
Why Deep Learning’s Performance Data 
Are Misleading 

Juyang Weng∗† 
∗Brain-Mind Institute 

§GENISAMA LLC, Okemos, MI 48864 USA 

Abstract—This is a theoretical paper, as a companion paper of 
the keynote talk at the same conference. In contrast to conscious 
learning, many projects in AI have employed deep learning many 
of which seem to give impressive performance data. This paper 
explains that such performance data are probably misleadingly 
inflated due to two possible misconducts: data deletion and test 
on training set. This paper clarifies what is data deletion in deep 
learning and what is test on training set in deep learning and why 
they are misconducts. A simple classification method is defined, 
called nearest neighbor with threshold (NNWT). A theorem is 
established that the NNWT method reaches a zero error on any 
validation set and any test set using Post-Selections, as long as the 
test set is in the possession of the author and both the amount of 
storage space and the time of training are finite but unbounded 
like with many deep learning methods. However, like many deep 
learning methods, the NNWT method has little generalization 
power. The evidence that misconducts actually took place in many 
deep learning projects is beyond the scope of this paper. Without 
a transparent account about freedom from Post-Selections, deep 
learning data are misleading. 

I. INTRODUCTION 

Since 2012, AI has attracted much attention from public and 
media. A large number of projects in AI have published [8], 
[1], including AlphaGo, AlphaGoZero, AlphaZero, AlphaFold, 
and IBM Debater. If the authors of these projects understand 
the principles in this report, they could benefit much for 
reducing the time and manpower to reach their target systems 
as well as improving the generalization powers of their target 
systems. 

Post-Selections [14] mean first training multiple systems 
each starting with random weights (and searched hyper-
parameters) and then selecting a trained system based on 
validation set, test set, or both. 

This paper, based on the analysis of Post-Selections [14], 
raises two flaws that seem to widely exist in machine learning 
projects: Data deletion and test on training data. The latter 
is applicable when test data are in the possession of the 
programmer, which is the case with all published paper where 
the authors possess the test data. 

An open-competition is different, such as Deep Blue versus 
Garry Kasparov Feb. 10, 1996 - May 11, 1997, AlphaGo 
versus Lee Sedol March 9, 2016 - March 15, 2026, and 
AlphaGo versus Ke Jie May 23, 2007 - May 27, 2017, 
because the test data arrives on the fly. This paper defines 
Post-Selections Using Test Set (PSUTS) On The Fly (OTF) 
conducted by humans behind the scene. The author does not 
claim that PSUTS OTF indeed took place during any of these 

three events (although Kasparov did). The PSUTS OTF mode 
is for the academic community to be aware of, to be alert 
about, and to investigate in the future. 

In the remainder of the paper, we will discuss four learning 
conditions in Sec. II from which we can see that we cannot just 
look at superficial “errors” without limiting resources. Sec. III 
discusses four types of mappings for a learner, which gives 
spaces on which we can discuss errors. Post-Selections are 
discussed in Sec IV. Section V provides concluding remarks. 

II. THE FOUR LEARNING CONDITIONS 

First, let us consider four learning conditions that any fair 
comparisons of AI methods should take into account. 

Many AI methods were evaluated without considering how 
much computational recourses are necessary for the develop-
ment of a reported system. Thus, comparisons about the per-
formance of the system have been tilted toward competitions 
about how much resources a group has at its disposal, regard-
less how many networks have been trained and discarded, and 
how much time the training takes. 

Here we explicitly define the Four Learning Conditions for 
development of an AI system: 

Definition 1 (The Four Learning Conditions): The Four 
Learning Conditions for developing an AI system are: (1) A 
body including sensors and effectors, (2) a set of restrictions 
of learning framework, including whether task-specific or 
task-nonspecific, batch learning or incremental learning; (3) a 
training experience and (4) a limited amount of computational 
resources including the number of hidden neurons. 

Weng 2021 [14] discussed the conditions (2) to (4) without 
condition (1). It further discussed why any Big Data set 
violates what is called the sensorimotor recurrence principle, 
namely, any learning process that uses a static Big Data set is 
physically flawed. 

