
On Post Selection Using Test Sets (PSUTS) in AI 
Juyang Weng 

Department of Computer Science and Engineering, Cognitive Science Program, Neuroscience Program 
Michigan State University, East Lansing, MI, 48824 USA 

GENISAMA LLC, 4460 Alderwood Drive, Okemos, Michigan 48864 USA 

Abstract—This is a theory paper. It first raises a rarely 
reported but unethical practice in Artificial Intelligence (AI) 
called Post Selection Using Test Sets (PSUTS). Consequently, the 
popular error-backprop methodology in deep learning lacks an 
acceptable generalization power. All AI methods fall into two 
broad schools, connectionist and symbolic. PSUTS practices have 
two kinds, machine PSUTS and human PSUTS. The connectionist 
school received criticisms for its “scruffiness” due to a huge 
number of scruffy parameters and now the machine PSUTS; 
but the seemingly “clean” symbolic school seems more brittle 
than what is known because of using human PSUTS. This paper 
formally defines what PSUTS is, analyzes why error-backprop 
methods with random initial weights suffer from severe local 
minima, why PSUTS violates well-established research ethics, 
and how every paper that used PSUTS should have at least 
transparently reported PSUTS data. For improved transparency 
in future publications, this paper proposes a new standard for AI 
metrology, called developmental errors for all networks trained 
in a project that the selection of the luckiest network depends on, 
along with Three Conditions: (1) system restrictions, (2) training 
experience and (3) computational resources. 

I. INTRODUCTION 

In 1950 Alan Turing published his now celebrated paper [1] 
titled Computing Machinery and Intelligence. Turing [1] was 
impressive to have discussed a wide variety of considerations 
for machine intelligence, as many as nine categories. Unfortu-
nately, he suggested to consider what is now called the Turing 
Test that has inspired and misled many AI researchers. 

Much progress has been made in AI since 1950 and many 
methods have been developed to deal with AI problems. For 
the scope of this paper, we will focus on generalization. All 
AI methods fall into two schools, symbolic and connectionist, 
although many detailed methods are a mixture of both. 

A. Symbolic school 

Symbols are used in many AI methods (e.g., states in 
HMMs, nodes in Graphical Models and attributes in SLAM), 
since they are intuitive to human programmers. However, 
symbols are static and have some fundamental limitations that 
have not received sufficient attention. 

The symbolic school [2] assumes a micro-world in 4D 
space-time in which a set of objects or concepts, e.g., S = 
{o1, o2, ..., on}, is assumed to be uniquely defined among 
human programmers and their computers, represented by a 
series of symbols in time {o1(t), o2(t), ...on(t) | t0 ≤ t < t1}. 
The correspondences among all these symbols {oi} of the 
same object across different times are known as “the frame 
problem” [2] in AI which means that the programmer must 

manually link all such symbols together along time for each 
object. In computer vision, the symbolic school assumes a 
single symbol oi, for all its 3D positions in its 3D trajectory 
{x(t) | t0 ≤ t ≤ t1} and uses techniques, such as feature 
tracking through video (e.g., for driverless cars). Therefore, 
the symbolic school is based on human-handcrafted set of 
symbols and their assumed meanings. Marvin Minsky wrote 
that symbols are “neat” [3], but in fact, symbols are “neat” 
mainly in human programmer’s understanding but not in 
relating computer programs to a real world. A major problem 
that many AI researchers did not address is the generalization 
weakness of the symbolic school, as the following definition 
states: 

Definition 1 (Symbolic Brittleness): Suppose a symbolic 
AI machine M(S) designed for a handcrafted set S of symbols 
is applied to a real world that requires a new set of symbols 
S0 , with S0 6= S. M(S0) fails without a human programmer 
that handcarts a proper mapping between every element in S0 

to an element in S. 

Many expert systems (e.g., CYC, WordNet and EDR) and 
many big-data projects) require a human programmer to be in 
the loop during deployment due to this symbolic brittleness. 
Because it is extremely challenging for a human program-
mer to understand many implicit limitations of M(S), the 
mapping that the human establishes typically makes M(S0) 
fail, resulting in the well-known high brittleness of symbolic 
systems. This author also did some early work that belongs to 
the symbolic school [4] whose weakness motivated him to start 
in 1990 a new departure with Cresceptron discussed below 
which seems to be the first deep learning network because 
Fukushima’s deep network Neocognitron with performance 
evaluation [5] (that this author cited) did not learn (i.e., humans 
handpicked features to be discussed below as human PSUTS). 
It is worth noting that earlier verisons of Neocognitron 1975 
1980, both in Biological Cybernetics did not have performance 
evaluation and therefore did not report the need for human 
PUSTS during performance evaluation. 

The developmental methods to be discussed below are 
supposed to automatically address this problem without a need 
for a human programmer to be in the loop of handcrafting 
a mapping. Below, this author will argue that the symbolic 
school and some methods in the connectionist school suffer 
from human PSUTS. 

J. Weng, "On Post Selections Using Test Sets (PSUTS) in AI," in Proc. International Joint Conference on Neural Networks, pp. 1-8, 
Shenzhen, China, July 18-22, 2021. 



B. Connectionist School 

The connectionist school claimed to be less brittle. However, 
a network is egocentric—meaning that the agent starts from 
its own (neural) network, instead of a symbolic world set S. 
It must learn from the external world without a handcrafted, 
world-centered object model S. Although connectionist meth-
ods often assume some task-specific symbols, e.g., a static 
set S of object labels, they also assume a restricted world 
implicitly. Therefore, a connectionist model typically needs to 
sense and learn from a restricted world using a network. The 
use of S in any neural networks as a set of object labels is 
a fundamental limitation that also causes the resulting system 
to be brittle for the same reason as the symbolic school. 

