Critical Issues for Interconnects: Mechanical Strength and Adhesion based on Nanoindentation

Indira Adhihetty

Joe Vella Alex Volinsky

Acknowledgements: Bob Carpenter, Wentao Qin, Ginger Edwards, Bruce Xie, Anotoli Korkin, PMCL, MOS13 and APRDL low k Teams

Outline

- I. Why nano-Indentation?
- II. Overview of OSG Structure and Properties
- III. NanoIndentation Metrology of Low-k Materials
 - A. Utility of Hardness and Modulus
 - B. Mechanical Properties Give Insight to Porosity-Percolation Theory
- IV. Adhesion and Fracture Toughness Measurements
 - A. Description of Methodology and Limitations
 - B. NanoIndentation induced fracture calculations
- V. Conclusions

Why Nano-Indentation?

1999 ITRS – Substantial change in Dielectric materials
Used in ICs

New Materials
(Reduce feature sizes)
(New Device structures)

Development & Integration of low k materials

Compatible with Mechanical Performance Requirements in Assembly and Packaging

Appropriate off-line Characterization

Correlate with Physical, Electrical measurement methods

Development & Integration of low k materials

Dielectric Potential Solutions

Metrology Challenges

- 1. Mechanical Strength
 - Modulus
 - Hardness
 - Fracture
- 2. Interfacial Adhesion
- 3. Pore size distribution

Organo-silicate Glass (OSG) Low-k Integration at Motorola

- Dielectric properties of fully dense silica (k~4.1) can be extended by
 - reducing the density
 - increasing the porosity,
 - utilizing the dielectric constant of free space (k=1) and organic inclusions.
- Electrical properties provide a smooth transition from traditional silica to next generation IC's
- Mechanical reliability properties require extensive study in thin film form. Often these films cannot be grown to thicknesses greater than 3µm.
- Nanoindentation offers unique capabilities in classifying these types of materials.

OSG Pore Distribution

- Pore is created by the introduction of CHx group that retards Si-O bonding network.
- Small pore size (1nm) therefore is largely occupied by the dangling methyl group

Mechanical Property Measurements

Load Measurement

Current is applied through a coil in a magnetic field generating a force

Displacement Measurement

Movement of the Capacitor plate

$$H = \frac{P}{A}$$

$$E_r = \frac{\sqrt{\pi}}{2} \frac{S}{\sqrt{A}}$$

Low-K Film Metrology – New Tool Installation

- X-Ray Photoelectron Spectroscopy shows that 7 OSG of varying process parameters are ostensibly chemically identical.
- TEM shows amorphous and possibly porous structure however no discernible discrepancies.

NanoIndentation results of OSG series

- Significant mechanical properties difference observed among the two tools
- Load/displacement profile shows entirely elastic contact to depths of 120nm

Does Percolation Theory Hold Up on the Nanoscale?

Percolation Theory

$$\frac{E^*}{E_0} = \left(1 - \frac{p^*}{p_c}\right)^f$$

	*	Closed Pore Porosity (%)
Modulus Data Calc	59.7	76.8
Hardness Data Calc	58.9	70.2

Gibson and Ashby Predictions

Open Cell Pores

 $\frac{E^*}{E_0} = \left(\frac{\rho^*}{\rho_0}\right)^2$

Closed Cell Pores

$$\frac{E^*}{E_0} = \phi^2 \left(\frac{\rho^*}{\rho_0}\right)^2 + (1 - \phi) \left(\frac{\rho^*}{\rho_0}\right)$$

Hardness

Modulus

$$\frac{H^*}{H_0} = .23 \left(\frac{\rho^*}{\rho_0}\right)^{3/2} \left(1 + \left(\frac{\rho^*}{\rho_0}\right)^{1/2}\right)$$

$$\frac{H^*}{H_0} = .23 \left(\frac{\rho^*}{\rho_0}\right)^{\frac{3}{2}} \left(1 + \left(\frac{\rho^*}{\rho_0}\right)^{\frac{1}{2}}\right) \qquad \frac{H^*}{H_0} = .3 \left(\phi \frac{\rho^*}{\rho_0}\right)^{\frac{3}{2}} + .4(1 - \phi)\left(\frac{\rho^*}{\rho_0}\right)$$