III. FOUR DIFFERENT MAPPINGS 

Traditionally, a neural network is meant to establish a 
mapping f from the space of input X to the space of class 
labels L, 

f : X 7→ L (1) 

[4], [9]. X may contain a few time frames. 
Many temporal problems, such as video analysis problems, 

speech recognition problems, and computer game-play prob-
lems, can include context labels in the input space, so as to 



learn 
f : X × L 7→ L. (2) 

where × denotes the Cartesian product of sets. 
A developmental approach deals with space and time in a 

unified fashion using a neural network such as Developmental 
Networks (DNs) whose experimental embodiments range from 
WWN-1 to WWN-9. The DNs went beyond vision problems 
to attack general AI problems including vision, audition, and 
natural language acquisition as emergent Turing machines 
[12]. DNs overcame the limitations of the framewise mapping 
in Eq. (2) by dealing with lifetime mapping without using any 
symbolic labels: 

f : X(t − 1) × Z(t − 1) 7→ Z(t), t = 1, 2, ... (3) 

where X(t) and Z(t) are the sensory input space and motor 
input-output space, respectively. 

We need to consider two factors: (A) Space: Because X and 
Z are vector spaces of sensory images and muscle neurons, 
we need internal neuronal feature space Y to deal with sub-
vectors in X and Y and their spatial hierarchical features. (B) 
Time: Furthermore, considering symbolic Markov models, we 
also need further to model how Y -to-Y connections enable 
something similar to higher and dynamic order of time in 
Markov models. With the two considerations (A) Space and 
(B) Time, the above lifetime mapping in Eq. (3) is extended 
to: 

f : X(t − 1) × Y (t − 1) × Z(t − 1) 7→ Y (t) × Z(t), t = 1, 2, ... 
(4) 

in DN-2. It is worth noting that the Y space is inside a closed 
“skull” so it cannot be directly supervised. Z(t − 1) here is 
extremely important since it corresponds to the state of an 
emergent Turing machine. 

In terms of performance evaluation, all the errors occurred 
during any time in Eq. (4) of each life is recorded and taken 
into account in the performance evaluation. This is in sharp 
contrast with Post-Selection. 

IV. POST-SELECTIONS 

Before we discuss Post-Selections, we need to discuss three 
types of errors. 

A. Fitting, Validation and Test Errors 

Given an available data set D, D is divided by a partition 
into three mutually disjoint sets, a fitting set F , a validation 
set V , and a test set T so that 

D = F ∪ V ∪ T. (5) 

Two sets are disjoint if they do not share any elements. 
The validation set is possessed by the trainer, the test set 
should not be possessed by the trainer since the test should 
be conducted by an independent agency. Otherwise, V and T 
become equivalent. 

Given any hyper-parameter vector ai (e.g., including recep-
tive fields of neurons), it is unlikely that a single network 
initialized by a set of random weight vectors can result 

in an acceptable error rate on the fitting set, called fitting 
error, that the error-backprop training intends to minimize 
locally. That is how the multiple sets of random weight hyper-
parameter vectors come in. For k hyper-parameter vectors ai, 
i = 1, 2, ...k and n sets of random initial weight vectors wj , 
the error back-prop training results in kn networks 

{N(ai, wj ) | i = 1, 2, ..., k, j = 1, 2, ..., n}. 

Error-backprop locally and numerically minimizes the fitting 
error fi,j on the fitting set F . 

Learner
fitting
error

Sensors

Life without TM learning

a

b c

d

e
f

Life with TM learning

Motors

Fig. 1. A 2D-terrain illustration for the global minima problems in a high-
dimensional terrain (e.g., 200B-dimensional space of hyper parameters and 
weights). TM: Turing machine. 

Fig. 1 gives a 2D illustration for the limitations of Post-
Selection as well as the difference between the sensor-only 
mapping in Eq. (1) and the sensorimotor mapping in Eq. (3). 
Suppose X represents the space of sensory input and Z 
represents the space of motor input, but in general should be 
any initial pair (ai, wj ). Each location on the 2D plane of 
Eq. (1) corresponds to the initial random weights of a neural 
network (e.g., 200B-dimensional). Of course, each network 
has many neurons not just two input values but Fig. 1 can only 
schematically represent the initial weights of two values as a 
2D-terrian illustration. The height of a curve at is the system 
fitting error ei,j of a particular trained network N(ai, wj ). We 
use the biological term “life” to indicate the entire process of 
a system’s learning. 