Typically, a network is meant to establish only a mapping 
f from the space of input X to the space of object class S, 

f : X 7→ S (1) 

Many video analysis problems, speech recognition problems, 
and computer game-play problems are also converted into this 
static input space X by converting temporal attributes into 
components of the static input space X . 

Two main types of learning algorithms have been typically 
used, human handpicking of features [5]–[8] (i.e., skull-open) 
and error backprop [6], [9]–[11] (i.e., skull-closed). Below, 
this author will argue that all neural networks that use error 
backprop suffer from machine PSUTS. 

By the way, genetic algorithms offer another approach to 
such network learning. These algorithms study changes in 
genomes across different lives, but many genetic algorithms do 
not deal with lifetime development [12]. This author suggested 
that handcrafting functions of a genome as a Developmental 
Program (DP) seems to be a clean and tractable problem which 
avoids the extremely high cost of evolution on DP. Many 
genetic algorithms further suffer from the PSUTS problems, 
since they often use test sets as training sets (i.e., vanished 
tests) as explained below. 

Marvin Minsky [3] complained among many scholars that 
neural networks are “scruffy”. This problem is not addressed 
completely until the framework of Emergent Turing Machine 
was introduced [13] into Developmental Networks (DNs) 
by the Developmental School discussed below. A lack of 
Emergent Turing Machine logic or being “scruffy” is the main 
cause of PSUTS in neural networks trained by error backprop 
methods. 

C. Developmental School 

The main thrust of the Developmental School, formally 
presented 2001 by Weng and six co-authors [12] is the task-
nonspecificity for lifetime development, known as Develop-
mental Programs (DPs). Although a DP generates a neural 
network, a DP is very different from a conventional neural 
network in evaluation of performance across each life—all 
errors from the inception time 0 of each life is recorded and 
reported up to each current time t > 0, as explained further 
below. 

The first developmental program seems to be the Crescep-
tron by Weng et al. [14]. As Neocognitron does not learn, Cres-
ceptron appears to be also the first deep-learning Convolutional 
Neural Network (CNN). Cresceptron seems to be the first 
incremental neural network whose evaluation of performance 
is across its entire “life” and only one network was generated 
and tested for reporting error rates cross the entire life. 
Cresceptron did not deal with time. A developmental approach 
that deals with space and time in a unfired fashion using a 
neural network started from Developmental Networks (DNs) 
[15] whose experimental embodiments range from WWN-1 
to WWN-9. The DNs went beyond vision problems to attack 
general AI problems including vision, audition, and natural 
language acquisition as emergent Turing machines [13]. DNs 
overcame the limitations of the framewise mapping in Eq. (1) 
by dealing with lifetime mapping: 

f : X(t − 1) × Z(t − 1) 7→ Z(t), t = 1, 2, ... (2) 

where X(t) and Z(t) are the sensory input space and motor 
input-output space, respectively, and × denotes the Cartesian 
product of sets. Note that Z(t−1) here is extremely important 
since it corresponds to the state of a Turing machine. Namely, 
all the errors occurred during any time of each life is recorded 
and taken into account in the performance evaluation. Different 
from the space mapping in Eq. (1) and very important, the 
space Z(t) is the directly teachable space for the learning 
system, inspired by brains [16], [17], [17]–[20]. This new 
formulation is meant to model not only brain’s spatial process-
ing [21] and temporal processing [22], but also Autonomous 
Programming for General Purposes (APFPG) [23], [24]. Based 
on the APFGP capability, the AI field seems to have a powerful 
yet general-purpose framework towards conscious machines 
[25]. 

In the following, we will discuss what PSUTS is in Sec-
tion II. Section III addresses why error backprop algorithms 
suffer from severe local minima problems. Section IV proposes 
a new kind of error, called developmental error that addresses 
the problems with PSUTS. Section V provides concluding 
remarks. 

II. PSUTS 
Many AI methods were evaluated without considering how 

much computational recourses are necessary for the devel-
opment of a reported method. Thus, comparisons about the 
performance of the method have been biased toward a com-
petition of how much resources a group has, as we will see 
below after we define PUSTS, regardless how many networks 
have been trained and discarded, and how large each network 
is. Worse still, test sets were used in an unethical way. Here 
we explicitly define: 

Definition 2 (The Three Conditions): The Three Condi-
tions for developing an AI system are: (1) the system re-
strictions, including whether task-specific or task-nonspecific, 
batch learning or incremental learning, and the body’s sensors 
and effectors; (2) the teaching experience; (3) the computa-
tional resources including the number of hidden neurons. 



A. Task-specific vs. Task-nonspecific 

Task-nonspecific learning and task-specific learning differ 
greatly as explained in Weng et al. 2001 [12]. In a task-
specific paradigm, the system developer is given a task e.g., 
constructing a driverless car. Then, it is the human programmer 
who chooses a world model, such as a model of lane edges. 
Next, he picks an algorithm based on this world model, 
e.g., using the well-known Hough transform algorithm that 
makes every pixel detected as edge cast votes for lines of 
all possible orientations that go through the pixel. Then the 
top-two “peaks” of line parameters that have received the 
highest votes are used to declare two lanes detected from the 
image. Some lane-tracking assistance systems use this lane-
model-based approach in the symbolic school. Here “edge” 
and “two lanes” are two symbolic concepts picked up by the 
programmer. Such systems will fail when lanes are unclear or 
totally disappear due to weather or road conditions, leading to 
a brittle system. Human brains appear to be more resilient. 

