is in a hidden area, 
not responsible for the “dog” class. zj still updates its input weights using the gradient. Likewise, the 
pre-synaptic area Y , is characterized by its label “neurons without competition”. The hidden neurons in 
this area do not have a competition mechanism which would, like in LCA [67], allow a small proportion 
of neurons to win the competition and fire so that they automatically take the roles that they happened to 
compete well. This analysis leads us to the following theorem. 

Theorem 5 (Random roles in error-backprop ): A set of random initial weights in a network assigns 
random roles to all hidden neurons, from which a local minimal point based on error-backprop learning 
inherits this particular random-role assignment. Which neurons in each hidden area take a role does not 
matter, but how hidden neurons share a set of roles in each hidden area does matter in the final fitting 
error, validation error, and test error after error-backprop. 

Proof: Without loss of generality, suppose a maximum in the output neuron means a positive 
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classification and weights take positive and negative values. Then, a positive weight to an output neuron 
zj from a hidden neuron yi means an excitatory role of yi to zi and a negative weight means an inhibitory 
role. A zero weight means an irrelevant role. The gradient vector computed in Eq. (16) means such 
excitatory-inhibitory input patterns from pre-synaptic neurons are added through iterative error-backprop 
procedures. Because of the complete connections and an identical neuronal type, where a hidden neuron 
is located in the Fig. 2 does not matter, but each input image must have a sufficient number of hidden 
neurons in every hidden area to excite for its signals to reach the corresponding output neuron. The initial 
role assignment patterns in initial weights do matter for the final the fitting error rate, the validation error 
rate, and the test error rate, because gradient updates are local and inherited such initial roles. 

Theorem 6 (Percentage luck of error-backprop ): Suppose a CNN has l > 1 areas, A0, A1, ..., Al, 
connected by a cascade or a variation thereof. A0 takes input frames {x ∈ X} and Al is the output area 
for classification. Suppose an area has a total of m hidden neurons that share a common receptive field R 
in A0. Consider a given input frame x. Let the percentage of the m hidden neurons that do not fire among 
all neurons in the same area with the same receptive field be denoted as p(x). Then, the error-backprop 
depends on the average p̄ = Ex∈X {p(x)} to be a reasonably small value, called the percentage luck. 

Proof: To guide the proof, we should mention that DNs use top-k competition so that each receptive 
field in each area has only k neurons that fires, where k is small, e.g., top-1, for each receptive field R. 
Suppose a receptive field R represents a neuronal column that has n neurons. A neuronal area at level l is 
denoted as Al. Every receptive field image x ∈ X = A0 is concrete by which we means that its neurons 
are only pixels {x} of a concrete example of a class C with p̄(x) = P (x fires) ≈ 50% (e.g., 50% back and 
50% white). Each neuron z in area Al is abstract by which we means that it fires means an abstract class 
C that x belongs to, with p̄(z) being small corresponds to top-1 among n neurons. Then, it is necessary 
for the CNN to convert the most concrete representation of pixels in A0 to more abstract representations 
in Al, l > 0 with a low p̄(z). For example, in Fig. 2, we have l = 2 and there is no completion in the 
hidden area A1. Then error-backprop depends on that each neuron in A2 has only a relatively smaller 
percentage among n = 6 neurons in A1 that are positive, i.e., as the features of its particular class. The 
requirement of being a small percentage is due to the need for other non-firing neurons to deal with many 
other patterns in the same receptive field. 

As we can expect, such a low percentage condition is rarely satisfied by a random weight vector. The 
more random weight vectors one uses, the better chance to hit the luck. 

From Theorems 4 through 6 and their proofs, we can see that the luck of role assignment is a critical 
flaw of error-backprop , and so are the system parameters and the simple-minded regularization of the 
learning rate. Because of these key reasons, PSUTS plays a critical role to select the luckiest network 
from many unlucky ones after error-backprop . The more networks have trained by error-backprop , the 
more likely the luckiest one has a good role-assignment to start with. 

There has been no lack of papers that claim to justify error-backprop does not over fit, e.g., variance 
based stochastic gradient decent [80], saddle-free deep network [81], drop out [82], implicit regularization 
during gradient flow [83]. They all address only local issues of neural networks trained by error-backprop 
and did not mention Post-Selections. The theory here addresses, the global role-assignment problem of 
random weights that no local mechanisms can deal with. This seems to be why PSUTS is necessary by 
error-backprop , but PSUTS is controversially fraudulent in terms of protocol—test sets are meant to test 
a reported system, not supposed to be used to decide which network to report from many. 

