Activity standards for alphaemitters in support of precision cancer therapy

Denis E. Bergeron

Nuclear Medicine Project, Radiation Physics Division

denis.bergeron@nist.gov

Isotope Metrology Working Group Seminar - 19 September 2023

Consider two trends in cancer therapy:

Targeted alpha therapy

Theranostics

(Therapy + Diagnostics = Theranostics)

Alphas have short range

https://www.shutterstock.com/image-vector/penetration-range-alpha-beta-gamma-radiation-218762140

Targeted alpha therapy

A Travel distance of alpha particles

B Travel distance of beta particles

JAMA Oncology, 4(12), 1765, 2018.

Theranostics means precision medicine

Imaging nuclide and therapeutic nuclide delivered with same targeting system for:

Biodistribution

NIST

- Dose planning
- Dosimetry

https://www.genesiscare.com/au/treatment/cancer/theranostics/

The becquerel in nuclear medicine

Precision measurements of activity are the foundation for:

- BQ Decays per second (of a radionuclide)
- Reliable administration of patient dosages
- Quantitative molecular imaging
- Personalized dosimetry
- Multicenter trials

Zimmerman et al., Z. Med. Phys. 27 (2017) 98.

https://www.snmmi.org/NewsPublications/NewsDetail.aspx?ItemNumber=29483

Medically important alpha emitters

(Some) Medically important alpha emitters NST

Recently standardized alpha-emitters

Algeta approached NIST in 2005, at the direction of FDA, to develop measurement standards for ²²³RaCl₂. With the success of this "first-in-class" alpha-therapeutic, we have seen increased demand for activity standards for other alpha-emitters with therapeutic potential.

ELSEVIER

E. Bergeron

* Physical Measurement Labe

^b Oncoinvent AS, Oslo, Non ^c Institute of Clinical Medici

Department of Radiation E

ARTICLE INFO

ELSEVIER

^a Radiation Physics Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA

National Physical Laboratory, Teddington, Middlesex, TW11 OLW, UK Department of Physics, University of Surrey, Stag Hill, Guildford, GU2 7XH, UK Oncoinvent AS, Oilo, Norway

Keywords:

Ionization chamber

Bayer works with NIST to maintain traceability and shipments of Xofigo* to new sites include a NISTtraceable calibration source

Applied Radiation and Isotopes 155 (2020) 108933

Contents lists available at ScienceDirect

Applied Radiation and Isotopes

iournal homepage: http://www.elsevier.com/locate/apradis

Primary standardization of ²²⁴Ra activity by liquid scintillation counting

Elisa Napoli^{a,b,c,d}, Jeffrey T. Cessna^a, Ryan Fitzgerald^a, Leticia Pibida^a, Ronald Collé^a

ABSTRACT

Lizbeth Laureano-Pérez^a, Brian E. Zimmerman^a, Denis E. Bergeron^a

Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norwa

ncolnvent AS, Oslo, Norway

A R T I C L E I N E O

Keywords.

TDCR

Institute of Clinical Medicine, University of Oslo, Oslo, Norway

Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20599-8462, USA

Denis E. Bergeron^{a,*}, Karsten Kossert^b, Sean M. Collins^{c,d}, Andrew J. Fenwick⁶

^a Divisical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20890-8462, USA

*NIST does not endorse commercial products.

A standard for activity of ²²⁴Ra in secular equilibrium with its progeny has been developed, based on triple-to-

double coincidence ratio (TDCR) liquid scintillation (LS) counting. The standard was confirmed by efficiency

Liquid-scintillation based primary methods NIST

Measurement challenges

Challenges? Really?

- Decay chains
 - Progeny include beta-emitters (ε < 1)
 - Pre-equilibrium measurements
- Impurities
 - Breakthrough
 - Co-produced isotopes

Measurement challenges

Challenges? Really?

- Decay chains
 - Progeny include beta-emitters (ε < 1)
 - Pre-equilibrium measurements
- Impurities
 - Breakthrough
 - Co-produced isotopes

²²⁴Ra decays by four α -emissions

Following Bateman (1908), concentrations of isotopes in a decay chain are calculable from initial concentrations and decay constants (λ)

$$\frac{dN_1}{dt} = -\lambda_1 N_1$$
$$\frac{dN_i}{dt} = \lambda_{i-1} N_{i-1} - \lambda_i N_i \quad (i = 2, n)$$