In contrast, a task-nonspecific approach [12] not only avoids 
any symbolic model, but also does not assume that a task is 
given. The desirable actions at any time are recalled automat-
ically by the learner based on system’s learned context [26] 
that represents automatically figured-out task and appropriate 
context of the task—like a brain. Thanks to the absence of 
any world model, such as lanes, this task-nonspecific approach 
has a potential to be more robust than a world-model-based 
approach. A task-nonspecific approach typically uses a neural 
network to learn [12]. 

B. Batch vs. Incremental learning modes 

Neural network learning has two learning modes, batch 
learning and incremental learning. 

With batch learning, a human first collects a set D of data 
(e.g., images) and then labels each datum with a desirable 
output (e.g., command of navigation or class label). A neural 
network is trained to approximate a mapping f : X 7→ Q 
where X is the space of all possible images and Q is the set of 
outputs. Many batch-learning projects use the error-backprop 
method [10], [11], [27]. 

As we will discuss in Section III, the error backprop 
mechanism erases important long-term memories along the 
gradient direction if the learning mode is incremental. Thus, 
few networks that use error backprop on a large data set adopt 
a incremental learning mode. 

In contrast, all developmental methods cited here use incre-
mental learning mode for long lifetimes, since new neurons 
are incrementally activated into the network. The competition 
guarantees that the winner is the most appropriate neuron 
whose memory is the current working memory [28]. 

The batch and incremental learning modes are not 
capability-equivalent [28]. The former requires all sensory in-
puts are available at a batch, independent of the corresponding 
actions. This is incorrect according to sensorimotor recurrence. 
By sensorimotor recurrence, we mean that sensory inputs and 
motor outputs are mutually dependent on each other in a 
recurrent way. We have the following theorem: 

Theorem 1 (Big-Data Flaw): All big-data sets used by a 
machine learning method violate the sensorimotor recurrence 
property of the real world. 

Proof: A learning agent at time t−1, as shown in Eq. (2) 
does not have the next sensory input from X(t) available 
before the corresponding actions in Z(t−1) are generated and 
outputted, since the sensory input in X(t) varies according to 
the agent actions in Z(t − 1). As an example, turning head 
left or right will result in a different image sensed. Therefore, 
all static big-data sets violate the sensorimotor recurrence. 

All methods that use PSUTS below violate the sensorimotor 
recurrence, because they use a static set of training data. 
Therefore, it is inappropriate for any of them to claim near-
human performance since human learning is incremental due 
to the sensorimotor recurrence during a human’s lifetime. 

There are two kinds of PSUTS, machine PSUTS and human 
PSUTS. 

C. Machine PSUTS 
The available data set D is divided into three mutually 

disjoint sets, a training set T , a validation set V , and a test set 
T 0 . Two sets are disjoint if they do not share any elements. 
Let us consider how machine PSUTS arises from experiments. 

A network architecture has a set of parameters represented 
by a vector, where each component corresponds to a archi-
tecture parameter, such as convolution kernel sizes and stride 
values at each level of a deep hierarchy, the neuronal learning 
rate, and the neuronal learning momentum value, etc. Let k 
be a finite number of grid points along which such parameter 
vectors need to be tried, A = {ai | i = 1, 2, ..., k}. If there 
are 10 parameters and each of which has 10 grid points to try, 
there are a total of k = 1010 = 10B architecture parameter 
vectors to try, an extremely large number. 

As we will see in Section III, given any architecture param-
eter vector ai, it is unlikely that a single network initialized 
by a set of random weight vectors can give an acceptable 
error rate on the training set, called fitting error, that error 
backprop intends to minimize. That is how the multiple sets 
of random weight vectors come in. For each architecture vector 
ai, assume n sets of random weights wj , resulting in kn 
networks 

{N(ai, wj ) | i = 1, 2, ..., k, j = 1, 2, ..., n} 
are trained each of which starts with a different set of random 
weights wj , using error backprop that locally and numerically 
minimizes the fitting error fi,j on the training set T . Grave et 
al. 2016 seems to have mentioned n = 20. Using the above 
example of k = 10B, kn = 200B a huge number that requires 
a lot of computational resources and manpower. 

We are ready to define Post Selection Using Validation Sets 
(PSUVS): 

Definition 3 (Machine PSUVS): If the test set T 0 is not 
available, suppose the validation error of N(ai, wj ) is ei,j 

on the validation set V , find the best network N(ai∗ , wj∗ ) so 
that it reaches the minimum validation error: 

ei∗,j∗ = min ei,j (3)
1≤i≤k,1≤j≤n 



and report only the performance ei∗,j∗ but not the perfor-
mances of other remaining kn − 1 trained neural networks. 

If the test set T 0 is available which seems to be true 
for almost all neural network publications, we define Post 
Selection Using Test Sets (PSUTS): 

Definition 4 (Machine PSUTS): If the test set T 0 is avail-
0able, suppose the test error of N(ai, wj ) is ei,j on the test set 

T 0 , find the best network N(ai∗ , wj∗ ) so that it reaches the 
minimum test error: 

0 0 e = min e (4)i∗,j∗ i,j
1≤i≤k,1≤j≤n 

0and report only the performance e but not the perfor-i∗,j∗ 

mances of other remaining kn − 1 trained neural networks. 
There are some variations of Machine PSUTS: The vali-

dation set V or T 0 are not disjoint with T . If T = V , we 
call it validation-vanished PSUTS. If T = T 0 , we called it 
test-vanished PSUTS. 

