CCQM Activities and Impact in Environment and Climate

R.I. Wielgosz (BIPM)

NMI activities in the CCQM Gas Analysis Working Group

Ozone Standards and comparisons

Comparisons of nitrogen dioxide standards

Progress with methane and CO₂ standards and comparisons

Conclusions

Bureau
International des
Poids et
Mesures

CIPM Mutual Recognition Arrangement: CCQM GAWG Activities

Traceability Chain for Gas Concentration Measurements

NMIs active in the CCQM Gas Analysis Working Group (GAWG)

Bureau International des Poids et Mesures (BIPM)

The BIPM is an intergovernmental organization established by the Metre Convention, through which Member States act together on matters related to measurement science and measurement standards.

www.bipm.org

The mission of the BIPM is to ensure and promote the global comparability of measurements, including providing a coherent international system of units for:

- Scientific discovery and innovation,
- Industrial manufacturing and international trade,
- Sustaining the quality of life and the global environment.

BIPM Chemistry Department programme on:

International equivalence of gas standards for air quality and climate change monitoring

Coordinating comparisons of gas standards with the National Metrology Institutes and Designated Institutes within the CCQM Gas Analysis Working Group

Bureau
International des
Poids et
Mesures

International Gas Standard Comparisons coordinated by the BIPM Chemistry Department within CCQM GAWG

Comparison	Description	Nominal mole fraction	Year
CCQM-P28	Ozone (ground-level)	80 nmol/mol; 400 nmol/mol	2003
CCQM-P73	Nitrogen Monoxide	50 μmol/mol	2006
BIPM.QM-K1	Ozone (ground-level)	80 nmol/mol; 400 nmol/mol	2007
CCQM-K74	Nitrogen Dioxide	10 μmol/mol	2009
CCQM-P110.B1 CCQM-P110.B2	Nitrogen Dioxide : Spectroscopic Studies	10 μmol/mol	2009
CCQM-K82†	Methane	2000 nmol/mol	2012
ССQМ-К90	Formaldehyde	2000 nmol/mol	2014
CCQM-K120.a†	Carbon dioxide	380 μmol/mol – 480 μmol/mol	2016
CCQM-K120.b†	Carbon dioxide	480 μmol/mol – 800 μmol/mol	2016
CCQM-KXX**	CO ₂ isotope ratios	$δ^{13}$ C, $δ^{18}$ O (Pure CO ₂)	2019

+with **NIST** + with **KRISS** ** with **IAEA**

Bureau ↓ International des ↓ Poids et ↓ Mesures

BIPM-WMO joint activities

Wielgosz R., Calpini B., (Editors), Report on the WMO-BIPM workshop on Measurement Challenges for Global Observation Systems for Climate Change Monitoring: Traceability, Stability and Uncertainty, Rapport BIPM-2010/08, 100 pp

Bureau International des Poids et Mesures

Global comparisons related to air quality and greenhouse gases

Establishing Traceability for Atmospheric Ozone Measurements

WORLD METEOROLOGICAL ORGANIZATION GLOBAL ATMOSPHERE WATCH GLOBAL NETWORK

BIPM-NIST programme to maintain the comparability of the worldwide network of ozone reference standards

Improvements in demonstrated performance of Ozone Standards

New guidelines for surface ozone measurements

Guidelines for Continuous Measurements of Ozone in the Troposphere

GLOBAL ATMOSPHERE WATCH

Galbally I.E., Schultz M.G., Buchmann B., Gilge S., Guenther F., Koide H., Ottmans S., Patrick L., Scheel H.-E., Smit H., Steinbacher M., Steinbrecht W., Tarasova O., Viallon J., Volz-Thomas A., Weber M., Wielgosz R., Zellweger C., Guidelines for continuous measurements of ozone in the troposphere, **GAW Report No. 209, 2013, 76 pp**

Norris J.E., Choquette S.J., Viallon J., Moussay P., Wielgosz R., Guenther F.R., Temperature measurement and optical pathlength bias improvement modifications to National Institute of Standards and Technology ozone reference standards, J. Air & Waste Manage. Assoc., 2013, 63(5), 565-574

Bureau
International des
Poids et
Mesures

Iso calibration

5 - CCOM-P28 (2003-2004)