The error-backprop learning method is a greedy method. 
Starting from any initial pair (ai, wj ) it steps along the 
direction that descends the quickest without knowing where 
the global minimum is in the 200B-dimensional space. In 
Fig. 1, we can see that (ai, wj ) leads to a local minimum 
a, b, or c if we use the sensory mapping in Eq. (1). The 
point a is the lowest point, but there is no guarantee to reach 
it, depending on where the network starts from in the 200B-
dimensional space. The more networks have been trained, the 
more likely the luckiest network finds the global minimum. 
In Fig. 1, the luckiest network starts from the valley where a 
is located, but this is much harder for the 200B-dimensional 
space. Typically, the more networks a project has trained, the 



Fig. 2. Two annotated windows for an object class labeled as “steel drum” 
for single object localization. Figure courtesy of [10]. 

more likely for the Post-Selection stage to find a network with 
a smaller ei∗,j∗ . 

Graves et al. [5] seems to have mentioned that the number of 
trained systems is at least n = 20. Saggio et al. [11] reported 
that n is at least 10, 000. Krizhevsky & Hinton [7] did not 
give n but seems to have mentioned 60 million parameters 
which probably means each wi and each aj combined to be 
of 60 million dimensional. Consider a small example: The 
number of tried value l for each hyper-parameter: l = 3, and 
the number of hyper-parameters d = 10, the total number of 

ld 310hyper-parameter vectors is k = = = 59049. Letting 
n = 20, kn = ldn ≈ 1M networks must be trained, a huge 
number that requires a lot of computational resources to do 
number crunching and a lot of manpower to manually tune 
the range of hyper-parameters! 

does not have the distraction of details in more commonly 
used networks as well as learning modes. 

Definition 3 (Nearest neighbor with threshold, NNWT): 
Define a network that stores the entire fitting set F where 
each image in F may contain multiple annotated windows 
for matching (see Fig. 2). For each input image q, a scan 
subwindow x searches across the input image q for a range 
of locations and scales, normalizes the scale, and compares 
with each annotated window in the fitting set F . Suppose 
an input window x matches the nearest sample (annotated) 
window s in F . If the distance between x and s is not larger 
than a distance threshold d (a hyper-parameter), then the 
network outputs the associated label of the nearest sample s. 
Otherwise, the system outputs a label randomly and uniformly 
sampled from the label set L. 

Let us give some formality of the Post-Selection with 
NNWT. Suppose that there are three data sets, fitting set F , 
verification set V , and test set T , a desired verification error 
ev ≥ 0, and a desired test error et ≥ 0, run the following 
program P (s) that starts from random seed s. 

1) Store all data from the fitting set F . 
2) For each receptive field (e.g., rectangular) q inside of a 

cluttered image or a cluttered video x ∈ V , or x ∈ T , 
compute the distance di = d(q, xi) between receptive 
field q and each annotated receptive field xi in F for all 
values of i (each sample in F have multiple annotated 
receptive field xi’s). 

3) Produce the class label lj of the nearest neighbor xj that 
produces the smallest distance: j = arg mini{di}. 

4) If dj ≤ d(s) where d(s) is a threshold depending 
Definition 2 (Distribution of fitting, validation and test errors): on random seed s, output the label lj of the nearest 

The distributions of all kn trained networks’ fitting errors 
0{fij }, validation errors {eij }, and test errors {e },ij 

i = 1, 2, ...k, j = 1, 2, ...n are random distributions depending 
on a specific data set D and its partition D = F ∪ V ∪ T . 
The difference between a validation error and a test error is 
that the former is computed from the same author using an 
author-possessed validation set V but the latter is computed 
by an independent agency using an author-unknown test set 
T . 

We define a simple system that is easy to understand for 
our discussion to follow. Consider a highly specific task of 
recognizing patterns inside the annotated windows in Fig. 2. 
This is a simplified case of the three tasks—recognition (yes or 
no, learned patterns at varied locations and scales), detection 
(presence of, or not, learned patterns) and segmentation (of 
recognized patterns from input). These three tasks of natural 
cluttered scenes were dealt with by the first deep learning net-
works for 3D—Cresceptron [15]. Later data sets like ImageNet 
[10] contain many more image samples. 

B. Post-Selection Illusion 

To understand Post-Selection in Deep Learning (using CNN, 
LSTM, etc.), including supervised learning, reinforcement 
learning and adversary learning, let use consider a simple 
classifier that shares the same principle of Post-Selection but 

neighbor. Otherwise, output a label that is randomly and 
uniformly sampled from the label set L. 