IV. HOW A DN AVOIDS POST-SELECTIONS 

Apparently, a brain does not use Post-Selection at al, whether UPSVS or PUUTS, because every human 
child must develop in a human environment to make his living. He should not be covered up and not 
reported, regardless how well or bad he performs. Cresceptron in the 1990s [42], [43], [16], [44], [45] 
and later DN [46], [84], [57], [58] were inspired by the interactive mode that brains learn though lifetime. 
In other words, Cresceptron and DN do not need Post-Selections. Furthermore, every DN must be ML-
optimal given the same Three Learning Conditions. 
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A. New AI Metrics: Developmental Errors 
In contrast to Post-Selections likely used by [21], [14], [19], [79], [23], [66], [24], [25], [27], [76], [29], 

[31] including probably AlphaGo [26], AlphaGo Zero [28], AlphaZero [85], AlphaFold [30] and MuZero 
[86] and many others, we define and reported developmental errors that includes all errors occurred 
through lifetime of each learning network: 

Definition 7 (Developmental error): A Developmental Network is denoted as N = (X, Y, Wy, Z, Wz, A) 
with sensory area X , skull closed hidden area Y and its weight space Wy, and motor area Z and its weight 
space Wz, and the space of architecture parameters A, where X , Y , and Z also denote the spaces of 
responses of X , Y and Z areas, respectively. The space of architecture parameters A includes all remaining 
parameters and memory of the network, other than neuronal weighs, such as ages of neurons (for learning 
rates), neuronal patterning parameters (location and receptive fields adapted by synaptic maintenance), 
neuronal types (for initial connection absences among areas), and neuronal growth rates (for speed of 
mitosis). It runs through lifetime by sampling at discrete time indices as N(t), t = 0, 1, 2, ... . Start at 
inception t = 0 with supervised sensory input x0 ∈ X(0), initial state z0 ∈ Z(0), randomly initialized 
weigh vector y0 ∈ Y (0), initial architecture a0 ∈ A(0). At each time t, t = 1, 2, ..., the network N(t) 
recursively and incrementally updates: 

(xt, yt, zt, at) = f(xt−1, yt−1, zt−1, at−1) (17) 

where f is the Developmental Program (DP) of N . If zt ∈ Z(t) is supervised by the teacher, the network 
complies and the error et is recorded, but if the supervised motor vector has error, the error should be 
treated as teacher’s. Otherwise, the learner is not motor-supervised and N(t) generates a motor vector zt 
and is observed by the teacher and its vector difference from the desired zt 

∗ is recorded as error et. The 
lifetime average error for each motor concept or component, from time 0 up to time t is defined as 

tX1 
ē(t) , ei, (18)

t 
i=0 

which is computed incrementally in terms of average developmental error ē(t): 

t − 1 1 
ē(t) = ē(t − 1) + et. (19)

t t 
Namely, all errors across a lifetime, at every time instance, are caught by the developmental error. 

In order to reach a small error, a low final error rate that a batch learning method tries to reach is not 
sufficient. Instead, the network must learn as fast as possible and avoid errors as much as possible at 
every time instance t. This is indeed important since earlier performance will shape later learning. 

An optimal network that gives the lowest possible developmental error, among all possible networks 
under the same Three Learning Conditions, must be optimal at every time instance t throughout its life. 
DN is one such network. Post-Selections are useless among neural networks that give the smallest devel-
opmental error under the same Three Learning Conditions, because the maximum-likelihood optimality 
should give equivalent networks of the same developmental error. 

However, in practice, the learning experience in the Three Learning Conditions is unlikely the same 
among different networks, because each physical robot that runs a network at least occupies distinct 
physical locations in the real world. For example, if two physical robot in the same family fight for a 
toy, the winner gains a winner experience and the loser may acquire a loser mentality. In other words, 
even if the parents of two boys are not biased toward any boys, the competition among the boys results 
in different learning experiences. 

The developmental error is important. If a competition is based on developmental errors (such as during 
AIML Contests [62]), the winner is unlikely be one that uses a brute force method but has an excessive 
amount of computational resources and manpower. ImageNet competitions [61] are flowed also in this 
sense. 
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Although not formally defined as developmental errors, Cresceptron [16] and Developmental Networks 
[41], [87], [88] reported developmental errors. 

