

A Framework for Testing Distributed
Healthcare Applications

R. Snelick1, L. Gebase1, and G. O’Brien1

1National Institute of Standards and Technology (NIST), Gaithersburg, MD, State, USA

Abstract - We present an architectural framework for
supporting conformance and interoperability testing among
distributed healthcare systems. Healthcare organizations
such as hospitals employ information systems that are
composed of multiple, distributed applications. These
applications need to interoperate seamlessly. This presents a
challenging testing problem. We describe in detail a
typical healthcare workflow—presenting the applications,
their roles, and transactions. We then examine the testing
requirements that emanate from the workflow. Next we
present a test system and describe how the system can be
used to satisfy the testing requirements. Finally, we present
a generalized approach based on a service oriented
architecture that supports testing of a broad range of
healthcare workflows that employ multiple messaging and
document data exchange standards. We assert that the
proposed testing framework is applicable for a broader
class of applications.

Keywords: Automated Testing; Conformance;
Interoperability; Service Oriented Architecture; Testing
Framework; Workflow.

1 Introduction
 Healthcare organizations such as hospitals employ
information systems that are often composed of
heterogeneous applications provided by a variety of
vendors. Market fragmentation is an artifact of the vast
scope of healthcare services; no one organization can
develop systems to support all services. The result is that
vendors build specialized products—for example, lab results
reporting or a patient registration system. In a healthcare
organization, these systems need to exchange information
seamlessly and reliably. Standards based systems are the
foundation for achieving this goal. Applications
communicate via widely used healthcare clinical data and
imaging exchange messaging standards and clinical data
document standards. A comprehensive information
healthcare system will incorporate data from a variety of
disparate, heterogeneous applications. For example, the
system may include Health Level Seven (HL7) data, Digital
Imaging and Communications in Medicine (DICOM) data,
and Clinical Document Architecture (CDA) documents.
Each standard is used for a specific purpose; testing support
is needed for each.

HL7 is a data exchange messaging standard for moving
clinical and administrative information among healthcare
applications [1]. Typical HL7 messages include admitting a
patient to a hospital or requesting a lab order for a blood
test. Conformance message profiles are used to constrain the
set of data that is exchanged among HL7 applications;
message profiles provide the conformance requirements that
verify correct data exchange [9]. DICOM is a standard for
handling, storing, printing, and transmitting information in
medical imaging systems [2]. DICOM enables the
integration of scanners, servers, workstations, printers, and
network hardware from multiple manufacturers into a
picture archiving and communication system (PACS).
DICOM devices come with conformance statements which
clearly describe the classes they support. DICOM has been
widely adopted by hospitals and is making inroads in
smaller applications like dentists and doctors offices. CDA
is an XML-based markup standard intended to specify the
encoding, structure, and semantics of clinical documents for
exchange [13]. CDAs can be specialized; for example a
Continuity of Care Document (CCD) component was
developed to facilitate the communication of patient
summary information between electronic systems. The
specification for CCD supports conformance testing of such
documents.

The use of standards is essential for building a healthcare
system made of subsystems and multiple applications
coming from different vendors. New applications cannot
easily be incorporated into such a system without each new
application exhibiting behavior that is in strict compliance
with an agreed upon standard. Assuring that applications are
compliant then is an important task and the focus of
conformance testing. We present a conformance testing
framework for supporting the evaluation of a collection of
independent healthcare systems. We will examine the
problem by illustrating a scenario describing patient
identification and document management. We provide an
overview of the applications involved, the roles the
applications play, and the interactions between the
applications. For a representative set of transactions we
describe the requirements that must be satisfied to
successfully complete the transaction. We then present a
testing strategy to evaluate adherence to the requirements
that were formulated from examining the workflow
scenario. This process leads to the introduction of a service

oriented architecture (SOA) model that can be applied to the
testing of a broad spectrum of healthcare applications.