Definition 5 (Distribution of errors of trained systems): 
The distributions of all kn trained networks’ fitting errors 

0{fij }, validation errors {eij }, and test errors {eij }, 
i = 1, 2, ...k, j = 1, 2, ...n, as well as the values of k and n. 

It is necessary to present some key statistical characteristics 
of such distributions. For example, ranked errors in decreas-
ing order. Then given the maximum, 75%, 50%, 25%, and 
minimum value of these kn values for the fitting errors, vali-
dation errors. and test errors, so that the research community 
can see whether error-backprop can avoid local minima in 
deep learning. For transparency, it seems necessary to report 
such distribution characteristics other than the minimum value 
ei 
0 
∗,j∗ . 
They should report such distribution characteristics to reflect 

the effects of machine PSUTS. Our experience in experiments 
indicated that the maximum and the minimum values of the 
distribution of fitting errors alone are drastically different, 
around 80% and 5%, respectively. Section III will discuss why. 

Further, such a use test sets to post-select networks resem-
bles hiring a larger number kn of random test takers and report 
only the luckiest N(ai∗, wj∗ ) after the answer-based grading. 
This practice could hardly be acceptable to any test agencies 
and any agencies that will use the test scores for admission 
since this submitted error e0 misleads due to its lack ofi∗,j∗ 

generalization. 
The architecture parameter vector ai∗ and weights wj∗ over-

fits T , V and T 0 . If an unobserved data set T 00 , disjoint with 
, T 0 ∩ T 00T 0 = ∅, is observed from a new environment, the 

00error rate ei∗,j∗ of N(ai∗, wj∗ ) is predicted to significantly 
0higher than ei∗,j∗ , 

00 0 ei∗,j∗ � ei∗,j∗ (5) 

because Eq. (4) depends on the test set T 0 in the post selection 
from many networks. Of course, handling new tests is also 
challenging for a human student but any PSUTS is unethical. 

D. Human PSUTS 
Instead of writing a search program in Machine PSUTS, 

Human PSUTS defined below typically involves less compu-
tational resources and programming demands. 

Definition 6 (Human PSUTS): After planning or knowing 
what will be in the training set T and test set T 0 , a human 
post-selects features in networks instead of using a machine 
to learn such features. 

Some neural network publications, e.g., [5], [8], [29] appear 
to have used human PSUTS. 

Unfortunately, almost all methods in the symbolic school 
use Human PSUTS because it is always the same human who 
plans for and design a micro-world and collect the test set T 0 . 
The key to an acceptable test score lies in how much detail 
the human designer can plan for what is in the test sets. 

III. WHY ERROR BACKPROP NEEDS PSUTS 

As shown by Fig. 7 of author’s group’s publication [30] 
in a real-world vision-guided navigation task using error-
backprop vs. DN, even the “luckiest” batch-learning network 
N(ai∗, wj∗ ) using Machine PSUTS performed poorly, e.g., 
60% error rate from error-backprop vs. 22% error rate from 
DN, both on disjoint test set T 0 after the first epoch going 
through the entire training set T once. After having gone 
through T 500 times, the error rates are 25% from error-
backprop vs. 22% rom DN, since DN has already reached 
the ML-optimal solution as early as the first epoch. 

This section discusses about a global view, which is new as 
far as the author is aware, about why error backprop even for 
the easier batch-learning mode suffers from local minima. 

Since error-backprop does not perform acceptably well for 
incremental learning mode, as we can see why also from the 
following discussion, we will concentrate on batch learning 
mode only. Namely, we let the network see the entire training 
set T for each network update. 

Let us first consider a well-known neuronal model that is 
applicable to many CNNs. Suppose a post-synaptic neuron 
with activation zj is connected to its pre-synaptic neurons 
yi, i = 1, 2, ..., n, through synaptic weights wij , by the 
expression: 

nX 
φ( wij yi) = zj (6) 

i=1 

1where φ(y) = is the logistic function. The gradient of 1+e−y 

zj with respect to weight vector wj = (w1,j , w2,j , ..., wn,j ) is 

η(y1, y2, ..., yn) , ηy 

where η is the partial derivative of φ(y). Thus, according to 
gradient direction, the change of the weight vector wj is along 
the direction of pre-synaptic input vector y. If the error is 
negative, zj should increase. Then the weight vector should 
be incremented by 

wj ← wj + w2y (7) 

where w2 is the learning rate. We use the w2 to relate better 
the optimal Hebbian learning, called LCA, used by DN in 
Section IV. At this point, the following theorem is in order. 

Theorem 2 (Lacks of Error-BackProp): Error-backprop 
lacks (1) energy conservation, (2) an age-dependent learning 
rate, and (3) competition based role-determination. 



Neurons
without

competion

Past
inputs

Bird Cat Dog

Current
input

Fig. 1. Lack of role-determination in hidden neurons. 

Proof: Proof of (1): If pre-synaptic input vectors {y}
are similar, multiple applications of Eq. (7) add many terms 
of {w2y} into the weight vector wj causing it to explode. 
Proof of (2): w2 is typically tuned by an ad hoc way, 
such as a handpicked small value turned by a term called 
momentum, instead of being automatically determined ML-
optimality by neuronal firing age to be discussed in Section IV, 
Eq.(11). Proof of (3): Suppose neuron zj is in a hidden area 
of the network hierarchy. This neuron zj updates its pre-
synaptic weight using Eq. (7) regardless zj is role-responsible 
or not for the network error. Likewise, there is a lack of 
role-determination in the area of y1, y2, ..., yn, all of which 
must update using their own gradients. Namely, there is a 
competition-based role-determination in error backprop. 

