### Wide Bandgap Device Manufacturing





### Energy Efficiency & **ENERGY** Renewable Energy

Dr. Anant Agarwal Senior Advisor, Wide Band Gap Technology US Department of Energy

- Low Voltage (600 1700 V) SiC Devices are here
- Price of SiC switches will be at ~10 Cents/Amp in 3-4 years
- Many Power Electronics Applications will adopt LV SiC devices over the next 5 years
- 10-15 kV SiC have already been demonstrated in prototype systems (assume Reliable SiC devices and modules will be available at reasonable prices)
- How can we use HV SiC devices in the management of Grid with High Percentage of Renewables while reducing storage requirements?
- Other applications of WBG devices in the Grid.



Energy Efficiency & Renewable Energy

# Grid with High Renewable Content has Low Inertia

 Synchronous Generators have High Inertia due to Kinetic Energy

$$\frac{df}{dt} \propto \frac{P_{Gen} - P_{Demand}}{H}$$
 H is Inertia

- Increasing Renewables reduces the Inertia in the Grid
- Storage can provide Synthetic Inertia but
  - storage is too expensive and
  - has half the life of PV system



## Abrupt loss of 3GW Generation in a 250GW Grid

### Fast Controls Avoid Large Disturbance in Frequency with Low Inertia



Blue: high inertia (H=6s), ie. No wind & PV power feed in share, nominal frequency control reserve **Red**: low inertia 9H=3s), ie. 50% wind & PV power feed in share, nominal frequency control reserve **Green**: low inertia (H=3s), fast control reserves

Andreas Ulbig, Theodor S. Borsche and Goran Andersson, Power Systems Laboratory, ETH Zurich "Impact of Low Rotational Inertia on Power System Stability and Operation", 22 Dec 2014



*PV inverters operating below the MPPT can have spinning reserve real power which can be used to inject additional power as needed.* 



Anderson Hoke, Eduard Muljadi, Power Systems Engineering Center, National Renewable Energy Laboratory, Golden, Colorado Dragan Maksimovic;,Colorado Power Electronics Center, University of Colorado, Boulder, Colorado "Real time Photovoltaic Plant Maximum Power Point Estimation for Use in Grid Frequency Stabilization"



∝ √ 5

# Enabler for > 50% Renewables on the Grid



 Provide power and voltage support functions in subcycle time scales to keep the grid and embedded Microgrids stable.





• <u>High Cost</u> of WBG Chips

Must reduce the cost of WBG Semiconductors 10 cents per Amp for 1200 V devices (Merchant Foundry)

- <u>Value Proposition</u> of WBG Devices
  <u>Power Electronics Demonstration Projects to</u> validate superior performance and reliability
- PE Community <u>slow to change</u> and adopt new technologies *Must train Graduate students in benefits and use of WBG devices in Power Electronics (Work Force Development)*
- Reliability, Packaging



## **Benefits of Using Commercial Si Foundry**



- Typically only 10-20% capacity of commercial foundry utilized
  - 90% of the processes are the same
- Innovation by researchers, small companies and students through design and access to fabless model—similar to MOSIS
- Reduce technology risk...encourage investments by VC firms
  - \$10-15 M is required to create a product as opposed to \$100 M



Energy Efficiency & Renewable Energy

### SiC and GaN devices can be competitive with Silicon

### ¢/A for 1200 V, 20 A SiC MOSFET



#### NC STATE UNIVERSITY Medium Voltage WBG EV Fast Charger Power America

Prof. Srdjan Lukic

□ Objective: Develop a modular medium voltage WBG EV Fast Charger using SiC semiconductor power devices to exploit the advantages of using WBG Devices



MV WBG Fast charger

- 50kW; 2,400Vac to 400Vdc
- η≥95%,
- 10 x size reduction; 4x weight reduction



Prototype Rendering 10 & Hardware Implementation





### NGEM--Gaining US Manufacturing Advantage (\$27M)



- Big 60 Hz Transformer replaced by small high frequency Transformer
- Motor size reduced by 5x cheaper, less magnets
- 20-40% energy per motor system is saved due to Variable Speed Drive pay-back < 3 years
- Gear Box eliminated
- Smaller Foot-print (up to 5x)



## **Gaining Momentum!**



#### **PowerAmerica**

Implement Fabless Foundry Model for cost reduction Provide Hands on training for students in WBG technologies Demonstration of WBG in power electronics applications



## **Continuing the Momentum**

- NGEMII Enabling Technologies for Electric Machines •
- Continue to promote educational expansion • opportunities
  - Increase graduate student training opportunities
  - Fund faculty positions in WBG PE at various universities
- Move into Year 2 projects at PowerAmerica
  - Work on commercialization opportunities from Year 1 successes
- Work on Development of Standards and Regulations for Variable Speed Drives to improve adoption
- >10 kV SiC Power Devices and Systems for Grid U.S. DEPARTMENT OF Energy Efficiency & Applications **Renewable Energy**

1 April 2016, Knoxville, TN