The framework defines a set of services to support testing.
The key services include test agents (implementations of
application functionality to the extent necessary to support
testing), validation services (e.g., HL7 messages and CDA
documents), test data generation, logging, and repositories
(e.g., for maintaining testing artifacts). Additional services
are also available but are not discussed here.

An important characteristic of the testing framework is its
flexibility to support multiple configurations. The test
framework, like the healthcare system it is designed to test,
is made up of a collection of discrete tools and applications,
each providing one or more testing services. Evaluating
application compliance may in one case require only
evaluating correct message construction. In this case, the
test system may be configured as a single application
providing a message validation service. In another case,
evaluation of multiple healthcare subsystems made up of
multiple healthcare applications may require deploying a
testing configuration consisting of the entire array of tools
available to the system. The obvious advantage of this
approach is that the user can combine the components of the
test system into whatever configuration is most suitable for
solving the problem at hand. In addition to the flexibility
offered by the system, it is also easily extensible. Since test
system components run independently, adding new services
to the test system can readily be accomplished. Adding a
new service requires little more than defining the services
the application will be required to support and the
mechanisms the application will be required to use for
interactions with other components of the system. The
framework, through various service compositions affords
the user with the flexibility to select the approach, resources,
and environment in which they want to conduct testing. In
addition to being flexible and extensible, the testing
framework also scales well since its resources requirements
can be distributed across multiple discrete systems. Finally
the framework supports rapid test suite development since
they can be built independently and simultaneously.
Stakeholders, such as certification bodies or vendors testing
in-house, can build the testing system that meets their
requirements.

2 Example Healthcare Workflow
 We describe an example workflow (also referred to as
a use case) that demonstrates typical transactions among
disparate healthcare information technology systems. We
first give an overview of the applications involved in the
example, including the functional role played by the
application. An application is generally made up of a single
actor, but may include multiple actors. The Integrating the
Healthcare Enterprise (IHE) organization defines an actor
based on the functional components supported by the actor

[3]. IHE publishes integration profiles that describe many
healthcare workflows. In our use case example an actor can
be equated with a healthcare application such as the patient
identifier cross-referencing manager (PIX Manager). Note
that a PIX Manager actor may exist within a hospital’s
healthcare information technology system. We describe a
possible workflow of cooperating patient identifier and
document management systems. The scenario is supported
by the IHE Information Technology Infrastructure
Integration Profile [4]. The data exchange standards
involved in this use case include HL7 messaging and
clinical documents (CDA).

Our example examines a healthcare system made up of a
Patient Identifier Cross-referencing (PIX) Domain and a
Cross-Enterprise Document Sharing (XDS) system. We
examine a typical PIX domain made up of three disparate
actors, a PIX Source, a PIX Manager, and a PIX Consumer.
A PIX Source is used for adding and modifying patient
demographic data; a PIX Manager is used for managing and
cross referencing patient identifiers from different domains;
and a PIX Consumer is used for querying a PIX Manager for
patient identifiers and data. All communications among the
actors is accomplished through the exchange of HL7
messages. An XDS system supports registering and
retrieving documents across enterprises but within an
administrative domain. XDS exchanges patient
identification information via HL7 messages and exchanges
XML based documents associated with patients in the form
of a CDA.

Healthcare systems can be divided into various
administrative domains, each responsible for managing a set
of patient information. Patients, though, may require
services provided in differing healthcare domains. When
this occurs, records for the same patient may exist in more
than one domain. It is clearly desirable to be able to
recognize when multiple records exist belonging to the same
patient. IHE has addressed this problem by delegating the
responsibility for determining when two patient identifiers
belong to the same patient, and hence the records belonging
to the same patient, to the IHE PIX Manager actor. Our use
case examines some of the data points the PIX Manager
must consider; for example when it is determined that two
patient’s match, how will the information be propagated
throughout the healthcare environment. This is important
since a single patient identifier is typically used to retrieve
documents about a patient from a repository.