Namely, the developmental error, unless stated otherwise for a particular time period, is the average 
lifetime error from inception. To report more detailed information about the process of developmental 
errors {et | t ≥ 0}, statistics other than the mean (average) can be utilized, such as the minimum, 25%, 
50% (median), 75%, the maximum, and the standard deviation. 

For more a specific time period, such as the period from age t1 to age t2, the average error is denoted 
as ē[t1 : t2]. Therefore, ē(t) is a short notation for ē[0 : t]. 

Because Cresceptron and DN have a dynamic number of neurons up to a system memory limit, each 
new context 

ct , (xt, yt, zt) (20) 

may be significantly different from the nearest matched learned weight vectors of all hidden neurons. If 
that happens and there are still new hidden neuron that have not fired, a free-state neuron that happens to 
be the best match is spawned that perfectly memorizes this new context regardless its randomly initialized 
weights. When all the free neurons have fired at least once, the DN will update the top-k matched neurons 
optimally in the sense of maximum likelihood (ML), as proven for DN-1 by [41] and for DN-2 by [87], 
as we will discuss below. 

Note that a developmental system has two input areas from the environment, sensory X and motor Z. 
That is, motor Z is supervisable by the world (including teachers) but not often. Since there is hardly 
any sensory input x ∈ X that exactly duplicates at two different time indices, almost all sensory inputs 
from X are sensory-disjoint. During motor-supervised learning, if the teacher supervises its motor area 
Z and the learner complies. Since a teacher can make an error, the motor-error that the teacher made is 
also recorded as the developmental error of the motor of the learner but due to the teacher. 

B. Neuronal Competitions 
As discussed above, error-backprop learning is without neuronal competitions. The main purpose 

of competition is to automatically assign roles to hidden neurons. Below, we consider two kinds of 
Convolution Neural Networks (CNNs), sensory networks and sensorimotor networks. A sensory network 
is feedforward, from sensor to motor, in computation flow and therefore is simpler and easier to understand. 
A sensorimotor network takes both sensor and motor as inputs and is highly recurrent and therefore more 
powerful. 

1) Sensory networks: Let us first consider the case of feed-forward networks as illustrated in Fig. 3. 
Fig. 3(a) shows a situation where the number of samples in X is larger than the number of hidden 
neurons, which is typical. Otherwise, if there are sufficient hidden neurons, each hidden neuron can 
simply memorize a single sample x ∈ X . 

This means that the total number of hidden neurons must be shared through incremental learning, where 
each sample image-label pair (x, l) ∈ X × L arrives incrementally through time, t = 0, 1, 2, .... This is the 
case with Cresceptron (and some other networks) which conducts incremental learning by dealing with 
image-label pairs one at a time and update the network incrementally. 

Every layer in Cresceptron consists of a image-feature kernel, which is very different from those in DN 
where each hidden neuron represents a sensorimotor feature to be discussed later. By image-feature, we 
mean that each hidden neuron is centered at an image pixel. Competitions take place within the column 
for a receptive field centered at each pixel at the resolution of the layer. The resolution reduces from 
lower layer to higher layer through was called resolution reduction (also called drop-out). 

The competition in incremental learning is represented by incrementally assigning a new neuronal plane 
(convolution plane) where the new kernel memorizes the new input pattern if the best matched neuron 
in a column does not match sufficiently well. Suppose images x ∈ X arrives sequentially, the top-1 
competition in the hidden layer in Fig. 3(a) enables each hidden neuron to respond to multiple features, 
indicated by the typically multiple upward arrows, one from each image, pointing to a hidden neuron. 
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Fig. 3. How competition automatically assigns roles among hidden neurons without a central controller: The case for automatically construct 
a mapping f : X 7→ L. (a) The number of samples in X is larger than the number of hidden neurons such that each hidden neuron must 
win-and-fire for multiple inputs. (b) Error-backprop from the “dog” motor neuron asks some hidden neurons to help but the current input 
feature is not their job. Thus, error-backprop messes up with the role assignment guessed by the random initial weights. The same ideas are 
true for a deeper hierarchy. Color sample images courtesy of [61]. 

This amounts to incremental clustering based on top-k competition. The weight vector of each hidden Y 
neuron corresponds to a cluster in the X space. In Fig. 3(a), k = 1 for top-k competition in Y . 