The meaning (3) of Theorem 2 are illustrated by Fig. 1. 
CNNs do not have a competition mechanism in hidden layers. 
Complete connections initialized with random weights are 
provided for all consecutive areas (also called layers), from 
input area all the way to the output area. If the zj neuron is 
in the output motor area and each output neuron is assigned 
a single class label, the role of zj (“dog” in the figure) is 
determined by human supervised label “dog”. However, let us 
assume instead that zj is in a hidden area, not responsible 
for the “dog” class. zj still updates its input weights using 
the gradient. Likewise, the pre-synaptic area Y , is labeled 
“neurons without competition”. The hidden neurons in this 
area do not have a competition mechanism to decide the role 
of each neuron there. This analysis leads us to the following 
theorem. 

Theorem 3 (Random Roles in Error-BackProp): A set of 
random initial weights in a network assigns random roles to 

all hidden neurons, from which a local minimal point based 
on error-backprop learning inherits this particular random-role 
assignment. Which neurons in each hidden areas take a role 
does not matter, but how hidden neurons share a set of roles 
in each hidden area does matter. 

Proof: Without loss of generality, suppose a maximum in 
the output neuron means a positive classification and weights 
take positive and negative values. Then, a high weight to an 
output neuron zj from a hidden neuron yi means an excitatory 
role to zi and a low weight means a inhibitory role. A zero 
weight means an irrelevant role. The gradient vector computed 
in Eq. (7) means such excitatory-inhibitory input patterns 
from pre-synaptic neurons are added through iterative error-
backprop procedures. Because of the complete connections 
and identical neurons, where a hidden neuron is located in 
the Fig. 1 does not matter, but each input image must have a 
sufficient number of hidden neurons in every hidden area to 
reach the corresponding output neuron. The role assignment 
patterns in initial weights do matter in terms of the fitting error 
rate, the validation error rate, and the test error rate. 

Theorem 4 (Percentage Luck of Error-BackProp): 
Suppose a CNN has l > 1 areas, A0, A1, ..., Al, connected 
by a cascade or a variation thereof. A0 takes input frames 
{x ∈ X} and Al is the output area for classification. It has 
a total of m hidden neurons in an area that share a common 
receptive field R in A0. Let the percentage of the m hidden 
neurons do not fire given an input frame x be denoted as 
p(x). Then, the Error-BackProp depends on the average 
p̄ = Ex∈X {p(x)} to be a reasonably small value, called the 
percentage luck. 

Proof: To guide the proof, we should mention that DNs 
use top-k competition so that each receptive field in each area 
has only k neurons that fires, where k is small, e.g., top-1, for 
each receptive field R. Every receptive field image x ∈ X is 
concrete by which we means that its neurons are only pixels of 
a concrete example of a class C with p̄  ≈ 50%. Each neuron 
in Al is abstract by which we means that it fires means an 
abstract class C that x belongs to, with p̄  corresponds to top-1. 
Then, it is necessary for the CNN to convert the most concrete 
representation in A0 with a high p̄  to the most abstract Al with 
a low p̄. For example, in Fig. 1, we have l = 2 and there is 
no completion in the hidden area A1. Then error-backprop 
depends on that each neuron in A2 has only few weights from 
the 6 neurons in A1 that are positive, i.e., as its features. 

From Theorems 2 through 4 and their proofs, we can see 
that depending on the luck of role assignment is a critical 
flaw of error-backprop, and so are the system parameters and 
the simple-minded regularization of the learning rate. Because 
of these key reasons, PSUTS plays a critical role to select the 
luckiest network from many unlucky ones after error backprop. 
The more networks have trained by error backprop, the more 
likely the luckiest one has a good role-assignment to start with. 

There has been no lack of papers that claim to justify error 
backprop does not over fit, e.g., variance based stochastic 
gradient descent [31], saddle-free deep network [32], drop 
out [33], implicit regularization during gradient flow [34]. 



They all address only local issues of neural networks trained 
by error backprop and did not mention PSUTS. The theory 
here addresses, for the first time in a journal submission, the 
global role-assignment problem of random weights that no 
local arguments can deal with. That seems to be why PSUTS 
is necessary by error backprop, but PSUTS is controversially 
fraudulent in terms of research ethics—test sets are meant to 
test a reported system, not are supposed to be used to decide 
which network to report from many. 

IV. DEVELOPMENTAL ERRORS 

Apparently, brains do not use PUSTS, as every human child 
must normally develop in a human environment to make the 
living. Cresceptron [14] and later DN [15] were inspired by 
the interactive mode that brains learn though lifetime. 