The workflow illustrates the integration not only among
applications within a healthcare information technology
system, but also between systems. This example assumes
that appropriate information sharing policy agreements exist
and that appropriate security and privacy protocols are used.
Refer to Figure 1, Example Workflow.

1. Hospital A has a patient administration system (ADT)
that includes a PIX Source actor. When a new patient, John
Doe, is registered through the system, the PIX Source
generates a patient identifier (HA5882). Using the identifier
and demographic data, an HL7 message (Patient Identify
Feed—PIF) is constructed and sent to the PIX Manager.
The PIX Manager is part of Hospital A’s information
technology system.

2. The XDS system, also part of Hospital A’s information
technology system, is notified that a new patient has been
registered. The same HL7 PIF message is sent to the XDS
Registry actor. The XDS Registry now knows about patient
John Doe.

3. A clinical document (e.g., a patient summary document; a
CCD) following the CDA for patient John Doe is created by
Hospital A. The summary document is registered with the
XDS system using a Provide and Register message.
Hospital A’s Document Source actor sends the document to
the XDS Repository actor.

4. The same John Doe visits Clinic Z which maintains its
own patient registration system (ADT) that has a PIX
Source actor. It too now registers a patient, John Doe, and
assigns the patient an identifier, CZ-7441. The patient
identifier along with other patient demographic data is used
to construct a message PIF. The PIF is then sent to Hospital
A’s PIX Manager. Clinic Z relies on Hospital A’s patient
identification cross-referencing management system.

5. The Pix Manager on receiving the message from Clinic Z
for John Doe applies its cross referencing algorithm to
compare the message data with the patient information it is
already maintaining for John Doe. After applying the
algorithm, it determines that the John Doe in its database
and the John Doe being registered for Clinic Z is the same
patient. The PIX Manager links the patient identifiers for
John Doe.

6. Clinic Z collects and produces medical information about
John Doe during his visit and creates two documents. The
documents include a patient summary (CCD) and a lab
report document. Clinic Z relies on Hospital A’s patient
management and document repository systems. In order for
Clinic Z to store the document in Hosipital A’s repository it
must obtain the patient identifier (called the affinity domain
identifier) used in the XDS Registry. Therefore Clinic Z
must Query the PIX Manager.

7. Clinic Z submits the documents to the XDS Repository
using a Provide and Register message.

8. John Doe now visits Medical Center B for a medical
procedure. Medical Center B has a patient registration
system (ADT) that includes a PIX Source actor and a PIF
message is sent to the PIX Manager. John Doe’s patient

identifier at Medical Center B is MCB3319. As before, the
PIX Manager determines based on demographics data that
this is the same John Doe. The patient identifiers are linked
in the PIX Manager.

9. A doctor at Medical Center B wants to obtain pertinent
medical documents for patient John Doe. Medical Center B
relies on Hospital A’s patient management and document
repository systems. However, before the doctor can retrieve
the documents from the repository it must obtain the patient
identifier (called the affinity domain identifier) used in the
XDS Registry. Medical Center B now acting as a PIX
Consumer queries the PIX Manager using its patient
identifier for John Doe (MCB3319) and requests the patient
identifier in Hospital’s A domain. An HL7 query message is
used to perform this task. The PIX Manager returns an HL7
response message containing the patient identifier
(HA5882).

Figure 1: Patient Identification and Document
Management Workflow

10. Medical Center B can now use the patient identifier
HA5882 to query the XDS Registry. The registry doesn't
return John Doe's clinical documents; it returns metadata
about the available documents, including the identifiers to
retrieve them. Note that the registry manages documents
created in Hospital A and Clinic Z.

11. The doctor at Medical Center B reviews the information
and can use the references to retrieve the desired CDA
documents from the XDS Document Repository.