Post-Selection stage: If the measured verification error or 
the test error is larger than required, do the above procedure 
P (s) for a new seed s. Repeat until the measured verification 
error and test error are both not larger than the required ev 

and et, respectively. 
In order words, the NNWT classifier with Post-Selections 

uses a lot of space and time resources for over-fitting. It has 
a perfect fitting error (zero) but it randomly guesses an output 
label if the distance is larger than the threshold d. 

To understand why Post-Selections give misleading results, 
let us derive the following important theorem. 

Theorem 1 (Post-Selection Illusion): Given any validation 
error rate ev ≥ 0 and test error rate et ≥ 0, using Post-
Selections the NNWT classifier using Post-Selections satisfies 
the ev and et, if the author is in the possession of the test set 
and both the storage space and the time spent on the Post-
Selections are finite but unbounded. 

Proof: Because the number of seeds to be tried during 
the Post-Selection is unlimited, we can prove that there is a 
finite time at which a lucky seed d(s) will produce the good 
enough verification error and test error. Although the waiting 
time is long, the time is finite because V and T are finite. Let 
us formally prove this. Suppose l is the number of labels in the 



output set L and for the set of queries in V and T , there are 
k outputs that must be guessed. The probability for a single 
guess to be correct is 1/l due to the uniform sampling in L. 
The probability for k guesses to be all correct is (1/l)k = 1/lk 

because guesses are independent. For an independently and 
randomly initialized network to guess less than k cases correct 
is 1 − 1/lk , with 0 < 1 − 1/lk < 1. The probability for as 
many as n independently and randomly initialized networks, 
all of which do not satisfy the ev and et, is 

p(n) = (1 − 1/lk)n −→ 0, as n approaches infinity 

because 0 < 1 − 1/lk < 1. Therefore, within finite time span, 
a process of trying incrementally more networks will get a 
lucky network that satisfies both the computable ev and et. 

As we can see from the proof, the smaller the threshold, 
the more guesses must be made and, thus, typically the longer 
time one needs to spend during Post-Selections. 

Let us imagine that the threshold d(s) gradually increases 
from zero toward infinity. The nearest neighbor classifier 
changes from a total-lottery scheme (when d(s) = 0) to a 
traditional nearest neighbor classifier (without label guesses) 
when all query inputs are beyond the threshold. 

Theorem 1 has established that Post-Selections can even 
produce a perfect classifier that gives a zero validation error 
and a zero test error! Yes, while the test sets are in the 
possession of authors, the authors could show any superficially 
impressive validation error rates and test error rates (including 
zeros!) because they used Post-Selections without a limit on 
resources (to store all data sets and to search for a lucky 
network). 

The above theorem means any comparisons without an 
explicit limit on storage and time spent on Post-Selections 
are meaningless, like ImageNet and many other competitions. 
It is of course time consuming for a program to search for a 
network whose guessed labels are good enough. But such a 
lucky network will eventually come within a finite time! 

Corollary 1 (Misleading AI papers): If a paper trains more 
than one system and the author is in the possession of test set, 
the performance data from the paper are misleading if the 
paper does not report the number of systems trained in Post-
Selections, the amount of computational resources (e.g., the 
amount of storage, the number of computations), the amount of 
waiting time, along with the fitting errors, the validation errors, 
and the test errors of all trained systems. The generalization 
power of the reported system is still unknown. 

Proof: From Theorem 1, if Post-Selections are allowed, 
a NNWT can satisfy any nonzero validation error and any 
nonzero testing error using Post-Selections, since the training 
set, validation set and the test set are all in the possession of 
the authors. The generalization power of all trained systems 
is unknown, so is the reported luckiest system. 

This corollary is a scientific basis for the author to raise a 
violation of protocols and a lack of transparency about the 
Post-Selection stage in almost all machine learning papers 
appeared in Nature, Science, Communication of ACM [2] 
and other publication venues since around 2015. Since all the 

fitting sets, validation sets and test sets are in the possession 
of the authors, many papers have claimed misleading results 
using a flawed protocol. 

Following the terminology of [3], we use the term “Test on 
Training Set” below. 

Theorem 2 (Test on Training Set): Post Selections that 
used test set amounts to tests on training set even though 
trained networks did not “see” the training set during their 
error backprop training. 