3 - Recent calibration

Updated on 2 April 2013

Differences in Reference Methods for Ozone

Ozone reference standard comparison facility

Wavenumber / cm⁻¹

1500

1000

Bureau International des Poids et Mesures

CCQM-P28 Degrees of Equivalence, Ozone mole fraction:420nmol/mol

Bureau International des Poids et Mesures

zero and span corrected GPT NO

zero and span corrected GPT NO2

0.9600

0.9500

0.9400

0.9300

BIPM facility for ozone cross section measurements

Frequency doubled argon-ion laser with intensity stabilisation

Mass spectrometer

High accuracy pressure gauge (Baratron) for *P* < 1 mbar

Temperature controlled cryostat

Bureau
International des
Poids et
Mesures

Aims/Deliverables:

Resolve differences between reference methods

Status:

- pure ozone generation system purity > 98.1%
- evaporation-condensation cycle method
- cross-section measurements completed

Scheme of the ozone cross-section measurement setup

한국표준과학연구원 Krss Research hutitute of Standards and Science

K. Tworek, GUM, 2012

Viallon J., Lee S., Moussay P., Tworek K., Petersen M. and Wielgosz R., Accurate laser measurements of ozone absorption cross-sections in the Hartley band, Atmos. Meas. Tech., 2015, 8, 1245-1257

Gas Standards for long term monitoring of nitrogen oxides

WMO/GAW Expert Workshop on Global Long-term Measurements of Nitrogen Oxides and

Recommendations for GAW Nitrogen Oxides Network

(Hohenpeissenberg, Germany, 8-9 October 2009)

http://www.wmo.int/pages/prog /arep/gaw/documents/Final_GA W_195_TD_No_1570_web.pdf

Bureau International des Poids et lesures

Table 2 - Data Quality Objectives (DQOs) for NO and NO ₂ under differing conditions			
Level	1 (basic)	2 (enhanced)	3 (high)
Site characteristics	Continental basic	Continental background	Pristine, marine background, free troposphere
Mean mixing ratio NO _x	> 1 ppb	0.1 – 1 ppb	< 0.1 ppb
Scope	long term monitoring, trends (1 hour)		
(corresponding	source-receptor-relationship, transport processes (hour-minute)		
time resolution)	photochemical process studies (minute)		
Detection Limit	NO: 50 ppt	NO: 10 ppt	NO: 1 ppt
(1 hour, 3-σ)	NO ₂ :100 ppt	NO ₂ :20 ppt	NO ₂ :5 ppt
uncertainty	NO: 40 ppt or 3%	NO: 8 ppt or 3%	NO: 1 ppt or 3%
(1 hour, 2-σ) ¹	NO ₂ :80 ppt or 5%	NO ₂ :15 ppt or 5%	NO ₂ :3 ppt or 5%
uncertainty	NO: 2.5%	NO: 2.5%	NO: 1 ppt or 2.5%
(1 month, 2-σ) ²	NO ₂ : 3%	NO ₂ : 3%	NO ₂ :3 ppt or 3%
data coverage	66%		
suggested method	CLD / PLC	CLD / PLC	CLD / PLC
alternative method (backup or QC reasons)	CRDS, LIF ; DOAS ; TDLAS	CRDS, LIF ; TDLAS	LIF

NO₂ standards and comparison (10ppm)

CCQM GAWG key comparison on NO₂ and Spectroscopic Measurements

BIPM dynamic gas standard facility for NO₂

Figure 2.12: The percentage composition of primary nitrogen dioxide in NO_x for all vehicle types in London.

The Air Quality Strategy for England, Scotland, Wales and Northern Ireland

Objectives (for 2020) for particulate matter (PM_{10}), nitrogen dioxide (NO_2), ozone (O_3), and polycyclic aromatic hydrocarbons (PAHs) are unlikely to be achieved, without further measures

BIPM facility for NO₂ Standards

Flow Control System for Rubotherm

- 1. Zero air generator
- 2. Nitrogen Generator
- 3. Nitrogen Cylinders
- 4. molbloc (0-1000) mL/min
- 5. SAES Nitrogen purifier
- 6. Mass flow controller (0-100) mL/min
- 7. Mass flow controller (0-1000) mL/min

Bur In

- Rubotherm System (dynamic gas mixtures)
 - 8. Magnetic suspension balance
 - 9.NO₂ permeation tube
- Flow Control System for NO₂ Gas Standards 10.Mass flow controller (0-1000) mL/min 11.Multi position valve (16-ports)

Flow Control System for NO2 Gas Standards

NO₂ Permeation Rate and Impurities

 x_{NO2} - NO₂ mole fraction;

- P NO₂ permeation rate;
- Vm molar volume of nitrogen;
- $M_{\rm NO2}$ the molar mass of NO₂;
- q_v total flow of nitrogen;

Dureau

```
M_{\rm HNO3} - the molar mass of NO<sub>3</sub>; and
```

 $x_{\rm HNO3}$ - HNO₃ mole fraction measured by FTIR.

