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Consider two trends in cancer therapy:

* Targeted alpha therapy

* Theranostics
(Therapy + Diagnostics = Theranostics)



Alphas have short range
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Targeted alpha therapy
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Theranostics means precision medicine NIST

Imaging nuclide and

/ . Radioactive Drug therapeutic nuclide
® delivered with same
\}0 targeting system for:
W\ * Biodistribution

* Dose planning
* Dosimetry

Tumour Receptor

Tumour Cell

https://wWww.genesiscare.com/au/treatment/cancer/theranostics/
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The becquerel in nuclear medicine

Precision measurements of activity are the foundation for:

* Reliable administration of patient dosages —
B q * Quantitative molecular imaging
Decays per second * Personalized dosimetry IR

(of a radionuclide)

e Multicenter trials
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Zimmerman et al., Z. Med. Phys. 27 (2017) 98. https://www.snmmi.org/NewsPublications/NewsDetail.aspx?ItemNumber=29483



NST

Medically important alpha emitters




(Some) Medically important alpha emitters NIST




Recently standardized alpha-emitters

Algeta approached NIST in 2005, at the direction of FDA, to

develop measurement standards for 222RaCl,.
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With the success of this “first-in-class” alpha-therapeutic, T

we have seen increased demand for activity standards for
other alpha-emitters with therapeutic potential. P P -

Bayer works with NIST to maintain traceability and —
shipments of Xofigo* to new sites include a NIST-

traceable calibration source
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Liguid-scintillation based primary methods NIST

: : Energy is delivered Fluor molecules relax via
T T Radionuclide to the solvent photon emission, with the
decays, emitting molecule and number of photons being
- . alpha or beta transferred to the proportional to the energy
particle fluor of the beta particle
OB — o
Some quenching Some quenching Color quenching
mechanisms mechanisms and scattering
prevent beta inhibit energy inhibit PMT
particle energy transfer to fluor detection of
from exciting molecules optical photons

solvent molecules



Measurement challenges

e=1
So, what’s the Challenges? Really?
stz eeel  Decay chains

* Progeny include beta-emitters (e < 1)

* Pre-equilibrium measurements

* Impurities
 Breakthrough
 Co-produced isotopes
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?24Ra decays by four a-emissions
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Following Bateman (1908), concentrations
of isotopes in a decay chain are calculable
from initial concentrations and decay
constants (A)

dN,
ar - M

dN; _

dr Ai1Ni_1 —4;N; (i =2,n)



***Ra reaches equilibrium 6 d after t, |

@ 1.0
la 3.631(2) d 1 g
55.8(3) s 1.000178(1) < 05
@ 0.148(4)s  1.000178(1) 3
10.64(1)h  1.13928(15)
la 60.54(6) min  1.15263(15) 0.0
@ 300(2) ns 0.7385(11)
3.058(6) min  0.4144(20)
la Lo
@ Most y-rays in the g
decay chain come < os
<

from 212Pb and 20¢TI

Pre-equilibrium activity
assays are tricky

O~

——Ra-224
Rn-220

0 5 10 15 20
(t-ty,) / d
Rn-220
Po-216
—Pb-212
Bi-212
—Po-212
—TI-208
0 5 10 15 20
(t-tep) / d



TDCR is well-suited for alpha-emitters

Triple-to-double Coincidence
Ratio (TDCR) counting

* Liquid scintillation counting

e 3-detector system where double and
triple coincidence events are counted

Where TDCR = 1, N is
the decay rate.

TDCR = N;/N, = &l¢,

* Vary efficiency
* Ase;fep > 1, Ny (and N;) > N

* |In practice, a bit more complicated,
but we have good models!

TDCR



LS counting efficiencies are high

Triple-to-double Coincidence
Ratio (TDCR) counting

TDCR = N./N,, = & /¢,

The MICELLE2 model* uses a Monte Carlo
approach to calculate &; and g, for B~ decay
branches

*Kossert & Grau Carles, Appl. Radiat. Isotop. 68, 1482-1488 (2010).

§ 5.66 [

570 ¢

5.69
5.68
5.67 F

5.65
5.64
5.63

We get about

5.65 counts per
224Ra decay

5.62 - 1 1 1 1

0.985

0.990

TDCR

0.995

1.000



The model: assumptions & decay data
Daughter

e A I:)br B I:)br C Pbr
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B1 ' . .
> o * Assume 100 % detection for 2!?Bi+2'?Po
Pb 0, 135.93(7)%
10.64(1) h stable
ZDSTI E‘B

3.058(6) min Napoli et al., Appl. Radiat. Isotop. 155, 108933 (2020).