Proof: Originally, the term “Test on Training Set” means 
the training stage involves the test set. Although all trained 
networks did not “see” the test set, the Post-Selection is part 
of the training stage that produces the reported network and its 
error. Since the Post-Selection uses the test set to pick up the 
luckiest network among all trained networks using their errors 
on the test set, all trained networks see the test set during the 
post-selection stage. 

A typical neural network architecture has a set of hyper-
parameters represented by a vector a, where each component 
corresponds a scalar parameter, such as convolution kernel 
sizes and stride values at each level of a deep hierarchy, 
the neuronal learning rate, and the neuronal learning mo-
mentum value, etc. Let k be a finite number of grid points 
along which such hyper-parameter vectors need to be tried, 
A = {ai | i = 1, 2, ..., k}. Let’s give more detail to the above 
example. Suppose there are 10 scalar parameters in each vector 
ai. For each scalar parameter x of the 10 hyper parameters, we 
need to validate the sensitivity of the system error to x. With 
uncertainty of x, we estimate its initial value as the mean 
x̄, positively perturbed estimate x̄ + σx (σ is the estimated 
standard deviation of x), and negatively perturbed estimate 
x̄−σx. If each scalar hyper parameter has three values to try in 
this way, there are a total of k = 310 = 59049 hyper-parameter 
vectors to try, a very large number. For example, in NNWT, 

¯the threshold d can be estimated by the average of nearest 
distance between a sample in V and the nearest neighbor in 
F and the σd be estimated by the standard deviation of these 
nearest distances. 

C. Test Data Available in Batch 

Ideally, test sets should not be in the possession of authors, 
e.g., during a blind test. However, this is often not true since 
the authors may use publically available data sets that include 
test sets. 

Definition 4 (Post selection in batch): A human program-
mer trains multiple systems using the fitting set F . After 
these systems have been trained, the experimenter post-selects 
a system by searching, manually or assisted by computers, 
among trained systems based on the batch validation set V (or 
the batch test set T ). This is called Post-Selection in batch— 
selection of one network from multiple trained and verified 
(or tested) networks. 

Definition 5 (Data deletion in post-selection): Data 
deletion is a misconduct during which an author deletes 
the performance data of some bad-performing networks 



during post-selection, not reported in the corresponding 
project report. 
Data deletions are violations of the well-known statistical 
protocol of cross-validation. In a minimally acceptable form, 
the distribution of the performances of all trained networks 
should be reported by the worst error, the average error and 
the best error among all the trained networks. Only reporting 
the best error amounts to misconduct known as data deletion, 
deleting the performance data of all networks that the author 
does not like. 

Obviously, a post-selection wastes (deletes) all trained sys-
tems except the selected one. As we can predict [14], a system 
from the post-selection tends to have a weaker generalization 
power than the reported luckiest error indicates, as illustrated 
in Fig. 1. 

A Post-Selection in batch can use the validation set V or the 
test set T . However, if both sets are in the possession of the 
human programmer, the difference between V and T almost 
totally vanishes under Post-Selections. 

Definition 6 (PSUTS and PSUVS): A Machine PSUTS is 
defined as follows: If the test set T is available to the author, 
suppose the test error of N(ai, wj ) is ei,j on the test set T , 
find the luckiest network N(ai∗ , wj∗ ) so that it reaches the 
error of the luckiest hyper-parameters and the luckiest initial 
weights from Post-Selection Using Test Set (PSUTS): 

ei∗,j∗ = min min ei,j (6)
1≤i≤k 1≤j≤n 

and report only the performance ei∗,j∗ but not the perfor-
mances of other remaining kn − 1 trained neural networks. 
PSUVS, V for validation, is similarly defined. 

Set T is like set V since it is available. Similarly, a human 
PSUTS is a procedure wherein a human selects a system from 
multiple trained systems according to {ei,j } using also human 
visual inspection of internal representations of the system and 
their test errors. 

D. Cross-Validation 

The above PSUTS is an absence of cross-validation [6]. 
Originally, the cross-validation is meant to mitigate an unfair 
luck in a partition of the dataset D into a fitting set F and a 
test set T (empty validation set). For example, an unfair luck 
is such that every point in the test set T is well surrounded 
by points in the fitting set F . But such a luck is hardly true 
in reality. 

To reduce the bias of such a luck, an n-fold cross-validation 
protocol [3] is suggested. 

E. Types of Lucks in a Neural Network 

In a neural network, there are at least three types of lucks: 
Type-1 order lucks: The luck in a partition Pi into a fitting 

set Fi and a test set Ti from a data set D resulting in test error 
ei, i = 1, 2, ..., n. 