3 Testing Requirements
 The workflow describes a number of applications
(actors) and the transactions among them; the integration is

not only among applications within a healthcare information
technology system, but also between systems. Successful
completion of the above use case requires that each
application involved in the process correctly performs
certain tasks that can be measured based on the application's
externally observable behavior. The requirements on the
application's external behavior can be formulated as a set of
conformance and interoperability testing requirements. They
include message validation, document validation, actor
behavior validation, and protocol conformance. Each
system involved in a message exchange must send messages
that adhere to the message construction requirements
defined by the associated standard. Additionally, HL7
messages are further constrained and must also validate
against the corresponding message conformance profile [9].
Clinical documents must be created so as to conform to the
general rules defined by the CDA standard and the specific
rules for the document type being created. Actor behavior
conformance is an assessment of the actions taken by the
actor in response to a stimulus. The behavior is assessed by
examining the cumulative responses of the actor. Protocol
conformance is an assessment of the protocol level
standards. Message exchanges among HL7 applications
must conform to the message exchange rules defined by the
HL7 Minimum Lower-Layer Protocol (MLLP). CDA
documents must be constructed and sent in accordance with
the document exchange rules defined by ebXML SOAP or
SOAP with attachments. CDA documents must be retrieved
in accordance with the HTTP document retrieval rules.
Although no explicit interoperability requirements have
been defined, successful completion of all of the steps in the
workflow provides a prima facie demonstration of
interoperability among the systems.

4 Architecture
In the previous section we described a moderately

complex scenario. For the scenario to be carried out to its
completion, each actor/application will have to take the
correct actions in carrying out each step of the scenario.
Clearly interoperability among the applications will be
necessary if the scenario is to be carried out to completion,
but the likelihood of applications interoperating will be
increased if each application behaves correctly, i.e.,
correctly implements the standard and behaves in
compliance with any constraints that have been imposed on
the application. Thus, an architecture designed to facilitate
the measurement of an application's compliance, while
providing the infrastructure that enables the necessary
interchanges to take place when done correctly, would
provide the necessary framework for testing. Since
measurements will be required that evaluate different
aspects of an application's behavior against different
standards, a modular architecture with independently
functioning components will also be necessary; these
characteristics are also necessary to ensure scalability.

The essential idea behind a Service Oriented Architecture
(SOA) is that functionality is aggregated into groups for the
purpose of providing a collection of well defined services.
These services are made available to users over a network,
allowing the services to be combined in ways that best suit
the user's development requirements. This model provides
an architecture for development that scales well and is both
modular and flexible.

The requirements we identified above imply that an
architectural model to support our testing requirements will
have to include the following services: a message validation
service, a document validation service, and a service for
measuring conformance to the required protocols. The
provision of message and document validation services is
fairly straightforward. For both, a web service interface is
defined. For message validation, functionality is defined
that allows the user to deliver messages through the
interface to an application for evaluating message
conformance. The result of the evaluation is then returned
to the user through the interface. The provision of a
document validation service is accomplished in a similar
manner; providing a service for measuring conformance
isn't as straightforward.

Figure 2: Design to Test PIX Manager Application

Measuring conformance means evaluating an application's
externally observable behavior for compliance to a set of
rules that are determined by a standard and possibly other
constraints. HL7 defines a protocol for message exchanges
among applications, so adherence to the protocol rules must
be evaluated. This requirement disallows use of the simple
model where a user delivers the necessary data to an
application through a well defined web interface. To
address this problem, applications are added for the specific
purpose of testing support. The testing applications are
called test agents because they are designed to simulate the
actions of the application that they will be used to test. The
applications being tested are referred to as Systems-Under-
Test (SUTs).

For the use case described, many testing approaches exist
varying in breath and depth. At one end of the spectrum we
may desire testing to support simply the validation of a
CDA document only; at the other end we may seek a system
that is capable of all-at-once testing; examining each
transaction and aspect in the use case for every application
involved (e.g., IHE Connectathon) [6]. A middle ground
testing approach might be a vendor wanting to test their
application in isolation. For the purpose of illustration, we
consider the latter for introducing and describing a proposed
test system design. We first provide this concrete example
and then extrapolate the concepts to a generalized approach.