²²⁴Ra reaches equilibrium 6 d after t_{sep}

	T _{1/2}	A/A _{Ra-224}
²²⁴ Ra	3.631(2) d	1
²²⁰ Rn	55.8(3) s	1.000178(1)
²¹⁶ Po	0.148(4) s	1.000178(1)
²¹² Pb	10.64(1) h	1.13928(15)
²¹² Bi	60.54(6) min	1.15263(15)
²¹² Po	300(2) ns	0.7385(11)
²⁰⁸ TI	3.058(6) min	0.4144(20)

Most γ-rays in the decay chain come from ²¹²Pb and ²⁰⁸Tl

Pre-equilibrium activity assays are tricky

TDCR is well-suited for alpha-emitters

Triple-to-double Coincidence Ratio (TDCR) counting

- Liquid scintillation counting
- 3-detector system where double and triple coincidence events are counted

 $TDCR = N_{\rm T}/N_{\rm D} = \varepsilon_{\rm T}/\varepsilon_{\rm D}$

- Vary efficiency
- As $\varepsilon_{\mathrm{T}}/\varepsilon_{\mathrm{D}} \rightarrow 1$, N_{D} (and $N_{\mathrm{T}}) \rightarrow N$
 - In practice, a bit more complicated, but we have good models!

LS counting efficiencies are high

Triple-to-double Coincidence Ratio (TDCR) counting

$$TDCR = N_{\rm T}/N_{\rm D} = \varepsilon_{\rm T}/\varepsilon_{\rm D}$$

The MICELLE2 model* uses a Monte Carlo approach to calculate ε_T and ε_D for β^- decay branches

*Kossert & Grau Carles, Appl. Radiat. Isotop. 68, 1482-1488 (2010).

The model: assumptions & decay data

3.058(6) min

Napoli et al., Appl. Radiat. Isotop. 155, 108933 (2020).

NIST

NIST ²²⁴Ra and ²¹²Pb activity standards

Primary standardization of ²²⁴Ra activity by liquid scintillation counting

Elisa Napoli^{a,b,c,d}, Jeffrey T. Cessna^a, Ryan Fitzgerald^a, Leticia Pibida^a, Ronald Collé^a, Lizbeth Laureano-Pérez^a, Brian E. Zimmerman^a, Denis E. Bergeron^{a,*}

^a Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899-8462, USA ^b Oncoinvent AS, Oslo, Norway ^c Institute of Clinical Medicine. University of Oslo. Oslo. Norway

^d Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway

ARTICLE INFO	A B S T R A C T
Keywords:	A standard for activity of ²²⁴ Ra in secular equilibrium with its progeny has been developed, based on triple-to-
TDCR	double coincidence ratio (TDCR) liquid scintillation (LS) counting. The standard was confirmed by efficiency

 $u_{\rm c} = 0.23 \%$

	Applied Radiation and Isotopes 190 (2022) 110473	
98	Contents lists available at ScienceDirect	Applied Radiation and locinges
	Applied Radiation and Isotopes	
IER	journal homepage: www.elsevier.com/locate/apradiso	

Primary standardization of ²¹²Pb activity by liquid scintillation counting

Denis E. Bergeron^{*}, Jeffrey T. Cessna, Ryan P. Fitzgerald, Lizbeth Laureano-Pérez, Leticia Pibida, Brian E. Zimmerman

Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA

ARTICLE INFO

ELSEV

ABSTRACT

Keywords: Pb-212 TDCR Anticoincidence counting Efficiency tracing Radionuclide calibrator Dose calibrator Well counter Activity calibration Decay chain An activity standard for ²¹²Pb in equilibrium with its progeny was realized, based on triple-to-double coincidence ratio (TDCR) liquid scintillation (LS) counting. A Monte Carlo-based approach to estimating uncertainties due to nuclear decay data (branching ratios, beta endpoint energies, γ -ray energies, and conversion coefficients for ²¹²Pb and ²⁰⁶TI) led to combined standard uncertainties ≤ 0.20 %. Confirmatory primary measurements were made by LS efficiency tracing with tritium and $4\pi\alpha\beta(LS)\cdot\gamma(NaI(TI))$ anticoincidence counting. The standard is discussed in relation to current approaches to ²¹²Pb activity calibration. In particular, potential biases encountered when using inappropriate radionuclide calibrator settings are discussed.

Measurement challenges

Challenges? Really?

- Decay chains
 - Progeny include beta-emitters (ε < 1)
 - Pre-equilibrium measurements
- Impurities
 - Breakthrough
 - Co-produced isotopes

Equilibration considerations

²²⁴Ra (longest-lived progeny is ²¹²Pb, $T_{1/2}$ = 10.6 h) takes > 6 d to reach equilibrium

Separated from its parent, ²¹²Pb (longest-lived progeny is ²¹²Bi, $T_{1/2}$ = 60.55 min) reaches equilibrium in ~ 12 h.