Type-2 weights lucks: As discussed in [14], weights specify 
the role assignment for all the neurons in the neural network. 
A random seed value determines the initialization of a pseudo-
random number generator, which gives initial weights wi 

for a neural network N(wi), resulting in a test error ei, 
i = 1, 2, ..., n, after training of these n networks and testing 
on T . 

Type-3 hyper-parameter lucks: The initial hyper-
parameter vector aj of the neural network gives an error ej , 
j = 1, 2, ..., k. Because such a luck of aj might not capture 
the internal rules of the fitting set Fj , this paper argues that a 
statistical validation of the reported error estimate should be 
performed and the distribution of {ej } be reported. 

In contract, a batch-trained neural network typically uses 
a Post-Selection to pick the luckiest network without cross-
validation for either of the above three types of lucks, e.g., in 
ImageNet Contest [10]. Namely, errors occurred during batch 
training of the network before the network is finalized and 
how long the training takes are not reported. Many researchers 
have claimed error-backprop “works” without providing much-
needed three types of validations. This seems not true since 
[16] shows a huge difference between the luckiest CNN with 
error-backprop and the optimal DN. 

We also need to be aware of another protocol flaw: Random 
seeds and hyper parameters are all coupled. Under such a 
coupling, Type 2 validation seems unnecessary with n = 1 
but the search of the luckiest weights is embedded into the 
search for the luckiest hyper-parameter vector. where each 
hyper parameter vector uses a different seed. 

Since a PSUTS procedure picks the best system based on 
the errors on the test set (like a validation set), the resulting 
system does not do well on new test sets because doing well 
on a validation set does not guarantee doing well on an open 
test set. See Fig. 1. Typically, due to a very large number 
of samples, availability of test sets and unavailability of open 
test sets in a properly managed contest, Post-Selections cause 
the reported error to be smaller than an open test error rate. 
(However, in Table 2 of [7], the test error rate is smaller than 
the validation error for 7CNNs, causing a reasonable suspicion 
that PSUTS could be used in addition to PSUVS.) 

F. The Luckiest Network from a Validation Set: Data Deletion 

Many people may ask: Are there any technical flaws in 
at least PSUVS, since it does not use the test sets? Any 
post-selection is technically flawed and results in misleading 
results, including both PSUVS and PSUTS, because of the 
data deletion misconduct. 

In general, Type-1 cross-validation is to filter out lucks 
in data partition that a typical user does not have during a 
deployment of the method. Namely, it is a severe technical and 
protocol flaw in reporting only the luckiest network, regardless 
the post-selection uses validation sets or test sets. At least the 
average error over Post-Selections must be reported. 

This conclusion has a great impact on evolutional methods 
that often report only the luckiest network, instead of those of 
all networks in a population. Namely, the performances of all 
individual networks in an evolutionary generation should be 
reported. Furthermore, a reasonably disjoint test set must be 
used to evaluate the generalization of the luckiest network. 



If the test set T is in the possession of the author, which 
seems to be true for almost all so-called “deep learning” 
publications other than open competitions, we define machine 
PSUTS as a Post-Selection process where test set is used, in 
addition to the validation set. 

Some researchers have claimed that the test data was 
“unseen” by trained systems when they were tested, but the 
network selector has seen their performances when they see 
the test set. In other words, the Post-Selection stage belongs 
to the training phase—training the Post-Selector. 

Weng [14] discussed also human PSUTS where it is a hu-
man that does Post-Selection. The subsection below discusses 
human PSUTS on the fly, not in batch. 

Weng [14] also discussed why error-backprop needs ma-
chine PSUTS and human PSUTS. 

G. Open Test Data Arriving on the Fly 

Definition 7 (PSUTS On The Fly): During an open compe-
tition, the participating m > 1 luckiest networks meet new 
open test data that arrive on the fly. One or more humans con-
duct an additional round of Post-Selections on the fly during 
the competition using human PSUTS from the m machine 
outputs for some actions. Here, all human selected actions 
across the entire game do not even have to be consistently 
from a single network. 

For example, x(t) is the current board configuration in a 
Go game, treated as a game state at player time t. Human 
experts (behind the scene or on the scene), based on the 
output actions from the m luckiest networks, manually select 
a network’s output as the next action z(t + 1). Of course, this 
is not a fair competition, because the so-called “human player 
side” has only a single human who is not allowed to use any 
computer but the so-called “machine player side” has one or 
more humans who have assistance from computers. 