Figure 2 illustrates a system to test a PIX Manager actor—
SUT. Following the concepts of an SOA the system consists
of a set of services and a composition of the services. The
services include message generation, message validation,
and test agents; in this case a PIX Source and a PIX
Consumer. The composition of the services is implemented
as a web browser client controlling an underlying test
harness. We have built a prototype system described in
Figure 2 [5].

This system provides the capabilities to evaluate the PIX
Manager's behavior. The evaluation capability is provided
as well defined services that can be incorporated into the
SOA model. For test agents we do this by defining a web
service for accessing and controlling the actions of the test
agent. In the case we our examining, the web service
simply needs to support a method for deploying the test
agent. Once the test agent is deployed, it can be directed to
perform a given action. For example, for the first step in our
use case the PIX Source test agent can be directed to send a
registration message to the PIX Manager SUT. The PIX
Manager SUT, in accordance with its specification will
return an acknowledge message. We can evaluate that
message using the HL7 message validation web service. Of
course, the response that we’re looking for depends on the
message content we sent; this is indicated by the test script.

For each step along the way the test harness directs the test
agents to interact with the SUT and can use the validation
services to evaluate responses. Message generation services
can be utilized to create valid messages the test agents sends
to the PIX Manager SUT. The test script indicates the
content of the data given to the generation service. Later in
the workflow, testing of the PIX Manager will employ a
PIX Consumer test agent. As described, the PIX Consumer
queries the PIX Manager with one patient identifier
requesting a patient identifier for the same patient in another
domain. The test harness will create the query message,
with assistance from the generation service. It then directs
the PIX Consumer test agent to send the query message to
the PIX Manager. The PIX Manager is expected to send a
response message back to the PIX Consumer. The test
harness now can request the message from the PIX
Consumer so that it can be evaluated. The test harness has

context of the use case which aids in evaluation assertions
(i.e., it will know exactly the patient identifier that should be
returned). The results of the evaluations can be displayed to
the user via the browser interface. Following our method for
evaluating the PIX Manager SUT, it is relatively clear that
the approach can be used to evaluate the other actors
described in the workflow. It should also be noted that the
selection of the web browser client and test harness model
for controlling the test is just one choice of many possible
service compositions.

By using the SOA approach for providing testing services, it
is possible to test each component that must be tested to
complete the use case example outlined above. Figure 3
shows an architecture that can be used for solving general
problems of this type.

Figure 3: Testing Framework Functional Model

The architecture is composed of three types of high-level
components; the services, the test harness (services
composition), and network functions. Additionally a test
management system may be employed but it is not central to
the test architecture—it is likely a separate system. Services
provide the testing functionality. In an SOA design, services
are autonomous and hide implementation details. It is
apparent that for this model to be used effectively in
conducting testing, it will be necessary to facilitate the
interactions between the user and the supported testing
services. A test harness is necessary to orchestrate the
services to conduct a test. Many instantiation choices are
available—ranging from an ad hoc test driver to powerful
process execution languages. The framework employs a
network to route messages and may add logging and proxy
capabilities. Optionally a test management system can be
used to assign, manage, and track a set of tests. A
certification body may utilize such a system in their process.
Another important aspect of the design is the development
of interfaces that connect these components. For example, a
common interface between the services composition and the
test agents is specified. The design supports additional test

agents seamlessly through the common interface. Below we
further elaborate on the architecture components.

4.1 Services
Test Agents: Test agents are implementation of actors (or
applications) that support the functionality of the underlying
specification of the actor. The test agent does not have to be
a complete implementation; it needs to only support the
functionality of the actor to support testing of applications.
However, over time a test agent can become a reference
implementation. Potentially hundreds of actors will exist in
this framework—although for any one given test, typically
five or fewer will be deployed. The distributed nature of the
SOA allows for test agents to be built independently and
maintained at different locations.

