

Nano- and Microtechnology Development for Advanced Scientific Measurements throughout the Solar System

Adrian Southard, Yun Zheng, Stephanie A. Getty

NASA Goddard Space Flight Center

September 13, 2010

Goddard Space Flight Center

NASA Centers (10):

Nano and Microfabrication Facilities

SWCNT and MWCNT growth

Electron Beam Lithography

Low Pressure Chemical Vapor Deposition September 13, 2010

Physical Vapor Deposition Systems

Wet Chemistry Benches

Front/Back-Side Mask Aligners

Reactive Ion Etch Systems A. Southard/NASA GSFC Scanning Electron Microscopy

September 13, 2010

A. Southard/NASA GSFC

Mass Spectrometry

- Well established technique for in situ chemical analysis in planetary science missions
- Provides mass-to-charge ratio for every sample constituent - non-specific
- Can be interfaced to complementary analytical techniques for thorough sample characterization, e.g.
 - Pyrolysis (soil)
 - Thermally evolved volatiles
 - Gas chromatography (atmosphere, pyrolysis products) Small, robust molecules
 - Liquid chromatography (soil extract, liquid) Complex molecules

September 13, 2010

Planetary Mass Spec: State of the Art

Gas Chromatograph Quadrupole Mass Spectrometer

- part of Huygens lander
- Cassini mission to Saturn and moons
- Quadrupole mass filter uses AC fields to select transmission at a single mass
- Mass spectrum is acquired by scanning through operating range
- Thermionic filaments are used for electron impact ionization of gas

Planetary Mass Spec: State of the Art

Pyrolysis Gas Chromatograph Quadrupole Mass Spectrometer

- part of Sample Analysis at Mars Instrument Suite
- Mars Science Laboratory rover mission
- QMS similar to Huygens
 m ~ 1.3 kg, P ~14.5 W
- Thermionic filaments are used to ionize pyrolysis products or atmospheric gases

In Development: Miniaturized Time-of-Flight Mass Spectrometer

- Time-of-Flight Mass Spectrometer
 - Field emission Electron Gun for electron impact ionization
 - Ions are accelerated to a uniform kinetic energy in the Ion Lens Assembly
 - Heavier masses travel more slowly than light ones in the Reflectron analyzer
 - Arrival of isomass ion packets is registered as a function of time at the Microchannel Plate Detector

Reflectron

Ionization for Time-of-Flight Mass Spectrometer

September 13, 2010

A. Southard/NASA GSFC

Previous Work: Field Emission in CNTs

 SWCNT, MWCNT, and CNF - Various growth techniques

MWCNTs: P. G. Collins and A. Zettl (1996)

SWCNTs: J.-M. Bonard, et al. (1998)

Selected References

- A. G. Rinzler et al., Science 269, 1550 (1995).
- W. A. de Heer, A. Chatelain, D. Ugarte, Science 270, 1179 (1995).
- P. G. Collins and A. Zettl, Appl. Phys. Lett. 69, 1969 (1996).
- Q. H. Wang et al., Appl. Phys. Lett. 70, 3308 (1997).
- J.-M. Bonard, et al., Appl. Phys. Lett. 73, 918 (1998).
- W. Zhu et al., Appl. Phys. Lett. 75, 873 (1999).
- S. Fan et al., Science 283, 512 (1999).
- X. Xu and G. R. Brandes, Appl. Phys. Lett. 74, 2549 (1999).
- N. de Jonge and J.-M. Bonard, Phil. Trans. R. Soc. London A 362, 2239 (2004).
- E. Minoux et al., Nano Lett. 5, 2135 (2005).

September 13, 2010

A. Southard/NASA GSFC

CNFs: E. Minoux et al. (2005)

Our approach:

Previous Work: Field Emission in CNTs

Fowler-Nordheim Tunneling

 Field enhancement factor
 Reported values 400-1200
 (for MWCNTs)

 K_2

<u></u>*B*Φ^{-,-}

$$J = K_1 E^2 \exp\left(-\frac{K_2}{E}\right)$$

Carbon Nanotube Electron Gun

September 13, 2010

A. Southard/NASA GSFC

To TOF-MS

Cathode-grid integration Electrode #4 Electrode #2 Electrode #1 Too μm

CNTs

September 13, 2010

CNT E-gun for Mini Mass Spec

- Low operating voltages achieved for efficient gas ionization
- Fowler-Nordheim
 behavior confirmed
 - Field enhancement factor ~ 900
- Microamps of transmitted current in triode mode
- Persists for several hundred hours in high vacuum