Weng [13] discussed how the DN algorithm trains only a 
single network that is always optimal in the sense of maximum 
likelihood, conditioned on the Four Learning Conditions. In 
this sense, the DN is free from local minima. 

V. CONCLUSIONS 

Post-Selections in so called “deep learning” involve “data 
deletion” and “test on training data”. Many experts consider 
such practices as misconducts. Performance data from so-
called “deep learning” are misleading without explicit ex-
clusion of such flaws in their experimental protocol. Such 
flawed protocols are tempting to those published papers where 
the test sets are in the possession of the authors and also 
to open-competitions where human experts are not explicitly 
disallowed to interact with the “machine player” on the fly. 
Limited by scope of paper, the author does not claim here 
that such misconducts indeed took place. 

REFERENCES 

[1] M. G. Bellemare, S. Candido, J. G. P. S. Castro, M. C. Machado, 
S. Moitra, S. S. Ponda, and Z. Wang. Autonomous navigation of strato-
spheric balloons using reinforcement learning. Nature, 588(7836):77–82, 
2020. 

[2] Y. Bengio, Y. LeCun, and G. Hinton. Deep learning for AI. Communi-
cations of ACM, 64(7):58–65, 2021. 

[3] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley, 
New York, 2nd edition, 2001. 

[4] K. I. Funahashi. On the approximate realization of continuous mappings 
by neural networks. Neural Network, 2(2):183–192, March 1989. 

[5] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-
Barwinska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, 
A. P. Badia, K. M. Hermann, Y. Zwols, G. Ostrovski, A. C., H. King, 
C. Summerfield, P. Blunsom, K. Kavukcuoglu, and D. Hassabis. Hybrid 
computing using a neural network with dynamic external memory. 
Nature, 538:471–476, 2016. 

[6] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-
Hall, New Jersey, 1988. 

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification 
with deep convolutional neural networks. Communications of the ACM, 
60(6):84–90, 2017. 

[8] Y. LeCun, L. Bengio, and G. Hinton. Deep learning. Nature, 521:436– 
444, 2015. 

[9] T. Poggio and F. Girosi. Networks for approximation and learning. 
Proceedings of The IEEE, 78(9):1481–1497, 1990. 

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, 
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei. ImageNet large scale visual recognition challenge. Int’l Journal of 
Computer Vision, 115:211–252, 2015. 

[11] V. Saggio, B. E. Asenbeck, A. Hamann, T. Stromberg, P. Schiansky, 
V. Dunjko, N. Friis, N. C. Harris, M. Hochberg, D. Englund, S. Wolk, 
H. J. Briegel, and P. Walther. Experimental quantum speed-up in 
reinforcement learning agents. Nature, 591(7849):229–233, March 11 
2021. 

[12] J. Weng. Brain as an emergent finite automaton: A theory and three 
theorems. Int’l Journal of Intelligence Science, 5(2):112–131, 2015. 

[13] J. Weng. A developmental method that computes optimal networks 
without post-selections. In Proc. IEEE Int’l Conference on Development 
and Learning, pages 1–6, Beijing, China, August 23-26 2021. 

[14] J. Weng. On post selections using test sets (PSUTS) in AI. In Proc. 
Int’l Joint Conference on Neural Networks, pages 1–8, Shenzhen, China, 
July 18-22 2021. 

[15] J. Weng, N. Ahuja, and T. S. Huang. Learning recognition and 
segmentation using the Cresceptron. Int’l Journal of Computer Vision, 
25(2):109–143, Nov. 1997. 

[16] Z. Zheng and J. Weng. Mobile device based outdoor navigation 
with on-line learning neural network: a comparison with convolutional 
neural network. In Proc. 7th Workshop on Computer Vision in Vehicle 
Technology (CVVT 2016) at CVPR 2016, pages 11–18, Las Vegas, June 
269 2016. 


	Introduction
	The Four Learning Conditions
	Four Different Mappings
	Post-Selections
	Fitting, Validation and Test Errors
	Post-Selection Illusion
	Test Data Available in Batch
	Cross-Validation
	Types of Lucks in a Neural Network
	The Luckiest Network from a Validation Set: Data Deletion
	Open Test Data Arriving on the Fly

	Conclusions
	References