Generation Services: Generation services support the
creation of test material such as messages and documents.
For example, generation of HL7 message instances can be
generated [5, 10, 11].

Validation Services: A validation service provides an
evaluation function for a given protocol. For example,
validation of an HL7 message instance against an HL7
conformance profile [5].

Registry/Repository Services: A repository contains testing
artifacts needed in testing. The registry provides
mechanisms to organize, maintain, and retrieve the artifacts.
The Registry/Repository maintains the current
specifications, schematron rules, profiles, test messages,
vocabulary, etc. to support testing.

Additional Services: The framework also includes other
services that provide various testing functionality.
Additional services include logging, log analyzers, security,
reporting, and more. We will elaborate further on these
services in companion publications.

4.2 Test Harness
An important aspect of the SOA is the composition of the
services into executable process. Services are assembled in a
particular order and follow a set of rules to carry-out a
business process—a test scenario in our example. Arbitrary
composition of services supports broad range of test
requirements in a straightforward and flexible manner.
Additionally the complexity of the services composition is at
the discretion of the user of the services. Modifications to
test execution are handled easily in this model—allowing for
quick adaptation to changing requirements in test scenarios.

The test harness orchestrates services to produce an
executable implementation of the testing workflow. A test
management control system may provide input (test scripts)
that directs the actions of the test harness. The test harness

carries out the instructions by employing the services. A test
analyzer may be used to assist the test harness.
There are many choices available for implementing the test
harness. These may include powerful process execution
languages such as BPEL (Business Process Execution
Language) [8], a web browser client with scripting language
support, or a high-level programming language such as Java.
The framework supports any number of test harness
implementations. Operationally, multiple-independent
instances of test harness implementations can execute
simultaneously.

The choice of the test harness will depend on the needs of
the user. For example, an IHE connectathon [6] is an event
that tests interoperability among groups of applications. The
tests are composed of a choreographed sequence of steps;
BPEL may be an appropriate technology choice for this
testing need [7, 8]. BPEL is an XML-based scripting
technology for generating a visual representation and
driving a business process. It can orchestrate services to
produce an executable implementation of a testing process.
Another case is testing in isolation; a vendor may want to
beta test an application on-site. This testing can be
conducted over the Internet and driven simply by ad hoc
Java code. A more sophisticated user interface may employ
a browser-based client that can direct the test, either in a
well-defined test sequence or in an ad hoc manner.

Services may be aggregated. For example, an
implementation of a workflow may become a service itself.
Services may use other services—test agents may choose to
invoke a validation service directly. Other utilities for the
support of test harness instances include templates—for
example a web browser client. This will allow for uniform
creation of web sites for a particular set of tests; for example
IHE pre-connectathon tests. This could be applied at the
organization level or at a testing event level.

4.3 Network Functions
Network functions include routing messages and documents
between the test agents and SUT. Additional capabilities
may include logging and a proxy or a set of proxies that can
be used to further facilitate the capturing and analysis of test
data. We are currently exploring where logging and proxy
capabilities fit best in the architecture—either as services or
as network functions, or possibly both depending on the
testing requirements. The use of a proxy or a related NIST
design concept, an evaluation agent, is necessary when
conducting interoperability testing—i.e., concurrently
testing a group of communicating SUTs. We are currently
exploring the design alternatives.

4.4 Test Management Systems
As mentioned, the test management system is not part of the
testing architecture but is an important ancillary system. The
management system is responsible for setting up test cases

and reporting and maintaining results. Auditing services can
also be included. Certification and testing bodies such as the
Certification Commission for Healthcare Information
Technology (CCHIT), Nationwide Health Information
Network (NHIN), and IHE will likely employ a test
management system.