CNT E-gun for Mini Mass Spec

MEMS Integration of CNT e-gun for clean packaging

- Long lifetime
- Reduced current noise

September 13, 2010

A. Southard/NASA GSFC

TOF-MS Integrated Testing

September 13, 2010

Lens Optimization

Integrated TOF-MS Performance

Future Steps

- Opportunities for TOF performance improvement:
 - Increased sensitivity
 - Electron current –
 - Better transmission through revised geometry
 - Optimized emitter geometry
 - Pulsed e-gun
 - Ion transmission -
 - Improve field uniformity to increase ion yield
 - Increased mass resolution
 - Reduce ionization volume
 - Minimize rise time on pulse electronics
 - Improved emitter lifetime

Liquid Chromatography-Mass Spectrometry

Miniaturized liquid chromatograph

Successful lab techniques → planetary surface

- Nanoelectronic charge displacement detector at output
- Chemicals elute at different rates based on interactions with LC column
- Data = retention time spectrum

September 13, 2010

A. Southard/NASA GSFC

Chemical Separation by Liquid Chromatography

Laser-induced Fluorescence

Retention Time

Design of Micro-LC column

- Packing of microbeads to form stationary phase
- Longer channels \rightarrow can better distinguish retention times, but higher pressure requirements
- Designed micro channels with varying lengths, 40 mm-100 mm using wafer scale processing.

September 13, 2010

ChemFET as charge displacement detector

Advantages:

- Fully electronic - Microwatts
- Non-specific
 - ChemFET can detect any organic species...
 - ... but requires careful calibration

Nanoscale

- Integratable with Si-based technologies
 - -Can enable new on-chip functionality (measure pH, flow rate, buffer concentration)

A. Southard/NASA GSFC

September 13, 2010

–Redundancy can reduce risk

Electronic Means of Chem/Bio Detection

Requirements

- Sensitive/Selective
- Low Power and CompactElectronically Addressable
- Autonomously Operable
- ➢Robust and Reliable

Parameter	SiNW
Metallic or Semiconducting	Semiconducting
Sensor-DNA probe	Direct surface attachment
Channel orientation	Aligned on array
Growth temperature	450°C

Silicon Nanowires

Nanoscale diameter
Single-NW limit attainable

Scalable for manufacturability and redundancy

SiNW ChemFET

- SiNW fabrication wafer-scale manufacturability demonstrated
 - Wafer-scale pillar growth for control of nanowire placement
 - Near 100% NW device yield
 - Excellent device uniformity

26

Electrospray ionization

http://www.magnet.fsu.edu/education/tutorials/tools/ionization_esi.html

Addition of a lens to the ESI nozzle

Design features:

- Can be tested with a commercial mass spectrometer and is compatible with microLC and TOF MS.
- Utilizes micro-nozzle to enhance atomization of jet.
- Electrodes facilitate formation of an ion beam
- Achieves high electric field for efficient charging of analyte without using high voltages

Future Work

- Explore SiNW surface functionalization
 - Specificity
 - Multiplexing
- Liquid sample extraction
 - Extraction from solid samples
 - Concentration of analyte
- Miniaturized liquid sample handling components e.g. valves, pumps
- Higher aspect ratio nozzles

Highly interdisciplinary work

End-to-end systems development

- But this is just one facet of technology development at NASA...
 - Earth-observing instruments
 - Astronomical instruments
 - Spacecraft structures
 - Propulsion
 - Human spaceflight

Acknowledgements

GSFC Astrochemistry Lab

- Jason Dworkin
- •Mildred Martin

GSFC Atmospheric Experiments Lab

- •Paul Mahaffy
- Daniel Glavin
- •Jennifer Eigenbrode
- •William Brinckerhoff

GSFC Planetary Magnetospheres Lab

- •Bill Farrell
- •Telana Jackson
- •Haydee Aguilar

CUA/Astrochemistry Lab

- Gunther Kletetschka
- Tomoko Adachi
- •Vilem Mikula

GSFC Materials Engineering Branch

- Todd King
- Dan Stewart
- Dewey Dove
- Bruno Munoz
- Rachael Bis
- Jonathon Brame (Summer Intern)
- Nathan Woods (Summer Intern)

GSFC Detector Systems Branch

- Yun Zheng
- Manuel Balvin
- Carolina Gallardo
- David Franz
- Harold Isenberg
- Carl Kotecki
- Mary Li
- Nick Costen
- Larry Hess
- Patrick Roman

<u>UMCP</u>

- Mel Gomez
- Konrad Aschenbach
 <u>NCI ATC</u>
- Javed Khan
- Belhu Metaferia
- Jun Wei
- Young Song

<u>NIH/NCI</u>

- Piotr Grodzinski
- Eric Hale
- Jerry Lee
- Nicholas Panaro

This work was supported by the NCI NanoBioSensor Initiative and the GSFC Internal Research and Development Program

September 13, 2010

A. Southard/NASA GSFC

Please contact Stephanie Getty for more information or opportunities to collaborate.

Stephanie Getty Atmospheric Experiments Laboratory Materials Engineering Branch Stephanie.A.Getty@nasa.gov 301-286-9760

Thank you for your attention.