NIST 22Ra and %1°Pb activity standards
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Anticoincidence counting 212ph and
e . = E

Efficiency tracing

Radionuclide calibraror

T led to combined standard uncertainties < 0.20 %, Confirmatory primary measuréments were
made by LS efficiency tracing with tritium and 4xap(LS)-¢(Nal(T1)} anticoincidence counting, The standard is
Dose calibrator discussed in relation to current approaches to 212ppy activity calibration. In particular, potential biases encoun
Well counter tered when using inappropriate radionuclide calibrator sertings are discussed.

Activity calibration

u,=0.23%

u.=0.20 %



Measurement challenges

e=1
So, what’s the Challenges? Really?
stz eeel  Decay chains

* Progeny include beta-emitters (e < 1)

* Pre-equilibrium measurements

* Impurities
 Breakthrough
 Co-produced isotopes




Equilibration considerations

1.20
1.00 |
~080 ¢ —Rn-220 —
c(0.60 F Po-216
Som Pb-212 _|
< : Bi-212
WA —Po-212
0.00 : ' '
0 5 10 Separated from its parent,
time / d . .
— d 212pp (longest-lived progeny is
1.00 ?12Bi, T,;, = 60.55 min) reaches
Egig i equilibriumin ~ 12 h.
3—0:40 Bi-212
—Po0-212
U2 1208 Breakthrough of the parent
000 v v v
0 5 10 = leads to “supported” ?1?Pb



Measuring during ingrowth

Th-227 differs from previously considered decay chain
nuclides because we cannot wait for equilibrium.

TN I — —Th-227
! ! ssse Ra-223
e \\'hole Chain

......
.. - ®0e0qe
... -~- ......
L

“If there’s one thing that | detest, it is a fair fight.
But if | must, then | must...”
--Dark Helmet

[ Put ‘er there!

https://rickmoranisgifs.tumblr.com/post/65998603558




Preliminary LS efficiency calculations

—6-06

?
c

O~

Estimate 100 % LS counting efficiency for
alpha emissions

Calculate efficiencies for beta emissions
with MICELLE?2

3.342 One week after t,,, we get a
3.340 TDCR efficiency curve:
3.338
3.336
3.334
§ 3.332
= 3.330
W 3.328
3.326
3.324

0.994 0.995 0.996 0.997 0.998 0.999 1.000
TDCR




Time evolution of LS efficiencies

1.0000
0.9998
0.9996
EQS 0.9994
— 0.9992

For a particular figure-of-merit
(think global efficiency), the
measured TDCR decreases with time

(lower-efficiency beta-emitting progeny grow in)

0.9990 15.0
0.9988 13.0

0.9986
0.0 20.0

11.0
9.0
7.0
5.0
3.0

1.0
0.0 20.0

40.0 60.0 80.0 100.0
(t-ty,)/d

EFF(D)

——

At the same time,
efficiency increases

(more counts from progeny per
Th-227 decay)

40.0 60.0 80.0 100.0
(t-t.,)/d



Time-dependent efficiency curves

EFF(D)

9.000

8.000

7.000

6.000

5.000
® 1 week

2 weeks
4.000

3 weeks

4 weeks

3.000
0.992 0.994

0.996
TDCR

0.998

1.000

So, for a given LS
source, we predict the
decrease in
experimental TDCR
and an increase in
efficiency over time.



TDCR

The single Figure-of-Merit model

1.0005
1.0000
0.9995
0.9990
0.9985
0.9980
0.9975
0.9970
0.9965
0.9960
0.9955

- Expt

model: FOM = 3.1
model: FOM = 2.5
model: FOM = 3.5

If we assume the LS source is stable,
then the observed triple-to-double
coincidence ratio is expected to
change as the beta-emitting progeny
grow in

Our efficiency model tracks the
ingrowth

The slope of the curve is predicted
by the counting efficiencies for the
beta-emitters, so the free parameter
(figure-of-merit) can be a Lusted fit
the experimental data to the model

Modeled efficiencies are then used
to calculate activity



The single Figure-of-Merit model

1.0005 * If we assume the LS source is stable,
1 0000 . Expt then the observed triple-to-double
' . coincidence ratio is expected to
0.9995 . ot N " beta-emitting progeny
0.9850 Achieved relative combined
b model tracks the
0.9985 .
= 1 standard uncertainty on the
D . 3 ° °
- % .. 1€ curve is predicted
0.9975 g act|V|ty <0.3% g efficiencies for the
- e ifen ,....f..-.-,_s)o the IEi;ree _ararzef'ger
aamd R igure-of-merit) can be adjusted fit
0.9965 P it the experimental data to tf\e model
0.9960 * Modeled efficiencies are then used
00055 Lo v v v u to calculate activity
0 10 20 30 40 50