A. Developmental Errors 

In contrast to PSUTS we define and reported developmental 
errors that includes all errors occurred through lifetime of each 
learning network: 

Definition 7 (Developmental error): The developmental er-
rors of a developmental network N = (X, Y, Z, M) with sen-
sory area X , skull closed hidden area Y and motor area Z and 
memory M , runs through lifetime by sampling at discrete time 
indices t = 0, 1, 2, ... as N(t) = (X(t), Y (t), Z(t),M(t)). 
Start at inception t = 0 with supervised sensory input 
x0 ∈ X(0), initial state z0 ∈ Z(0), and randomly initialized 
weigh vector y0 ∈ Y (0), and initial memory m0 ∈ M(0). 
At each time t = 1, 2, ..., the network N recursively and 
incrementally updates: 

(xt, yt, zt, mt) = f(xt−1, yt−1, zt−1, mt−1) (8) 

where f is the Developmental Program (DP) of N . If zt ∈ 
Z(t) is supervised by the teacher, the network complies and 
the error et is recorded, but if the supervised motor vector 
has error, the error should be treated as teacher’s. Otherwise, 
the learner is not motor-supervised and N generates a motor 
vector zt and is observed by the teacher and its deviation from 

∗the desired z is recorded as error et. The lifetime average t 
error from time 0 to time t is defined as 

tX1 
ē(t) , ei. (9)

t 
i=0 

Namely, the developmental error, unless stated otherwise 
for a particular time period, is the average lifetime error. 
For more detailed information about the process of errors 
{et | t ≥ 0}, other statistical characterizations can be utilized, 
such as standard deviation, variance, and ranked statistics such 
as minimum, 25%, 50% (median), 75%, and maximum errors. 

Because Cresceptron and DN have a dynamic number of 
neurons up to a system memory limit, each new context 

ct , (xt, yt, zt) (10) 

may be significantly different from the nearest matched learned 
weight vectors of all hidden neurons. If that happens and 
there are still new hidden neuron that have not fired, a new 

hidden neuron is spawned that perfectly memorize this new 
context regardless its randomly initialized weights. When all 
the available hidden neurons have fired at least once, the DN 
will update the top-k matched neurons optimally in the sense 
of maximum likelihood (ML), as proven in [13]. For more 
specific time periods, such as the period from time t1 to t2 

during which only disjoint tests were made by the teacher and 
the learning agent is not motor-supervised, the average error 
is denoted as ē(t1 : t2). Therefore, ē(t) means ē(0 : t). 

Note that a developmental system has two input areas from 
the environment, sensory X and motor Z. Since there is 
hardly any sensory input x ∈ X that exactly duplicates at 
two different time indices, almost all sensory inputs from X 
are sensory-disjoint. During motor-supervised learning, if the 
teacher supervises its motor area Z and the learner complies. 
Since a teacher can take an error, the motor-error that the 
teacher made is also recorded as motor error from the learner 
but due to the teacher. 

B. Competition 

As discussed above, error backprop learning is without com-
pletion. The main purpose of competition is to automatically 
assign roles among hidden neurons. Below, we consider two 
cases, sensory networks that are simpler and sensorimotor 
networks which are more complex but much more powerful 
and brain-like. 

1) Sensory networks: Let us first consider the case of feed-
forward networks as illustrated in Fig. 2. Fig. 2(a) shows a 
situation where the number of samples in X is larger than 
the number of hidden neurons, which is typical and natural. 
Otherwise, if there are sufficient hidden neurons, each hidden 
neuron can simply memorize a single sample x ∈ X . 

This means that the total number of hidden neurons must 
be shared through incremental learning, where each sample 
image-label pair (x, s) ∈ X × S arrives incrementally through 
time, t = 0, 1, 2, .... This is the case with Cresceptron which 
conducts incremental learning by dealing with image-label 
pairs one at a time and update incrementally. 

Every layer in Cresceptron consists of a image-feature 
kernel, which is very different from those in DN where 
each hidden neuron represents a sensorimotor feature to be 
discussed later. By image-feature, we mean that each hidden 
neuron is centered at an image pixel. Competitions take place 
within the column for a receptive field centered at each pixel at 
the resolution of the layer. The resolution reduces from lower 
layer to higher layer through was called resolution reduction 
(drop-out). 

The competition in incremental learning is represented by 
incrementally assigning a new neuronal plane (convolution 
plane) where the new kernel memorizes the new input pattern 
if the best matched neuron in a column does not match 
sufficiently well. Suppose images x ∈ X arrives sequentially, 
the top-1 competition in the hidden layer in Fig. 2(a) enables 
each hidden neuron to respond to multiple features, indicated 
by the typically multiple upward arrows, one from each image, 
pointing to a hidden neuron. This amounts to incremental 



Neurons
with top-1
competion

Neurons
with top-1
competion

Past
inputs

Current
input

Bird Cat Dog

I win!

 

0.30.4
0.3

0.3
0.2 0.4

0.60.2
0.3

Neurons
without

competion

Past
inputs

More!

More!More!

More!

More!

Bird Cat Dog

Current
input

Completely
not their job!

(a) (b)

Fig. 2. How competition automatically assigns roles among hidden neurons without a central controller: The case for automatically construct a mapping 
f : X 7→ S. (a) Each hidden neuron must win-and-fire for multiple inputs. (b) Error-backprop from the “dog” motor neuron asks some hidden neurons to 
help but the current input feature is not their job. 

clustering based on top-k competition. The weight vector of 
each hidden Y neuron corresponds to a cluster in the X space. 
In Fig. 2(a), k = 1 for top-k competition in Y . 

Likewise, suppose top-1 competition in the next higher 
layer, say Z, namely each time only one Z neuron is super-
vised to fire at 1 and all other Z neurons do not fire, resulting 
the connection patterns from the second layer Y to the next 
higher layer Z. 