Likewise, suppose top-1 competition in the next higher layer, Y , namely each time only one Y neuron 
fires at 1 and all other Y neurons do not fire, resulting the connection patterns from the second layer Y 
to the next higher layer Z. In the output layer Z, top-1 competition takes place but a human teacher can 
supervise the pattern. 

The Candid Covariance-free Incremental (CCI) Lobe Component Analysis (LCA) in Weng 2009 [67] 
proved that such automatic assignment of roles through competition results in a dually optimal neuronal 
layer, optimal spatially and optimal temporally. Optimal spatially means the CCI LCA incrementally 
computes the first principal component features of the receptive field. Optimal temporally means that the 
principal component vector has the least expected distance to its target—the optimal estimator in the sense 
of minimum variance to the true LCA vector. 

Intuitively, regardless what random weights each hidden neuron starts with, as soon as it wins to fire 
for the first time, its firing age a = 1. Its random weight vector is multiplied by the zero retention rate 
w1 = 1 − 1/a = 0 and this learning rate w2 = 1/a = 1 so that the new weight vector becomes the first 
input rx with r = 1 for the firing winner. 

1 1 
v ← (1 − )v + rx. (21) 

a a 
It has been proven that the above expression incrementally computes the first principal component as 
v. The learning rate w2 = 1 is the optimal and age-dependent learning rate. CCI LCA is a framework 
for dually optimal Hebbian 

a 
learning. The property “candid” corresponds to the property that sum of the 

learning rate w2 = 
a 
1 and the retention rate w1 = 1 − 

a 
1 is always 1 to keep the “energy” of response 

r weighted input x unchanged (e.g., not to explode or vanish). This dually optimality resolves the three 
problems in Theorem 4. 
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Fig. 3(b) shows how the three neurons in the Z area updates their weights so that the weight from 
the second area to the third area become the probability of firing, conditioned on the firing of the post-
synaptic neuron in area Z (Dog, Cat, Bird, etc.). The CCI LAC guarantees that the sum of weights for 
each Z neuron sum to 1. This automatic role assignment optimally solves the random role problem of 
error-backprop in Theorem 5. 

However, optimal network for incrementally constructing a mapping f : X 7→ L is too restricted, 
since f : X 7→ L is only what brains can do, but not all brains can do. For the latter, we must address 
sensorimotor networks. 

2) Sensorimotor networks: The main reason that Marvin Minsky [5] complained that neural network 
is scruffy was because conventional neural networks lacked not only the optimality described above for 
sensory networks, but also lacked the Emergent Universal Turing Machines (EUTM) that is ML-optimal 
we now discuss below. 

First, each neuron in the brain not only corresponds to a sensory feature as illustrated in Fig. 3, but 
also a sensorimotor feature. By sensorimotor feature, we mean that the firing of each hidden neuron in 
Fig. 3 is determined not just by the current image σ represented by a sensory vector x ∈ X , but also the 
state q represented by a motor vector z ∈ Z. It is well known that a biological brain contains not only 
bottom-up inputs from x ∈ X but also top-down inputs from z ∈ Z. In summary, each hidden neuron 
represents a sensorimotor feature in a complex brain-like network. 

C. FA as sensorimotor mapping 
This sensorimotor feature is easier to understand if we use the conventional symbols for (symbolic) 

automata. Let us borrow the idea of Finite Automaton (FA). In an FA, transitions are represented by 
function δ : Q × Σ 7→ Q, where Σ is the set of input symbols and Q the set of states. Each transition is 
represented by 

f 
(q, σ) −→ q 0 

a) AFA as a control of any Turing machine: Weng 2015 [41] extended the definition the FA so that 
it outputs its state so the resulting FA becomes an Agent FA (AFA). Further, Weng 2015 [41] extended 
the action q to the machinery of Turing machine (see Fig. 4) so that action q includes output symbol to 
the Turing tape and the head motion of the read-write head of a Turing machine. With this extension, 
Weng 2015 [41] proved that the control of any Turing machine is an AFA, a surprising result. 

Here q ∈ Q is the top-down motor input to a sensorimotor feature neuron; σ is the bottom-up sensory 
input to the same neuron. If δ has n transitions, n hidden neurons in the Y area are sufficient to memorize 
all the transitions that is observed sequentially, one transition at a time. 