(t-ty) /



Measurement challenges

e=1
So, what’s the Challenges? Really?
stz eeel  Decay chains

* Progeny include beta-emitters (e < 1)

* Pre-equilibrium measurements

* Impurities
* Breakthrough
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The problem of breakthrough NIST

O

In our 22*Ra standardization campaigns, 225Th
breakthrough was mostly insignificant. Except for
the one time it

(

tsep fTh-228 at tsep

G
Q

9/14/2018 (3.3£0.4)x10°

O

11/2/2018  (5.0+1.6) x 10

|

O

2/8/2019 (4.2 +0.6) x 106

P

d 4/22/2019 (9.7+0.1)x D

-

See: https://doi.org/10.1021/scimeetings.0c01048
Bergeron et al., ARI 155, 108933 (2020).



https://doi.org/10.1021/scimeetings.0c01048

‘Negligible” breakthrough in the literature

NST

Appl. Radiar. Isar. Vol. 38, No, 4, pp. 283-286, 1988
Iut. J. Radiat. Appl. fnsiram. Part A
Printed in Great Briwin

An Improved Generator for the Production
of **Pb and ?"’Bi from ***Ra

ROBERT W. ATCHER,"* ARNOLD M. FRIEDMAN®s« and
JOHN J. HINES?

'Radiation Oncology Branch, Mational Cancer Institute, Bethesda, Maryland and *Chemistry Division,
Argonne MNational Laboratory, Argonne, 1L 60439, 115 A,

(Received 7T October 1987)

We huve developed an improved generator for the production of the alpha emitting radionuclide 2°Bi and
its parent. ““Ph. These radionuclides sre well snited 1a nee ag radinthara retie amente dos o thoie salas sl
= mme - - —_— e —— - e e mmmm  E RA RS RTE RS RIS LW N R "y B [T

the activity remains on the anion exchanee resn,
Breakthrough of the thorium in the radium selution
15 negligible. less than | ppm. Generators which have
been returned 1o ANL decay with the half life of
“Ra.

The wvicld of the generator as o function of HI

DEEI-2569/ 58 $3.00 +-0.00

Received: 8 November 2017 Revised: 16 December 2017 Accepted: 17 January 2018

Pergamon Press ple DO 10.1002/jler.3610

.........

RESEARCH ARTICLE

Ra-224 labeling of calcium carbonate microparticles for
internal a-therapy: Preparation, stability, and
biodistribution in mice

1,34
I

Sara Westrom"** © | Marion Malenge' | Ida Sofie Jorstad" | Elisa Napoli

@yvind S. Bruland"*® | Tina B. Bonsdorff' | Roy H. Larsen’

3.2 | Ra-224 generator performance

Breakthrough of the ***Th parent was determined with a-
spectroscopy to be less than or equal to 1.5 X 10~ Bg/mL.
This amount corresponds to less than 3 x 10~ of the orig-
inal ***Ra activity. No ingrowth of ***Ra from ***Th was
detected when half-life measurements with liquid scintil-
lation were performed. Altogether, the results from these
2 analyses suggest that the quality of the prepared ***Ra
snliution was satisfactorv.



Nal(Tl) won’t see 22%Th in spectrum

228Th decays mostly to the ground state of 22*Ra
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http://www.Inhb.fr/nuclides/Th-228 tables.pdf



Counts

HPGe detection of 22°Th faces challenges NIsST

1E+06 47— :
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Energy (keV)

The resolution of HPGe
allows identification of the
weak y-ray peaks from %28Th
decay

Minimum detectable
activities at early times are
high, due to the Compton
background from ??*Ra and
its progeny



Can half-life detect < 1 ppm 2%Th?

Half-lives determined with
pre-equilibration data

‘ require more complicated
3635 | fitting

Half-lives determined with
0 T1/2(6 to 30) ] post-equilibration (> 6 d past

Apparent half-life / d

X T1/2(6 to 15)
° t,.p) data are fairly robust

3625 L against ??2Th breakthrough




Plotting what v. when

What can we know?
(Ar/Ag, at t.., detectable by half-life)

1.E-03 ¢

=
m
o
92

=
m
o
(o))}

1.E-04 |

Amounts to
N
1.3 % impurity

on Day 15.

- Apparent half-life is: °
[ > 2x DDEP uncertainty °

o

20 40 60
When can we know it?

(days fromt__..)

sep

Monitoring half-life can

provide sensitivity to ppm-

level 222Th breakthrough...
....If you can distinguish a deviation
of 20 from the evaluated half-life

(i.e., you’re the best in the world at
measuring half-lives)

...and you measure until 50 days
post-separation



Nobody’s that good!