The Candid Covariance-free Incremental (CCI) Lobe Com-
ponent Analysis (LCA) in Weng 2009 [28] proved that such 
automatic assignment of roles through competition results 
in a dually optimal neuronal layer, optimal spatially and 
optimal temporally. Optimal spatially means the CCI LCA 
incrementally computes the first principal component features 
of the receptive field. Optimal temporally means that the 
principal component vector has the least expected distance 
to its target—the optimal estimator in the sense of minimum 
variance to the true principal component vector. 

Intuitively, regardless what random weights each hidden 
neuron starts with, as soon as it is spawn to fire, its firing 
age a = 1. Its random weight vector is multiplied by the 
zero retention rate w1 = 1 − 1/a = 0 and this learning rate 
w2 = s1/a = 1 so that the new weight vector before becomes 
the first input rx with r = 1 for the firing winner. 

1 1 
v ← (1 − )v + rx. (11) 

a a 
It has been proven that the above expression incrementally 
computes the first principal component as v. The learning rate 
w2 = is the optimal and age-dependent learning rate. CCI a 
LCA is a framework for dually optimal Hebbian learning. The 
property “candid” corresponds to the property that sum of the 

1 1 − 1learning rate w2 = and the retention rate w1 = is a a 
always 1 to keep the “energy” of response r weighted input 

x unchanged (e.g., not to explode or vanish). This dually 
optimality resolves the three problems in Theorem 2. 

Fig. 2(b) shows how the three neurons in the Z area updates 
their weights so that the weight from the second area to the 
third area become the probability of firing, conditioned on the 
firing of the post-synaptic neuron in area Z (Dog, Cat, Bird, 
etc.). The CCI LAC guarantees that the sum of weights for 
each Z neuron sum to 1. This automatic role assignment op-
timally solves the random roles in error-backprop established 
by Theorem 3. 

However, optimal network for incrementally constructing a 
mapping f : X 7→ S is too restricted, since f : X 7→ S is 
only what brains can do, but not all brains can do. For the 
latter, we must address sensorimotor networks. 

2) Sensorimotor networks: The main reason that Marvin 
Minsky [3] complained that neural network is scruffy was 
because conventional neural networks lacked not only the 
optimality described above for sensory networks, but also 
lacked the Emergent Universal Turing Machines (EUTM) that 
is ML-optimal [13]. 

First, each neuron in the brain not only corresponds to a 
sensory feature as illustrated in Fig. 2, but also a sensorimotor 
feature. By sensorimotor feature, we mean that the firing of 
each hidden neuron in Fig. 2 is determined not just by the 
current image σ represented by a sensory vector x ∈ X , but 
also the state q represented by a motor vector z ∈ Z. It is 
well known that a biological brain contains not only bottom-
up inputs from x ∈ X but also top-down inputs from z ∈ Z. 
In summary, each hidden neuron represents a sensorimotor 
feature in a complex brain-like network. 

1 



C. FA as sensorimotor mapping 

This sensorimotor feature is easier to understand if we use 
symbols. Let us borrow the idea of Finite Automaton (FA). In 
an FA, transitions are represented by function δ : Q × Σ 7→ Q, 
where Σ is the set of input symbols and Q the set of states. 
Each transition is represented by 

f 0(q, σ) −→ q 

Weng [13] extended the definition an FA so that it outputs 
its state so the resulting FA becomes an Agent FA (AFA). 
Further, Weng [13] extended the action q to the machinery of 
Turing machine so that action q includes output symbol to the 
Turing tape and the head motion of the read-write head of a 
Turing machine. With this extension, Weng [13] proved that 
any Turing machine is an AFA. 

Weng [13] proved that a DN is ML-optimal and has a low 
time complexity O(1) suited for real-time computation. The 
ML-optimality is conditioned on the Three Conditions: (1) 
task-nonspecific and incremental learning, (2) a training expe-
rience, and (3) a limited number of hidden neurons. Namely, 
under the same Three Conditions, every DN is performance 
equivalent, free of local minima; one network is sufficient. 

V. CONCLUSIONS 

Although public has received claims that deep learning with 
error backprop has approached or even exceeded human level 
performance on certain tasks (e.g., classification for static 
images), this paper raises PSUTS which seems to question 
such claims. The author hopes that the exposure of PSUTS 
improves AI credibility and its future development. Fig. 7 of 
[30] experimentally showed the ML-optimal DN leads to a 
much smaller developmental error by training only a single 
network although the ML-optimality is not to minimize it. 

REFERENCES 

[1] A. M. Turing, “Computing machinery and intelligence,” Mind, vol. 59, 
pp. 433–460, October 1950. 

[2] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. 
Upper Saddle River, New Jersey: Prentice-Hall, 3rd ed., 2010. 

[3] M. Minsky, “Logical versus analogical or symbolic versus connectionist 
or neat versus scruffy,” AI Magazine, vol. 12, no. 2, pp. 34–51, 1991. 

[4] J. Weng, T. S. Huang, and N. Ahuja, Motion and Structure from Image 
Sequences. New York: Springer-Verlag, 1993. 

[5] K. Fukushima, S. Miyake, and T. Ito, “Neocognitron: A neural network 
model for a mechanism of visual pattern recognition,” IEEE Trans. 
Systems, Man and Cybernetics, vol. 13, no. 5, pp. 826–834, 1983. 

[6] P. J. Werbos, The Roots of Backpropagation: From Ordered Derivatives 
to Neural Networks and Political Forecasting. Chichester: Wiley, 1994. 

[7] T. Serre, T. Poggio, M. Riesenhuber, L. Wolf, and S. Bileschi, “High-
performance vision system exploiting key features of visual cortex,” US 
Patent, vol. US7606777B2, Sept. 1 2006. 