Breakthrough of the parent leads to "supported" ²¹²Pb

Measuring during ingrowth

Th-227 differs from previously considered decay chain nuclides because we cannot wait for equilibrium.

"If there's one thing that I detest, it is a fair fight. But if I must, then I must..." --Dark Helmet

https://rickmoranisgifs.tumblr.com/post/65998603558

Preliminary LS efficiency calculations

Estimate 100 % LS counting efficiency for alpha emissions

Calculate efficiencies for beta emissions with MICELLE2

Time evolution of LS efficiencies

Time-dependent efficiency curves

9.000 8.000 7.000 6.000 5.000 • 1 week 2 weeks 4.000 3 weeks • 4 weeks 3.000 0.992 0.994 0.996 0.998 1.000 **TDCR**

So, for a given LS source, we predict the decrease in experimental TDCR and an increase in efficiency over time.

EFF(D)

The single Figure-of-Merit model

- If we assume the LS source is stable, then the observed triple-to-double coincidence ratio is expected to change as the beta-emitting progeny grow in
- Our efficiency model tracks the ingrowth
- The slope of the curve is predicted by the counting efficiencies for the beta-emitters, so the free parameter (figure-of-merit) can be adjusted fit the experimental data to the model
- Modeled efficiencies are then used to calculate activity

The single Figure-of-Merit model

Measurement challenges

Challenges? Really?

- Decay chains
 - Progeny include beta-emitters (ε < 1)
 - Pre-equilibrium measurements
- Impurities
 - Breakthrough
 - Co-produced isotopes

The problem of breakthrough

'Negligible' breakthrough in the literature NST

Appl. Radiat. Isot. Vol. 39, No. 4, pp. 283–286, 1988 Int. J. Radiat. Appl. Instrum. Part A Printed in Great Britain 0883-2889/88 \$3.00 + 0.00 Pergamon Press plc DOI: 10.1002/jlcr.3610 Revised: 16 December 2017 Accepted: 17 January 2018

RESEARCH ARTICLE

WILEY Radiopharmaceutical

An Improved Generator for the Production of ²¹²Pb and ²¹²Bi from ²²⁴Ra

ROBERT W. ATCHER,^{1*} ARNOLD M. FRIEDMAN² And JOHN J. HINES²

¹Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland and ²Chemistry Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.

(Received 7 October 1987)

We have developed an improved generator for the production of the alpha emitting radionuclide ²¹³Bi and its parent, ²¹³Pb. These radionuclides are well suited to use as radiotherment in accutacing to their relations: the activity remains on the anion exchange resin. Breakthrough of the thorium in the radium solution is negligible, less than 1 ppm. Generators which have been returned to ANL decay with the half life of ¹²⁴Ra.

The yield of the generator as a function of HI

Ra-224 labeling of calcium carbonate microparticles for internal α -therapy: Preparation, stability, and biodistribution in mice

Sara Westrøm^{1,2,3} \square | Marion Malenge¹ | Ida Sofie Jorstad¹ | Elisa Napoli^{1,3,4} | Øyvind S. Bruland^{1,3,5} | Tina B. Bønsdorff¹ | Roy H. Larsen¹

3.2 | Ra-224 generator performance

Breakthrough of the ²²⁸Th parent was determined with α spectroscopy to be less than or equal to 1.5×10^{-3} Bq/mL. This amount corresponds to less than 3×10^{-7} of the original ²²⁴Ra activity. No ingrowth of ²²⁴Ra from ²²⁸Th was detected when half-life measurements with liquid scintillation were performed. Altogether, the results from these 2 analyses suggest that the quality of the prepared ²²⁴Ra solution was satisfactory.

Nal(TI) won't see ²²⁸Th in spectrum

²²⁸Th decays mostly to the ground state of ²²⁴Ra

HPGe detection of ²²⁸Th faces challenges NIST

The resolution of HPGe allows identification of the weak γ-ray peaks from ²²⁸Th decay

Minimum detectable activities at early times are high, due to the Compton background from ²²⁴Ra and its progeny

Can half-life detect < 1 ppm ²²⁸Th?

Half-lives determined with pre-equilibration data require more complicated fitting

Half-lives determined with post-equilibration (> 6 d past t_{sep}) data are fairly robust against ²²⁸Th breakthrough

Plotting what v. when

Monitoring half-life can provide sensitivity to ppmlevel ²²⁸Th breakthrough...

....if you can distinguish a deviation of 2 σ from the evaluated half-life (i.e., you're the **best in the world** at measuring half-lives)

...and you measure until 50 days post-separation

Nobody's that good!