Fracture **Toughness**

$$\frac{K_{lc}^*}{K_{lc0}} = .65 \left(\frac{\rho^*}{\rho_0}\right)^{\frac{3}{2}}$$

$$\frac{K_{lc}^{*}}{K_{lc0}} = \left(\frac{\rho^{*}}{\rho_{0}}\right)^{3/2}$$

E. O. Shaffer II, K. E. Howard, M. E. Mills, P. H. Townshend, Mat Res. Soc. Symp. Proc., Vol. 612, (2000)

L. Gibson and M. Ashby, Cellular Solids, 2nd Ed. (1997).

Spectroscopic Ellipsometry Shows Difference in Density

Evaluation of Porosity

Porosity formation process in a low- k dielectric thin film

TEM cross section of a low- k dielectric film

Indirect measurement of Porosity through Modulus

	Modulus	Percolation
	(GPa)	Porosity (%)
Tool 1 OSG	11.7	35.1
Tool 2 OSG-1	7.60	41.4
Tool 2 OSG-2	7.49	41.6
Tool 2 OSG-3	7.24	42.1
Tool 2 OSG-4	6.90	42.8
Tool 2 OSG-5	7.92	40.9
Tool 2 OSG-6	8.32	40.1
Silica	72.00	0.0

- Pores are created by methyl inclusion in a molecular scale.
- NI is able to determine the porus and dielectric nature of the films.

Adhesion Measurements

Indenter Tip

Delamination Blister

- Thin film delamination is induced by depositing a highly compressive superlayer capable of storing elastic energy
- Interfacial fracture is initiated by NanoIndentation at loads (25-700mN) and further driven by superlayer
- Delamination blister size is used to calculate Practical Work of Adhesion (J/m²) (Smaller blister = Better adhesion)
- Material and residual stress properties of superlayer and underlying film must be known for calculation

NanoIndent Adhesion Test (Delamination blister)

Low-k Test Structures

CVD Organic Glass Low-k Adhesion

10 KÅ TiW superlayer for adhesion measurements
LowK 500Å, 4KÅ, 10KÅ
Barrier Layer FTEOS 4.5KÅ
Si Substrate

10 KÅ TiW superlayer for adhesion measurements		
Copper 9KÅ		
Barrier Laver LowK 10KÅ		
FTEOS 4.5KÅ		
Si Substrate		

Fracture toughness

Low N LowK 10KÅ, 20KÅ, 25KÅ

FTEOS 4.5K

Si Substrate

 $E \sim 10 \; GPa$

 $H \sim 1.5 \text{ GPa}$

4 kÅ Low-k

Fracture Toughness Measurement

Lawn, B.R., Evans, A.G., and Marshall, D.B. (1980) 'Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System', J. Amer. Cer. Soc. 63, 574-581.

Pharr, G.M., Harding, D.S., and Oliver, W.C., Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, 449-461. M Nastasi et al. (eds.), Kluwer, Netherlands, 1993.

digital dna

Cube Corner Indents

Silica: $K_c \sim 0.5 \text{ MPa} \cdot \text{m}^{1/2}$ vs. literature: $K_c \sim 0.75 \text{ MPa} \cdot \text{m}^{1/2}$

1 um LowK

2 um LowK

 $K_c \sim 0.01 \text{--} 0.05 \text{ MPa} \cdot \text{m}^{1/2}$

Linear relationship for P_{max} vs. $c^{3/2}$

Low-k Fracture Toughness

Si/20KÅ LowK Cracking in SEM

Summary

Nano-Indentation was able to successfully address some of the metrology challenges in development and integration of low k materials

Technique is also capable of identifying adhesion issues and provide selection for optimum process conditions

Currently investigating the compatibility of low k materials during assembly and packaging using Nano-Indentation