5 Testing Framework
 It is clear that the architecture described is extensible and
flexible providing a framework that can support an
expansive set of testing requirements. The user is afforded
the flexibility to select the interface and environment in
which they want to conduct testing. It is extensible since
services can be added and the composition of services can
be built independently. Additionally the framework scales
well since the set of services are independent and services
composition and test execution can occur spatially.

The test framework supports rapid test suite development
which can be built independently and simultaneously.
Stakeholders, such as certification bodies or vendors testing
in-house, can build the testing system that meets their
requirements. Pre-built public domain test harnesses will be
made available; these provide “off-the-shelf” testing tools for
well-known test scenarios. For example, IHE pre-
connectathon PIX actor tests; tests that must completed
before vendors attend the connectathon event. Templates
will also be provided to accelerate the development of third
party implementations of test harnesses. A template will
provide the infrastructure and an example so that similar test
harnesses can be built. For example, a web browser client
template test harness will be provided to support HL7 V2
actor pre-connectathon tests. The template will have the
same look-and-feel interface; a library of tests can be built
for each of the many IHE domains.

To elaborate further, a browser-based testing client template
can be built for all IHE connectathon PIX tests, or CCHIT
lab testing, or IHE patient care devices (PCD) pre-
connectathon testing. Each group could develop its own test
harness. However it would be best if they use a common
look and feel, therefore templates should be used.

6 Conclusion
 We have presented a testing architecture based on the
SOA model that allows the user to employ and combine
testing services in arbitrary ways. This approach gives the
user the capability to formulate problem solutions based on
the most effective use of the available services. We have
examined in some detail a specific use case. By developing
an evaluation strategy based on the SOA model, we were
able to demonstrate how the systems and applications
employed in the use case example could be effectively
evaluated. Furthermore, we have left open the possibility of
combining these services in different ways to formulate

other solutions to the problem. In our future work, we plan
to further investigate the effectiveness of the solution
proposed in this paper and to explore other approaches,
possibly expanding the set of services supported to include
new services that have not yet been considered in our
examination thus far of the problem of evaluating multiple,
interconnected disparate applications.

7 References

[1] Health Level 7 (HL7) Standard Version 2.5,
ANSI/HL7 V2.5-2003, June 26, 2003, http://www.hl7.org.

[2] Digital Imaging and Communication in Medicine
(DICOM); http://medical.nema.org.

[3] Integrating the Healthcare Enterprise (IHE);
http://www.ihe.net.

[4] IHE IT Infrastructure (ITI) Technical Framework
Integration Profile, December 12, 2008.

[5] NIST HL7 V2 Testing Tools;
http://hl7v2tools.nist.gov

[6] IHE Connectathon; http://www.ihe.net/Connectathon/

[7] Gazelle Testing Framework Project. Gazelle is a work-
in-progress system targeted for the IHE connectathon
testing. Managed by Steve Moore (Washington University
of St. Louis-MIR) and Eric Poiseau (INRIA). MIR, INRIA,
NIST and others are developing the system in a joint effort.

[8] BPEL http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html

[9] Towards Interoperable Healthcare Information
Systems: The HL7 Conformance Profile Approach. R.
Snelick, P. Rontey, L. Gebase, L. Carnahan. Enterprise
Interoperability II: New Challenges and Approaches.
Springer-Verlag, London Limited 2007 pp. 659-670.

[10] “Dynamically Generating Conformance Tests for
Messaging Systems” R. Snelick, L. Gebase, S. Henrard.
2006 Software Engineering Research and Practice
(SERP06), WORLDCOMP’06 June 26-29, 2006, Las
Vegas, NV.

[11] “Conformance Testing and Interoperability: A Case
Study in Healthcare Data Exchange” L. Gebase, R. Snelick,
M. Skall. 2008 Software Engineering Research and Practice
(SERP08), WORLDCOMP’08 July, 2008, Las Vegas, NV.

[12] The Clinical Document Architecture (CDA),
ANSI/HL7 May 2005; http://www.hl7.org.