Flores E., Idrees F., Moussay P., Viallon J., Wielgosz R., Highly Accurate Nitrogen Dioxide (NO₂) in Nitrogen Standards Based on Permeation, <u>Anal. Chem., 2012,</u> <u>84(23), 10283-10290</u> •Resolution: 2 μg;
 •Stability,3 days: ~ 0.5 μg;
 NO₂ permeation rate, *P*,
 (5000-10000) ng/min

 $u \approx 2 \text{ ng/min}$

FTIR gas facility

Purity and quantification of permeating gas: Analysis by FTIR

lesures

25

HNO₃ quantification using MALT

Uncertainty budget for the HNO₃ for mole fractions of (0.1-0.2) μ mol/mol

CCQM-K74 International comparison of nitrogen dioxide in nitrogen standards (2010)

<u>ССQМ-К74</u>

0

- NO_2/N_2 , nominal amount fraction 10 µmol mol⁻¹
- Set of 17 transfer standards prepared by VSL

• Analysis using FTIR & UV absorption

Key issue : HNO₃ in cylinders & in dynamic mixtures

Flores E., Viallon J., Moussay P., Idrees F. and Wielgosz R.I., 2012, Highly Accurate Nitrogen Dioxide (NO₂) in Nitrogen Standards Based on Permeation, *Analytical Chemistry*

Preparing for a repeat comparison CCQM-K74.2017 Generation of dynamic mixtures of HNO₃ in nitrogen by permeation Generation of HNO₃, bath 80°C —NO2 by FTIR —HNO3 by FTIR 0.8 —H2O by CRDS x / (µmol mol⁻¹) $q_m Vm$ $M_{NO2} x_{NO2}$ $M_{H20} x_{H20}$ 0.6 $x_{HNO3} =$ $q_v M_{HNO3}$ M_{HNO3} M_{HNO3} 0.4 0.2 0

23:00

21:48

Secondment of C. Pascale (METAS) 2014

19:24

20:36

Time

18:12

HNO₃ permeation [200-500] nmol mol⁻¹ Permeation rate ~ 30 % H_2O H_2O accurate quantification is crucial

17:00

Generation of dynamic mixtures of HNO₃ in nitrogen by permeation

Quantity	Value	Standard Uncertainty
<i>q</i> _{<i>m</i>}	9104 ng min ⁻¹	8.3 ng min ⁻¹
V _m	22.40037 g mol ⁻¹	340·10⁻ ⁶ g mol⁻ ¹
q_{v}	4.8 L min ⁻¹	72.0·10 ⁻⁶ L min ⁻¹
M_HNO ₃	63.0130 g mol ⁻¹	3.40·10 ⁻³ g mol ⁻¹
M_NO ₂	46.0055 g mol ⁻¹	2.80·10 ⁻³ g mol ⁻¹
M_H ₂ O	18.0147 g mol ⁻¹	0.5·10 ⁻³ g mol ⁻¹
x _{NO2} stability	0.0 ppb	3.00 ppb
$x_{\rm NO2}$ calibration	19.80 ppb	0.0396 ppb
$x_{\rm H2O}$ calibration	749.79 ppb	11.4 ppb
x _{H2O} system	50.0 ppb	11.5 ppb
x _{н20} stability	0.0	1.64 ppb

Quantity	Value	Standard Uncertainty
x(HNO ₃)	456.1 nmol mol ⁻¹	5.2 nmol mol ⁻¹

H₂O quantification:

- CRDS analysis calibrated by NPL
- Contribution from the matrix (system)

Greenhouse gases: target uncertainties for primary standards

Component	Nominal Mole fraction	Primary Standard: target standard uncertainty
CO ₂	400 μmol/mol	0.025 μmol/mol
CH ₄	2000 nmol/mol	0.5 nmol/mol
N ₂ O	330 nmol/mol	0.025 nmol/mol

Based on primary standard contributing to less than 5% of measurement uncertainty for monitoring, based on most stringent data compatibility requirements

This means relative standard uncertainties: < 0.007 % (for CO₂ and N₂O) and < 0.025 % (for CH₄)

Bureau International des Poids et Mesures

International comparison of methane in air standards (2012)

Aims/Deliverables:

Bureau

Demonstrate the degree of equivalence of national methane in air gas standards in support of green house gas monitoring (CCQM-K82, CH₄ in air)

Analysis made by cavity ring down spectroscopy and *gas chromatography-flame* ionization detector

Target mole fractions:

1800±10 nmol/mol and 2200±10 nmol/mol.