[8] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object 
categories,” IEEE Trans. Pattern Analysis and Machine Intelligence, 
vol. 28, no. 4, pp. 594–611, 2006. 

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning 
applied to document recognition,” Proceedings of IEEE, vol. 86, no. 11, 
pp. 2278–2324, 1998. 

[10] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with 
deep convolutional neural networks,” in Advances in Neural Information 
Processing Systems 25, pp. 1106–1114, 2012. 

[11] Y. LeCun, L. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, 
pp. 436–444, 2015. 

[12] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, 
and E. Thelen, “Autonomous mental development by robots and ani-
mals,” Science, vol. 291, no. 5504, pp. 599–600, 2001. 

[13] J. Weng, “Brain as an emergent finite automaton: A theory and three 
theorems,” International Journal of Intelligent Science, vol. 5, no. 2, 
pp. 112–131, 2015. 

[14] J. Weng, N. Ahuja, and T. S. Huang, “Learning recognition and 
segmentation using the Cresceptron,” International Journal of Computer 
Vision, vol. 25, pp. 109–143, Nov. 1997. 

[15] J. Weng, “Why have we passed “neural networks do not abstract well”?,” 
Natural Intelligence: the INNS Magazine, vol. 1, no. 1, pp. 13–22, 2011. 

[16] C. M. Super, “Environmental effects on motor development: A case of 
Africa infant precocity,” Developmental Medicine and Child Neurology, 
vol. 18, pp. 561–567, 1976. 

[17] K. A. Thoroughman and J. A. Taylor, “Rapid reshaping of human motor 
generalization,” Jounal of Neuroscience, vol. 25, no. 39, pp. 8948–8953, 
2005. 

[18] G. Rizzotti, L. Riggio, I. Dascola, and C. Umilta, “Reorienting attention 
across the horizontal and vertical meridians: evidence in favor of a 
premotor theory of attention,” Neuropsychologia, vol. 25, pp. 31–40, 
1987. 

[19] T. Moore, K. M. Armstrong, and M. Fallah, “Visuomotor origins of 
covert spatial attention,” Neuron, vol. 40, pp. 671–683, 2003. 

[20] J. M. Iverson, “Developing language in a developing body: the relation-
ship between motor development and language development,” Journal 
of child language, vol. 37, no. 2, pp. 229–261, 2010. 

[21] J. Weng and M. Luciw, “Brain-like emergent spatial processing,” IEEE 
Trans. Autonomous Mental Development, vol. 4, no. 2, pp. 161–185, 
2012. 

[22] J. Weng, M. Luciw, and Q. Zhang, “Brain-like temporal processing: 
Emergent open states,” IEEE Trans. Autonomous Mental Development, 
vol. 5, no. 2, pp. 89 – 116, 2013. 

[23] J. Weng, Z. Zheng, X. Wu, and J. Castro-Garcia, “Auto-programming 
for general purposes: Theory and experiments,” in Proc. International 
Joint Conference on Neural Networks, (Glasgow, UK), pp. 1–8, July 
19-24 2020. 

[24] J. Weng, “Autonomous programming for general purposes: Theory,” 
International Journal of Huamnoid Robotics, vol. 17, pp. 1–36, August 
2020. 

[25] J. Weng, “Conscious intelligence requires developmental autonomous 
programming for general purposes,” in Proc. IEEE International Con-
ference on Development and Learning and Epigenetic Robotics, (Val-
paraiso, Chile), pp. 1–7, Oct. 26-27 2020. 

[26] J. Weng, Natural and Artificial Intelligence: Introduction to Computa-
tional Brain-Mind. Okemos, Michigan: BMI Press, second ed., 2019. 

[27] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and 
L. Fei-Fei, “Large-scale video classification with convolutional neural 
networks,” in Proc. Computer Vision and Pattern Recognition, (Colum-
bus, Ohio), pp. +1–8, June 24-27, 2014. 

[28] J. Weng and M. Luciw, “Dually optimal neuronal layers: Lobe compo-
nent analysis,” IEEE Trans. Autonomous Mental Development, vol. 1, 
no. 1, pp. 68–85, 2009. 

[29] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust 
object recognition with cortex-like mechanisms,” IEEE Trans. Pattern 
Analysis and Machine Intelligence, vol. 29, no. 3, pp. 411–426, 2007. 

[30] Z. Zheng and J. Weng, “Mobile device based outdoor navigation 
with on-line learning neural network: a comparison with convolutional 
neural network,” in Proc. 7th Workshop on Computer Vision in Vehicle 
Technology (CVVT 2016) at CVPR 2016, (Las Vega), pp. 11–18, June 
269 2016. 

[31] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun, “No more 
pesky learning rates,” in Proc. International Conference on Machine 
learning, (Atlanta, GA), pp. 343–351, June 16-21 2013. 

[32] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and 
Y. Bengio, “Identifying and attacking the saddle point problem in 
high-dimensional non-convex optimization,” in Advances in Neural 
Information Processing Systems, (Montreal, Canada), pp. 2933–2941, 
Curran Associates, Inc., 2014. 

[33] N. Srivastava, G. E. Hinton, K. Krizhevsky, I. Sutskever, and 
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks 
from overtting,” Journal of Machine Learning Research, vol. 15, no. 1, 
pp. 1929–1958, 2014. 

[34] T. Poggio, “Theoretical issues in deep networks,” Proceedings of thr 
National Academy of Sciences, vol. 117, no. 48, pp. 30039–30045, 2020. 