We should not use symbols like σ and q, but instead sensory vectors x ∈ X and motor vectors z ∈ Z 
that are emergent as discussed above. At discrete time t = 0, 1, 2, ..., we use the hidden neurons in the Y 
area to incrementally learn the transitions:⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 

Z(0) Z(1) Z(2)⎣Y (0)⎦ → ⎣Y (1)⎦ → ⎣Y (2)⎦ → ... (22) 
X(0) X(1) X(2) 

where → means neurons on the right use the input neurons on the right and compete to fire as explained 
below without iterations. Namely, by unfolding time, the spatially recurrent DN becomes non-recurrent in 
a time-unfolded and time-sampled DN. With LCA update, [41] proved that such a DN is ML-optimal and 
has a constant complexity for each update O(1) with a large constant, suited for real-time computation 
with a large memory and many neurons. 



22 

q

x xΔ Δ Δ Δ Δ1 1 1 1 1

3

Fig. 4. A Turing machine has a tape, a read-write head, and a transition function with a current state. 

D. DN as a ML-Optimal of Emergent Universal Super-Turing Machine 
The traditional Turing Machine (TM) is a human handcrafted machine, as illustrated in Fig. 4. 
A Universal TM (UTM) s still a TM, but its tape contains two parts, a user supplied program and 

the data that the program is applied to. The transition function of the UTM is designed to simulate any 
program encoded in the form of transition of a TM and to apply the program on the data on the tape and 
finally to place the output of the program on the data onto the tape. 

A UTM is a model of the current general-purpose computers because the user can write any program 
on any set of appropriate data for the UTM to carry out. Because a DN is an ML-optimal emergent FA, 
Weng 2015 [41] extended a symbolic Turing machine to a super Turing machine by (1) extending the 
tape to the real world, (2) the input symbols to vectors from sensors, (3) the output symbols to vector 
output from effectors, and (3) the head motion to any action from the agent. Thus, DN ML-optimally 
learns any TM, including UTM, directly from the physical world. The programs on the tape are learned 
by the Super UTM incrementally from the real world across its lifetime! 

E. DN as a ML-Optimal Learning Engine for APFGP and Conscious Learning 
Because DN is an ML-optimal learning engine for any TM, including UTM, DN ML-optimally learns 

any UTM from the physical world, conditioned on those in Definition 2. This means that a DN ML-
optimally learns to Autonomous Programming for General Purposes (APFGP) [57], [89]. Based on the 
capability of APFGP, Weng 2020 argued that APFGP is a characterization of conscious machines [58] that 
boots its skill of consciousness through conscious learning—being (partially) conscious while learning 
across lifetime. Hopefully, APFGP is a clearer and more precise characterization for conscious machines 
and animals, assuming that we allow a conscious machine to develop its degree of consciousness from 
infancy. 

In the following, we list the DN algorithm so that we can understand APFGP is not a vague idea and 
how APFGP by DN avoids Post-Selections. 

F. DN-2 Algorithm 
Let us go through the DN-2 algorithm here so that we can see that DN is fully detail in computer 

implementation. 
DN-2 is the latest general-purpose learning engine in the DN family. In DN-1, the allocation of neurons 

in each subarea of the hidden Y area is handcrafted by the designer. In DN-2, several biology-inspired 
mechanisms are added to automatically allocate neuronal resources and generate a dynamic and fluid 
hierarchy of internal representations during learning, relieving the human designer from handcrafting a 
concept hierarchy, beyond the rigid hierarchy in deep learning [42], [43], [16], [44], [45], [19], [79], [23], 
[66], [24], [25], [27], [76], [29], [31]. Namely, a DN-2 starts with simple internal representations which 
gradually grow to be rich and deep supported by early representations as a “brain stem”, but it is still 
ML-optimal conditioned on those in Definition 2. 

Areas from low to high: X: sensory; Y hidden (internal); Z: motor. From low to high: bottom-up. 
From high to low: top-down. From one area to the same area: lateral. X does not link with Z directly. 
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Input areas: X and Z; Output areas: Z; Hidden area: Y , fully closed from t = 0. 
1) At time t = 0, inception. Initialize the X , Y and Z areas. x ∈ X takes the first image. Set every 

Y neuron with random weights, zero firing age, and zero response y(0). Set the total number of 
Y neurons to be nY . A boundary cY indicates the number of active neurons (cY ≤ nY ). Set the Z 
area and its memory part MZ similarly, but all concept zones take none vectors if the learner has 
no prenatally learned inborn “reflexes”. 