Matrix composition

To minimize pressure broadening effects

		2
Component in Air	Minimum mole fraction permitted within submitted cylinder	Maximum mole fraction permitted within submitted cylinder
Nitrogen	0.77849 mol/mol	0.78317 mol/mol
Oxygen	0.20776 mol/mol	0.21111 mol/mol
Argon	8.865 mmol/mol	9.799 mmol/mol
Carbon Dioxide	360 µmol/mol	400 µmol/mol

Bureau ↓ International des ↓ Poids et ↓ Mesures

Comparison of GC-GID and CRDS methods for methane in air

Poids et

A Mesures

Validation of BIPM's Measurements facility with NIST standards

Methane standards made in whole and synthetic air compared by CRDSAnalytical Chemistry,and GC-FID for atmospheric monitoring applications2015, 87(6), 3272-3279

Bureau International des Poids et Mesures

Improvements in global compatibility of methane in air standards

Bureau ↓ International des ↓ Poids et ↓ Mesures

Development for future improvements in CH₄ in air standards

of CH₄ in balance gas at 1 nmol/mol levels with u(x) < 0.1 nmol/mol

Measurement Challenges for CO₂ Standards and Comparisons

Comparison method

Isotopic Composition Stability/Storage

Target relative standard uncertainty < 0.007 %

Bureau International des Poids et Mesures

Preparing for the repeat CO₂ in air comparison (2016)

International comparison CCQM-K120 (2016): ambient level CO₂

■ureau
International des
↓ Poids et
↓ Mesures

Potential biases due to matrix composition

- Influence of the matrix composition on the spectroscopy
- More pronounced for CO₂
- For synthetic air standards this can be a major source of bias

Consistency with atmospheric air composition (major components) to 0.5 mmol/mol

Bureau
 H. Nara, H. Tanimoto, Y. Tohjima, H. Mukai, Y. Nojiri, K. Katsumata and C. W. Rella, *Atmos. Meas. Tech.*, 5, 2689–2701, (2012).
 International des
 Poids et
 Mesures

Isotopes of CO₂

M/z	CO ₂ Isotope
44	¹² C ¹⁶ O ₂
45	¹³ C ¹⁶ O ₂ , ¹² C ¹⁶ O ¹⁷ O
46	¹² C ¹⁶ O ¹⁸ O, ¹³ C ¹⁶ O ¹⁷ O, ¹² C ¹⁷ O ₂
47	¹³ C ¹⁶ O ¹⁸ O, ¹² C ¹⁷ O ¹⁸ O, ¹³ C ¹⁷ O ₂
48	¹³ C ¹⁷ O ¹⁸ O, ¹² C ¹⁸ O ₂
49	¹³ C ¹⁸ O ₂

Bureau

International des

lesures

Poids et

Isotope ratio measurements for corrections to CO_2 concentration measurements required at the ± 1 ‰ level

40

Bureau
International des
Poids et
Mesures

Validation standards with a range of compositions

CO₂ validation standards

Traceability of mole fraction values to: NIST and NPL

Bureau
International des
Poids et
Mesures

3 additional standards for the set to be provided by NOAA in 2015

Traceability of stable isotope standard measurements

BIPM-IAEA Symposium 4 June 2013; IAEA Workshop on Stable Isotopes (3-5 Sept 2014)

Comparisons of CO₂ standards with FTIR

Non corrected FTIR response for isotopic effects

Poids et

Corrected FTIR response for isotopic effects

• International

Mesures

BIPM manometric facility for the CO₂ comparison (2016)

- Optimized volumes and wall thicknesses for pressure measurements
- Automated system for cryogens
- Residual Gas Analyser for monitoring efficiency of cryogenic steps

Stability of CO₂ standards

Conclusions

Conclusions

- SI traceable standards for long term atmospheric monitoring is a **challenging area**, but considerable progress has been made
- Strong Collaboration between BIPM, National Metrology Institutes, Designated Institutes, CCQM-GAWG, WMO, WMO-GAW, and more recently IAEA
- Leads to innovation and improved international agreement of standards at very low levels of uncertainty

Acknowledgements

- CCQM Gas Analysis Working Group (GAWG)
- J.Viallon, E. Flores, P. Moussay and F. Idrees (BIPM)
- NMI visiting scientists

Bureau International des