Data are being considered for a new half-life evaluation (DDEP*) There is spread in the dataset, and estimated uncertainties vary

*http://www.lnhb.fr/nuclear-data/nuclear-data-table/ Bergeron et al., ARI 170, 109572 (2021).

So, catching breakthrough is a challenge

 Gamma-ray spectrometry and half-life cannot provide an early measure of ²²⁸Th breakthrough in ²²⁴Ra

 Mass spectrometry could provide a sensitive alternative

> $A_{Th}/A_{Ra} = 5 \times 10^{-6}$ corresponds to $N_{Th}/N_{Ra} = 1 \times 10^{-3}$

Measurement challenges

Challenges? Really?

- Decay chains
 - Progeny include beta-emitters (ε < 1)
 - Pre-equilibrium measurements
- Impurities
 - Breakthrough
 - Co-produced isotopes

Other impurities are tricky, too

https://www.fda.gov/media/152472/download From the 2021 FDA-NRC Workshop on Ac-225. Along with breakthrough for columnproduced materials, there is serious concern right now about co-produced isotopes that cannot be easily separated

The ²²⁷Ac impurity in accelerator-produced ²²⁵Ac has the NRC considering licensing an impurity for the first time

It's not the dose to patients that's the concern; it's the occupational exposure to workers and the disposal questions. (Similar issues have come up with ^{177m}Lu impurities in ¹⁷⁷Lu radiopharmaceuticals.)

TES resolves ²²⁷Ac contributions

Check for

NIST

Applied Radiation and Isotopes 172 (2021) 109693

				_
	Contents lists available at ScienceDirect Applied Radiation and Isotopes journal homepage: www.elsevier.com/locate/apradiso		Applied Radiati Isotopes	ion and
				(Reine, 19) 8, 194
ELSEVIER			t T T T T T T T T T T T T T T T T T T T	
				_

Measurement of ²²⁷ Ac impurity in ²²⁵ Ac using decay energy spectroscopy A.D. Tollefson^a, C.M. Smith^{a,*}, M.H. Carpenter^a, M.P. Croce^a, M.E. Fassbender^a, K.E. Koehler^a, L.M. Lilley^a, E.M. O'Brien^a, D.R. Schmidt^b, B.W. Stein^a, J.N. Ullom^{b,c}, M.D. Yoho^a, D.J. Mercer^a ^a Los Alamos National Laboratory, Los Alamos, NM 87545, USA ^b NIST Boulder Laboratories, Boulder, CO 80305, USA

We deduce from our data that the a priori detection limit is 0.0026 Bq of ²²⁷Th per Bq of ²²⁵Ac, assuming a 24-h measurement using a single DES channel and 1 Bq of sample. Assuming the realistic conditions of chemical purification 15 days post-irradiation followed by measurement five days later, this corresponds to an EOB limit of detection ²²⁷Ac/²²⁵Ac activity ratio of 0.38%. In order to meet our sensitivity goal of 0.15%, we must engage seven of our eight DES channels in a simultaneous measurement, giving a detection limit of 0.14%. Substantial improvements may be possible with better understanding and reduction of the background, and with faster DES sensors to allow for higher activity samples.

Fig. 8. ²²⁵Ac production sample spectrum, processed with optimal filtering, with clear indication of ²²⁷Ac impurity visible from ²²³Ra, ²²⁷Th, and ²¹¹Bi daughters. The ²²¹Fr m peak at 6.46 MeV has a full-width at half-maximum of 4.7 keV when fit with a single-tailed Bortels function.

DES at NIST

Conclusions/Summary

- Targeted alpha therapy and theranostics drive demand for activity standards for alpha-emitting radionuclides
- Our primary methods are well-suited for alpha-emitters, but real challenges arise in every case
 - Decay chain (pre)equilibrium
 - Decay data
 - Impurities
- Opportunities for complementary/supplemental measurements by DES, mass spectrometry... maybe even atomic spectroscopy? Let's talk!

Thanks to

 Radioactivity Group: Brittany Broder, Max Carlson, Jeff Cessna, Ron Collé, Morgan DiGiorgio, Ryan Fitzgerald, Gula Hamad, Lizbeth Laureano-Pérez, Leticia Pibida, Brian Zimmerman
 Collaborators: Elisa Napoli, Gro Hjellum (Oncoinvent, AS); Seán Collins, Andy Fenwick (NPL)

This work was supported in part by: Oncoinvent, AS Orano Med Janssen Pharmaceuticals NIST Innovations in Measurement Science

National Institute of Standards and Technology U.S. Department of Commerce