2) For time t = 1, 2, ..., repeat the following steps forever (executing steps 2a, 2b in parallel, before 
step 2c): 

a) All Y neurons compute in parallel: 

(y 0,MY 
0 ) = fY (cY ,MY ) (23) 

where context cY = (x, y, z), MA denotes the memory of area A including weights and 
neuronal firing ages, and fY is the Y area function using LCA [65], [67]. If the best active 
Y neurons do not match the input vector well, area Y transfers new neurons to active and 
increment the boundary cY . 

b) Supervise z0 if the teacher likes. Otherwise, Z neurons compute the response vector z and 
update memory MZ 

0 in parallel: 

(z 0,MZ 
0 ) = fZ (cY ,MZ ) (24) 

where fZ is the Z area function using LCA [65], [67] and cZ = (y, z). 
c) Replace asynchronously: (y,MY , z,MZ ) ← (y0,MY 

0 , z0,MZ 
0 ). Supervise input x. 

The area function fY in Eq.(23) and area function fZ in Eq.(24) include two parts: (1) The computation 
of response vectors y0 and z0 , respectively; (2) The maintenance of memory MY 

0 and MZ 
0 for Y area and 

Z area, respectively. 
The ML-optimality of DN-1 and DN-2 is rooted in the optimality of LCA and extends to the entire 

network and entire lifetime. 

G. Methods for Recursive Optimization 
Given the Three Learning Conditions, at each time t, t = 1, 2, ..., a DN incrementally computes the 

ML-estimator of its parameters at each time t that minimizes the developmental error without doing any 
iterations. 

Let us first review the maximum likelihood estimator for a batch data. Let x be the observed data 
and fθ(x, z) is the probability density function that depends on a vector θ of parameters, there θ(t) = 
(wy, wz, a) where some parameters of the architecture parameter vector a are hand-initialized such as the 
receptive fields. The maximum estimator for θ corresponds to the θ that maximizes the probability density. 
Regardless z is imposed, z is part of the parameters to be computed in a closed-form as a self-generated 
version: 

(θ ∗ , y ∗ , z ∗ ) = argmax fθ(x, z). (25) 
(θ,y,z) 

Since the above lifetime estimator is incremental, at each time t, the previous state z ∗ 
t−1 is self-generated 

or supervised, and the observation is xt−1. The incremental ML-estimator for θt 
∗ is computed in a closed-

form by the incremental version of Eq. (25) where f uses context ct−1 = (xt−1, yt−1, zt−1): 
∗ ∗ ∗ ∗ (θt 

∗ , yt , zt ) = argmax fθt (xt−1, yt−1, zt−1). (26) 
(θt,yt,zt) 

The DN computes the above expression for each time t in a closed form without conducting any iterations 
[41], [87]. 

How about initial weights? Inside θ, the weights of the DN are initialized randomly at t = 0. There 
are k + 1 initial neurons in the Y area, and V = {v̇ i | i = 1, 2, ..., k + 1} is the current synaptic vectors 
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in Y . Whenever the network takes an input p, compute the pre-responses in Y . If the top-1 winner in Y 
has a pre-response lower than almost perfect match m(t) discussed below, activate a free neuron to fire. 
Eq. (21) showed that the initial weights of this free neuron is multiplied by a zero and therefore do not 
affect its updated weights. 

Weng [41] proved that DN-1 computes the ML-estimator of all observations from the sensory space 
X and motor space Z using a large constant time complexity for each time t. Although DN learns 
incrementally, such a DN is error-free for learning any complex Turing machines, including any universal 
Turing machines. Weng [87] did the same for DN-2. 

H. How DN Avoids Post-Selections but is Further ML-Optimal 
Since weights are initialized randomly, how does a DN result in an equivalent network regardless the 

random seed? There are k + 1 initial neurons in the Y area, and V = {v̇ i | i = 1, 2, ..., k + 1} is the 
current synaptic vectors in Y . Whenever the network takes an input p, every Y neuron computes the 
pre-response. If the top-1 winner in Y has a pre-response lower than almost perfect match m(t), activate 
a free neuron to fire. The almost perfect match m(t) is defined as follows: 

−t/t1 )m(t) = (1 − δ)(1 − e (27) 

where δ is the bound of machine round-off errors, and t1 the childhood length. 
Using a mathematical induction procedure, Weng [41] proved that DN-1 computes the ML-estimator of 

all observations from (x, y, z) using a large constant time complexity for each time t. Weng et al. 2018 
[87] proved the ML-optimality for DN-2. Since the number of transition of any Turing machine is finite, 
when the DN learns a Turing machine, a finite number of hidden Y neurons is sufficient for the DN to 
incrementally memorize exactly all the transitions observed from the Turing machine. In other words, 
although DN learns incrementally, such a DN is error-free for learning any complex Turing machines, 
including any universal Turing machines. 