3.65

3.645

3.64

w
(@)
W
o

3.63

Half-life / d

3.625

3.62

3.615

3.61

NIST HPGe

NIST IC

Data are being considered
for a new half-life

J' evaluation (DDEP*)

______ There is spread in the

I dataset, and estimated
uncertainties vary

Determination

*http://www.Inhb.fr/nuclear-data/nuclear-data-table/
Bergeron et al., ARI 170, 109572 (2021).



So, catching breakthrough is a challenge NIST

What can we know?
(Ar/Ag, at t.., detectable by half-life)

1.E-03 ¢

1.E-04 |

1605 |

1.E-06

20 40
When can we know it?

(days fromt__..)

sep

60

Gamma-ray spectrometry and
half-life cannot provide an
early measure of 222Th
breakthrough in ?2*Ra

Mass spectrometry could
provide a sensitive
alternative

A [Ar, =5x10°
corresponds to
N;./Ng, =1x 1073



Measurement challenges

e=1
So, what’s the Challenges? Really?
stz eeel  Decay chains

* Progeny include beta-emitters (e < 1)

* Pre-equilibrium measurements

* Impurities
 Breakthrough
 Co-produced isotopes




Other impurities are tricky, too

Annual Production of Ac:225 from Th-229 (cow) Along with breakthrough for column-
o m— .- produced materials, there is serious
concern right now about co-produced
isotopes that cannot be easily separated

j m Projected Ac-225 Available for Shipping

g
graph)

" —Number of Shipments

Radioactivity (mCi) (bar graph)

Number of Shipments (line

The %2’ Ac impurity in accelerator-produced
225Ac has the NRC considering licensing an
https://www.fda.gov/media/152472/download impurity for the fi rSt time

From the 2021 FDA-NRC Workshop on Ac-225.

It’s not the dose to patients that’s the concern; it’s the occupational
exposure to workers and the disposal questions. (Similar issues have come
up with 177mLu impurities in 1’’Lu radiopharmaceuticals.)



https://www.fda.gov/media/152472/download

TES resolves %2’Ac contributions

Applied Radiation and Isotopes 172 (2021) 109693

Contents lists available at ScienceDirect 5| Jonted Rutition and

Applied Radiation and Isotopes

Landing Pad
Thermal Link *

journal homepage: www.elsevier.com/locate/apradiso

Measurement of 2>’ A¢c impurity in *° Ac using decay energy spectroscopy et

A.D. Tollefson?, C.M. Smith ", M.H. Carpenter?, M.P. Croce ?, M.E. Fassbender?, K.E. Koehler 2, Abslber
L.M. Lilley ?, E.M. O’Brien?, D.R. Schmidt”, B.W. Stein?, J.N. Ullom >, M.D. Yoho?, D.J. Mercer?

aLos Alamos National Laboratory, Los Alamos, NM 87545, USA
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Silicon Spring

LAY ULAUIL COLIMIUGLLS 1UL LOily AaS W L.
We deduce from our data that the a priori detection limit is 0.0026 3 225A¢ ZIFr
227 225 ; ; ; 225A¢, #°Ra, and
Bq of </ Th per Bq of “~? Ac, assuming a 24-h measurement using a single i, ) 5 N
DES channel and 1 Bq of sample. Assuming the realistic conditions of Th Escapes “'Fr Escapes
chemical purification 15 days post-irradiation followed by measure- I y ||7Ra ——
ment five days later, this corresponds to an EOB limit of detection l 23 ¢, 4h
227 Ac/?25 Ac activity ratio of 0.38%. In order to meet our sensitivity 4
goal of 0.15%, we must engage seven of our eight DES channels
in a simultaneous measurement, giving a detection limit of 0.14%.
Substantial improvements may be possible with better understanding
and reduction of the background, and with faster DES sensors to allow
5 TG - . 0
for higher activity samples. s . s 5.8 6.0 6.2 6.4
Energy (MeV)

Zl]Bi

Counts per 1 keV bin

6.8

Fig. 8. 2P Ac production sample spectrum, processed with optimal filtering, with clear indication of **’Ac impurity visible from ?*Ra, > Th, and *!'Bi daughters. The *'Fr m
peak at 6.46 MeV has a full-width at half-maximum of 4.7 keV when fit with a single-tailed Bortels function.



DES at NIST
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Conclusions/Summary

 Targeted alpha therapy and theranostics drive demand
for activity standards for alpha-emitting radionuclides

 Our primary methods are well-suited for alpha-emitters,
but real challenges arise in every case
* Decay chain (pre)equilibrium
 Decay data
* Impurities
e Opportunities for complementary/supplemental

measurements by DES, mass spectrometry... maybe
even atomic spectroscopy? Let’s talk!
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