If the DN runs in the real world, any finite size DN is not error-free soon after inception since the 
number of observations from the real world is virtually unbounded, although each life is time bounded. 
Namely, the amount of data from the real world is so large that any practically large DN will eventually 
run out of free neurons that have not fired yet. From that point on, the DN is no longer guaranteed to be 
error-free, although could be sometimes error-free, but is still ML-optimal inside the skull conditioned on 
those in Definition 2. In other words, in the sense of ML, the DN is free of local minima inside the skull. 
That is why only one DN is sufficient for each life and the DN avoids Post-Selections. However, because 
the three conditions in Definition 2, a DN is not be optimal unconditionally either. For example, a better 
designed teaching schedule or a more appropriate physical environment may enable a DN to learn and 
discover rules faster and better. 

I. Comparison with HMM 
It is important to compare the traditional Hidden Markov Model (HMM) [90] with the ML-optimal 

DN. (1) The former does not have any internal representations other than the symbol based probabili-
ties; the latter self-generates internal representations to generalize based on internal-representation based 
probabilities (e.g., weights). (2) The former uses batch learning but the latter uses incremental learning. 
(3) States in the former are symbolic, static, only partially observable for HMM, and not teachable but 
those in the latter are emergent, observable and directly teachable if the teacher like. (4) The former 
requires a batch clustering method (e.g., k-mean clustering) to initialize a static set of symbolic states, but 
the states/actions in the latter are incrementally taught or autonomously generated and tried. (5) Clusters 
of states in the former are not supported by a statistical optimality and the probability is only for state 
estimates but those in the latter are ML-optimal throughout the lifetime of learning, not in states/actions 
that the learner must produce and do not have a freedom for, but for the internal representations that the 
learner does have a high degree of freedom for. (6) Due to the need to compute internal representations, 
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the amount of computations in the latter is often higher than the former but the computational complexity 
is linear in time with a large constant (the number of weights of all available neurons). 

V. EXPERIMENTS 

A. Vision, Audition and Natural Languages 
The recent experimental results of DN work here include (1) vision that includes simultaneous recog-

nition and detection and vision-guided navigation on MSU campus walkways [91], (2) audition to learn 
phonemes with a simulated cochlea and the corresponding behaviors [92], (3) acquisition of English and 
French in an interactive bilingual environment [93], and (4) exploration in a simulated maze environment 
with autonomous learning for vision, path cost, planning, and selection of the least-cost plan, where all 
such emergent actions are either covert (thoughts) or overt (acts) [94]. The same network was used to 
learn these four very different tasks and task environments while each task embeds the ML-optimality of 
the network, under the Three Learning Conditions. 

B. Error-Backprop vs. ML-Optimal DN 
To show the effects of the absence of ML-optimality in CNN vs. the ML-optimality of DN, Fig. 5 shows 

the errors of the luckiest Convolutional Neural Network (CNN) trained by a batch error-backprop method 
and the errors of a DN trained incrementally. As we understand, batch learning should not be compared 
with an incremental learning method, because it is not a comparison on an equal footing. However, Fig. 5 
shows that DN does a harder (incremental) work drastically better than CNN does an easier (batch) work. 
The task is real-world vision-guided navigation on the campus of Michigan State University. Because the 
DN is optimal in maximum-likelihood, it reaches the minimum error as soon as it has gone through the 
data set T once (one epoch). Later epochs correspond to reviews of the same data set T . According to 
the maximum-likelihood principle, the optimal estimate of the neuronal weights should not change but 
the ages of the neurons continue to advance. In contract, the luckiest error-backprop trained CNN chosen 
from several random seeds need many epochs to reduce its errors and only very slowly. At the end of 
500th epoch, the error of the luckiest CNN trained by error-backprop is still considerably higher than the 
full DN. Furthermore, as show in Fig. 5, teaching invariant concepts, i.e., abstraction in Theorem 2, are 
use for reducing the optimal errors. For more detail, the reader is referred to [95]. 

C. AIML Contests 
In the AIML Contest 2016, all teams are required to use a single learning engine to learn three 

sensory modalities, vision, audition, and bilingual natural languages acquisition, while the engine learns 
in “lifetime”. Although all the teams are free to choose any existing learning engines such as DN, tensor-
flow or other engines, all the teams chose DN engine (open source). The supplied simulated sequential 
data (yes, subject to the “big data” flaw) are as follows. When we let the x be the image at each time 
instance and z be the pattern of landmark location-and-type and action of navigation, the DN became a 
vision-guided navigation machine. When we let x be the frame of firing pattern of hair cells in cochlea 
at each time instance and z be the dense states/contexts and the sparse type of sounds, the DN became a 
auditory-recognizer machine. When we let x be a time frame of vector of word (either English or French) 
and z be the language kind (neutral, English, and French) and meaning of each sentence context, the 
DN became a bilingual language learner and recognizer. Thus, the AIML Contest appeared to be the first 
contest that independently demonstrated task-nonspecificity and modality-nonspecificity by independent 
laboratories with the contest teams. All the teams are evaluated under the same Three Learning Conditions, 
e.g., the number of neurons in the engine must not exceed the same given bound. The Contest used the 
developmental error like the one defined here averaged over all the three contest tasks and across the three 
lifetimes. The developmental error ranked all the submitted contest entries and required all networks not to 
exceed the specified maximum number of neurons for each task so that the competition does not unfairly 
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Fig. 5. Comparison of error between the luckiest CNN trained by batch error-backprop and a DN across different epochs through the training 
data. “Recog” and “Full” means teach where-what rules. Otherwise, data-fitting only. Adapted from [95]. 

favor those teams that have more computational resources at their disposal but not necessarily that their 
methods are more superior. All the teams have a high degree of freedom to modify the learning engine 
and to modify the supplied motor actions on the given data set, such as generating attentive actions on the 
given training set to train invariant concepts (e.g., where and what concepts) which modifies the default 
training experience supplied by the AIML Contest organizers but was still based on the same supplied 
data set. The prudent design of the AIML contests was meant to avoid the corresponding problems in 
ImageNet Contests [61] and many other contests. 

D. GENISAMA Applications 
GENISAMA LLC, a startup that the author created, has produced a series of real-time machine learning 

products, as human-wearable robots. They are the first products ever existed as APFGP robots. Hopefully, 
as a APFGP platform, this new kind of human-wearable robots will be useful for practitioners to produce 
various kinds of intelligent auto-programed software. The author predicts that such a new kind of AI 
systems will considerably alleviate the high brittleness of traditional AI software and traditional robot 
software in open and natural world. 

Hopefully, future DN-driven robots will learn consciously and autonomously discover in the real world 
for Turing machine based general purposes, with relative infrequent interactions from humans similar to 
what parents do to their children and human teachers teach their students in classrooms. The experiments 
and competitions described here are for this grand goals but have not reached this experimental goal yet. 

VI. CONCLUSIONS 

We used intuitive terms but formal ways to discuss Post-Selections. Public and media have gained an 
impression that deep learning has approached or even “sometimes exceeded” human level performance on 
certain tasks. For example, the image classification errors from a static image set were compared with those 
of humans [61, A2, p242]) and the work is laudable. However, this paper raises Post-Selections, which 
seem to question such claims since a real human does not have the luxury of Post-Selections. The author 
hopes that the exposure of Post-Selections is beneficial to AI credibility and the future healthy development 
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of AI, especially with the concepts of developmental errors and the framework of ML-optimal lifetime 
learning for invariant concepts under the Three Learning Conditions. Some researchers have raised that it 
seems that those who wan a competition were those who have more computational resources and manpower 
at their disposal. The new developmental error metrics under the Three Learning Conditions hopefully 
encourages future AI competitions to compare methods under the same Three Learning Conditions. 
Considering DN as a much-simplified model for a biological machine, it seems not baseless to guess 
that each biological brain is probably ML-optimal (of course in a much richer sense) across lifetime, e.g., 
due to the pressure to compete at every age. The Three Learning Conditions explicitly include other factors 
that greatly affect machine learning performances such as learning framework (e.g., task-nonspecificity, 
incremental learning, the robot bodies), learning experiences and computational resources. The analysis 
that any “big data” sets are nonscalable does not mean that we should not create, use and share data sets. 
Instead, we need to pay attention to the fundamental limitations of any static data sets, regardless how 
large their apparent sizes are. 
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